
Using reordering technique for mobile
transaction management in broadcast environments

SungSuk Kim a,*, SangKeun Lee b,1, Chong-Sun Hwang c,2

a Department of Computer Science and Engineering, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku,

Seoul 136-701, South Korea
b 3G Handsets Lab., LG Electronics Inc., 1042, Hoge-dong, Dongan-ku, Anyang-city,

Kyungki-do 431-080, South Korea
c Department of Computer Science and Engineering, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku,

Seoul 136-701, South Korea

Received 17 May 2001; received in revised form 15 January 2002; accepted 18 June 2002

Abstract

As computer hardware and wireless network technologies are developed to a high degree, there are many

research efforts which intend to utilize data broadcasting to a large population of mobile clients through
wireless channels. In recent years, different models of data delivery have been explored, particularly the

periodic push model where the server repetitively disseminates information without any explicit request. In

this paper, we devise new transaction processing algorithms, O-Post for update transactions and O-Pre for

read-only transactions, in broadcast environments. Basically, each client executes its transactions in an

optimistic manner and does some consistency checks based on periodic invalidation reports. When any

kind of conflicts is found, the conflict order is determined according to the notion of reordering and the

remaining operations are executed to hold the decision. We also develop a cache algorithm to cope with

frequent restarts due to the optimistic execution. Experimental results are given to show the benefits of the
proposed algorithms.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Wireless mobile computing; Data broadcast; Transaction management; Reordering; Local caching

*Corresponding author. Tel.: +82-2-924-0547; fax: +82-2-953-0771.

E-mail addresses: sskim@disys.korea.ac.kr, sugi91@hanmail.net (S.S. Kim), yalphy@lge.com, yalphy@yahoo.com

(S.K. Lee), hwang@disys.korea.ac.kr (C.-S. Hwang).
1 Tel.: +82-31-389-7383; fax: +82-31-389-7399.
2 Tel.: +82-2-924-0547; fax: +82-2-953-0771.

0169-023X/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0169-023X(02)00155-6

Data & Knowledge Engineering 45 (2003) 79–100

www.elsevier.com/locate/datak

mail to: sskim@disys.korea.ac.kr,

1. Introduction

Wireless mobile computing is gaining more and more popularity because it can satisfy people�s
information needs at any time and anyplace. Rapid advances in computer hardware and wireless
network technologies have also lead to the development of mobile computing. A portable com-
puter can access data stored in the wired network via base station by wireless communications. In
terms of service design and application development, we have to consider some essential char-
acteristics special to the mobile computing as follows [2,7,17,24]:

• Limited resources. In a wireless communication, the transmission bandwidth is relatively small.
A portable computer has low computing power, small storage space, and small display screen.
Moreover, a battery-driven device has limited power.

• Asymmetric communication. From the power consumption point of view, sending data is more
costly than receiving data for a portable computer.

• Frequent disconnections. Due to the interference of various noises or the exhaustion of battery
power, a wireless connection will be frequently interrupted.

• User’s mobility. The mobile computing environment can be regarded as a large heterogeneous
environment. Users may move from one cell to another while accessing data. Service handoff,
which enables continuous data access in different cells, should be transparently provided.

Briefly, there are two modes for users to access data through wireless channels. One is broadcast,
which enables users to retrieve data by just listening to a certain channel. The other is on-demand,
in which users send requests to get data of interest. Data broadcast is characterized by an inherent
asymmetry in the communications: the bandwidth in the downstream direction (server-to-client) is
much greater than in upstream direction (client-to-server). Thus, it allows users to retrieve data
simultaneously with a cost independent of the number of users. Moreover, by broadcasting data,
the servers avoid interrupts caused by requests. Generating efficient broadcast program is one of
major research topic, which may also be combined with other purpose such as cache management
or location-dependent data access [24].

These features cause some new problems and challenges on the mobile information systems [7];
traditional problems such as data format, cache management, transaction processing and so on,
need to be discussed again with special emphasis on efficient resource usage and the properties
of asymmetric communication.

To support transaction service in traditional distributed systems, many algorithms have been
proposed and implemented, among which locking is very popular because of its comparatively
stable performance under various environment settings [5]. However, the scheme may not adapt
itself well to mobile environments since it originally requires a lot of message exchanges and can
not cope with frequent disconnections efficiently. Thus, new transaction processing algorithms are
strongly needed and are our main interest in this paper.

The proposed algorithms in this paper, O-Post for update transactions and O-Pre for read-only
transactions, make good use of server�s broadcast information. That is, to decrease the number of
costly upstream messages and to maintain the consistency of mobile transactions, a server con-
tinuously disseminates both the values of all data objects and useful control information. Basi-
cally, each client executes its transactions in an optimistic manner and also does some consistency

80 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

checks partially or fully based on the periodic control information. In addition, cache data is
maintained to reduce transaction span and to support fast re-execution after abortion. The effects
of various parameters on the overall performance are also carefully studied through experiments.

The main contributions of our work are twofold:

(1) Because our algorithms decrease the number of aborted transactions and support fast re-ex-
ecution, mobile computers can make good use of their limited resources.

(2) The server�s overhead can be reduced considerably, since the most part of the responsibility
for executing transactions is transferred to clients.

1.1. Related works

Broadcast-based data dissemination is likely to be a major mode of information transfer in
mobile computing and wireless environments due to its (almost) unlimited scalability. In the near
future, thus, they seem to be used to run sophisticated applications such as transactions. Many
research efforts, however, have been limited to the development of mobile cache management
algorithms [2,6,9]; that is, given the limited amount of bandwidth available for clients to com-
municate with the server in wireless environments, achieving cache coherency efficiently has been
a challenging research issue.

In the work [15], the authors proposed new validation schemes, called COREV and R2COREV ,
to remove the infinite delay and the cascading delays in validation process. To determine the
validation order, two timestamp values––data-transfer completion time and local completion
time––are assigned to transactions. In [4], the server disseminates some control information, called
Certification Report, periodically. Clients execute their transactions optimistically and do some
consistency checks partially based on the information, thus reducing the number of messages to
the server.

Recently, there are some works to support transactions effectively in pure push environment
where the server broadcasts data objects without any explicit request. In [22], two protocols, F-
Matrix and R-Matrix, are proposed for mobile read-only transactions. Although F-Matrix shows
good performance, it suffers from high overhead in terms of expensive computation and high
bandwidth requirement for additional control information for consistency check. Furthermore,
the two protocols adopt update consistency as a correctness criterion for transaction processing,
which is weaker than serializability. In [20,21], a number of broadcast methods have been in-
troduced to guarantee correctness of read-only transactions. In particular, the multiversion
broadcast approach pushes a number of older versions for each data object, along with the recent
version, to improve the possibility of transaction commitment. However, this approach increases
the size of one broadcast cycle considerably and accordingly transaction response time. Moreover,
the serialization order is fixed at the beginning of the read-only transaction, which is too re-
strictive and lacks flexibility. For Serialization-Graph Testing method, both mobile clients and the
server have to maintain a copy of serialization graph for conflict checking. It incurs high overhead
to maintain the serialization graph. In the work [14], each data object is associated with a
timestamp being determined by a committed transaction which updated the data object finally.
The algorithm offers both autonomy among mobile clients and the flexible adjustment of seri-
alization order of mobile read-only transactions. However, the cost for managing timestamp may

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 81

be too high in the mobile environments. Authors in [18] propose a new concurrency control al-
gorithm that solves the inconsistency problem that may be observed by the client during the
broadcast. They use Broadcast and Updated Cycles for the purpose of conflict checking. However,
the overhead to maintain and to transmit the control information depends on the size of database,
which may not be small.

The remainder of this paper is organized as follows. Section 2 gives a brief overview of the
system model and the notion of reordering. Section 3 describes the proposed reordering-based
algorithms. Local caching technique is then described in Section 4. Related issues with mobile
transaction processing are considered in Section 5. Section 6 presents a set of experiment results.
Finally, Section 7 concludes the paper.

2. Preliminaries

2.1. System model

The adopted model for a mobile information system in this paper (Fig. 1) is similar to that
specified in [1]. The mobile computing environment consists of two distinct sets of entities: a larger
number of mobile clients (MCs) and relatively fewer, but more powerful fixed hosts (or data
servers). The fixed hosts are connected through a wired network and may also be serving local
terminals.

Data servers maintain data objects and process commit requests of update transactions. That
is, update transactions which completed all data operations in mobile computers are delivered for
validation to servers (the detailed algorithms related with transaction processing will be explained
in Section 3). In addition, servers periodically broadcast data to a large mobile clients population.
In [1], the authors devised new broadcast structure, named ‘‘broadcast disk’’, according to dif-

Fig. 1. Mobile computing system model.

82 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

ferent access frequency based on users request profile. By allocating more bandwidth to more
frequently accessed data, they improved average waiting time. The authors in [10] proposed ef-
ficient indexing structure to indicate when a data object is shown and thus to reduce power
consumption. Some other structures are presented for variable purposes in the recent works [17].
Generating efficient broadcast program, however, is beyond our main scope and we just assume
that broadcast organization is flat [1]. Furthermore, as in the work [20,21], we assume that the
values of data objects that are broadcast during each cycle correspond to the state of the database
at the beginning of the cycle, i.e., the values produced by all transactions that have been com-
mitted by the beginning of the cycle.

The smallest logical unit of broadcast is called bucket. Buckets are the analog to blocks for
disks. The first bucket of broadcast, BCi (iP 0), has a serial number i, which indicates that servers
will start to send (iþ 1)th periodic broadcast. Before broadcasting data object, servers will al-
locate some buckets for useful information, BCi.Cont, and send them first. The buckets contain the
following information, which were collected during the last cycle:

BCi:Cont ¼ fUpdate;Commit;Abortg

Update: the identifiers of data objects updated by committed transactions; Commit: the identifiers
of committed transactions; Abort: the identifiers of aborted transactions.

Some of the fixed hosts, called mobile support stations (MSS), are equipped with wireless
communication capabilities. Each MSS can communicate with MCs that are within its radio
coverage area, called a wireless cell. It does a role of relaying messages between servers and clients;
it gets over the service requests originated in its cell to servers, collects necessary information and
broadcasts on behalf of servers.

An MC can connect to a server through wireless communication channel and views broadcast
as a disk. Data operations of mobile transactions are executed in an optimistic manner based on
data objects being broadcast. If it receives BCi.Cont while executing transactions, it first examines
the correctness according to some criteria.

To simplify the system model, particularly, we do not consider the other roles of MSS except
for communication. We also assume that there is only one data server; that is, we do not consider
the issues related with the data distribution or replication.

2.2. The notion of reordering

Generally, serializability (SR) is adopted as a correctness criterion in transaction processing
systems [5]. Although several algorithms have been developed, we take an optimistic concurrency
control algorithm. This approach seems to be appropriate in mobile environments, because it
needs a small number of messages for maintaining transactional consistency and it can make use
of broadcasting facilities from the server. In particular, broadcasting both data value itself and
some useful information (BC.Cont) can let mobile users check whether transactions execution is
correct or not even though transactions are now in active state. If any kinds of conflict are found,
the transactions have to be aborted. However, the more data conflicts occur, the more transac-
tions are aborted. At that point, if we are able to determine the conflict orders in the order of the
versions of accessed data value, rather than in execution order, some transactions can execute

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 83

their remaining operations according to determined conflict order. Therefore, we deploy the
notion of reordering to reduce the number of aborted transactions.

In this paper, we classify the conflict types into w–w, w–r, and r–w. Here, a–b conflict means
that the transaction which has been committed in the server executed a operation, a mobile
transaction executed b operation, and a conflicts with b. If a mobile transaction finds conflicts
from BC.Cont, it determines the conflict orders based on accessed data value not operation ex-
ecution order. Throughout the next subsections, we will explain related issues in detail.

2.2.1. Post-reordering for update transactions
If w–w or r–w conflicts are found for an update transaction Tm, we will determine the conflict

orders as Post-Reordering. Let us consider Fig. 2(a).
The fact that a transaction Ts which accessed data object x, y and was committed in the server

will be shown to clients when they listen to BCi.Cont (in the detailed algorithm, the information
related with data objects read by Ts does not need to be sent). During the same cycle, Tm executed
two update operations, which involve conflicts with the operations of Ts. When r–w or w–w
conflicts are found, we can determine that the operations of Ts were executed first and then the
write operations of Tm are executed considering broadcast data. That is, if we consider the final
states of the data objects, the result is the same as the decision made. Therefore, we can ignore r–w
or w–w conflicts because the committed transactions in the server never depend on the data up-
dated by Tm.

Definition 1. If a client finds r–w or w–w conflicts from BCi.Cont, it determines that the committed
transactions in the server were executed before the mobile transaction. The conflict order deter-
mination for those kinds of conflict is called Post-Reordering.

Although Post-Reordering is applied to current mobile update transactions, it has no effect on
their correctness. Therefore, we can ignore the process of checking the occurrence of r–w or w–w
conflicts. However, in case of w–r conflict, it may violate the transactional consistency among
them. As a consequence, if w–r conflicts are found, the mobile transactions should be aborted. The
server only needs to send the set of updated data objects.

Lemma 1. In case of r–w or w–w conflict on update transaction; conflict order decision as Post-
Reordering does not violate serializability.

Fig. 2. Examples for reordering. (a) Post-reordering, (b) pre-reordering.

84 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

Proof. Let us assume that r–w or w–w conflicts between Tm and Tsi (iP 1) have occurred after
a mobile computer received BCj.Cont. If w–r conflicts are found, Tm is aborted. Obviously, r–w
or w–w conflicts are concerned with write operations, wmðxÞ, of Tm. Since Tsi has been commit-
ted and they would never depend on the result of write operations of Tm, we can determine
the serialization order as Tsi ! Tm. After that, the occurrence of r–w or w–w conflicts, if any, also
has the same ordering. Therefore conflict order decision as Post-Reordering does not violate
SR. �

2.2.2. Pre-Reordering for read-only transactions
Note that the unconditional abort due to w–r conflict in Post-Reordering may cost too much if

most of transactions are read-only such as stock trading, weather information or traffic updates,
and so on. Therefore, whenever w–r conflicts occur for read-only transactions, we determine
conflict order as Pre-Reordering. Let us consider Fig. 2(b).

In the figure, a mobile transaction Tm reads a data object x. However, the data object x is also
updated by the committed transactions Tsi ðiP 1Þ during the same or later cycle. When Tm listens
to BCi.Cont from the next cycle, it will find the occurrence of w–r conflict. Considering the
accessed data values, we can determine the serialization order as Tm ! Tsi. Like this, instead of
unconditionally aborting Tm, we determine that the read operation was executed before write
operations. After that, however, we have to execute the remaining operations in a pessimistic
manner in order not to violate the decision made. That is, the transaction should be aborted if any
of the remaining operations may violate the pre-reordering decision.

Definition 2. If w–r conflicts occur, we determine that read operations of a mobile transaction
happen before the write operations of committed transactions in the server. The conflict order
determination for w–r conflict is called Pre-Reordering.

Lemma 2. In case of w–r conflict on read-only transaction; conflict order decision as Pre-Rerodering
does not violate serializability.

Proof. w–r conflicts are related with one or more committed update transactions, Tsi ðiP 1Þ,
during the last cycle. The inapplicability of Pre-Reordering means that Tm has read the data
objects which were updated by Tsi. However, broadcast program is generated periodically and the
updated data values will be shown only when next cycle broadcast starts. As a result, although
w–r conflicts are found, the serialization order can be determined as pre-reordering. �

3. Proposed scheduling algorithms

3.1. Optimistic algorithm based on post-reordering: O-Post

3.1.1. Mobile computer’s algorithm
Operations of Tm are executed optimistically. When a client listens to BCi.Cont, it only checks

the occurrence of w–r conflicts; if found, it aborts Tm; otherwise, it continues to execute the

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 85

remaining operations. After all data operations are executed, it sends a commit request to the
server with the following MobileData, and waits for the result:

MobileData ¼ fTid ;ReadSet;WriteSet;BC idg

Tid : transaction identifier; ReadSet: the set of data objects which Tm has read; WriteSet: the set of
data objects and its new value which Tm has updated; BC id: The identifier of broadcast which Tm
has received recently.

By listening to BCi.Cont from the next cycle, a mobile client can obtain the result of its commit
request. BC id should be maintained to prepare against the difference between the cycle that a
transaction sends the commit request and the cycle the server starts to validate for it. That is, for
example, due to the network delay or wait in the server queue, there may exist some BCi.Cont
which a client has not considered since it sent a commit request to the server. Fig. 3 summarizes a
mobile computers algorithm.

3.1.2. Server’s algorithm
The roles of the server are as follow:

• processing commit requests for update transactions
• collecting the necessary information for the next BC.Cont
• broadcasting both control information and all data objects

When a commit request arrives, the server only checks the occurrence of w–r conflicts between
Tm and the transactions which were committed but does not be shown to Tm. That is, the server
has to consider all the transactions, Tsi (iP 0), which were committed after MobileData:BC id.
The result will be added on the next BC.Cont.

Fig. 3. O-Post algorithm for mobile computers.

86 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

Theorem 1. Every history H generated by O-Post algorithm is serializable.

Proof. Tm is only compared with the committed transactions Tsi (iP 0). If w–r conflicts are oc-
curred, Tm is aborted. If r–w or w–w conflicts are found, the conflict order is determined as Post-
Reordering (Tsi ! Tm). Therefore, the history H generated by O-Post algorithm has no cycle in the
serialization graph; the history is always serializable. �

3.2. Optimistic algorithm based on Pre-Reordering: O-Pre

3.2.1. Mobile computer’s algorithm
When w–r conflicts are occurred between a read-only transaction Tm and Tsi (iP 1), we can

determine that read operations are executed before update operations (Tm ! Tsi, pre-reordering).
Once Tm is Pre-Reordered, the remaining operations are executed in a pessimistic manner. First

of all, the client has to maintain BCi.Cont.Update into UpdateList for the remaining read opera-
tions. When a read operation rðxÞ among the remaining operations is submitted, the client checks
whether data x is an element of UpdateList; if so, Tm is aborted. This is to prevent the incorrect
result which may be generated if the read operation is executed.

For O-Pre algorithm, each client should maintain the following information:

MobileData ¼ fTid ;ReadSet;UpdateListg

Tid : transaction identifier; ReadSet: the set of data objects which Tm has read; UpdateList: data
objects contained in BCi.Cont.Update.

Note that UpdateList will be used only after the transaction has been pre-reordered. Fig. 4
summarizes O-Pre algorithm for mobile read-only transactions.

As shown in the algorithm, once Tm is pre-reordered, the check for w–r conflicts is not needed.
To explain the reason, let�s assume that another w–r conflicts occurred after being pre-reordered.
However, the decision for conflicts is similar with that of the previous conflicts, which does not
violate pre-reordered conflict orders. Of course, if the pre-reordered Tm tries to access data objects
which are elements of UpdateList, it is aborted. Therefore, the conflict check can be omitted.

Fig. 4. O-Pre algorithm for mobile computers.

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 87

Read-only transactions can commit without contacting with the server. This is because the pre-
reordering does not violate SR (Lemma 2) and the remaining operations are executed to preserve
the pre-reordering (Theorem 2).

3.2.2. Server’s algorithm
Unlike O-Post algorithm, the server only needs to broadcast the control information and data

objects.

Theorem 2. Every history H generated by O-Pre algorithm is serializable.

Proof. If w–r conflict is found, the serialization order is determined as Tm ! Tsi (iP 1) according
to pre-reordering. After that, let�s assume that another edge, Tsj ! Tm is added into history H. At
the server, all update transactions are committed in order of validation. Therefore, the new edge is
added only after Tsj is committed and Tm has read the data objects which Tsj has updated.
However, the client can detect such conflicts by executing the remaining operations in a pessi-
mistic manner and then, abort Tm. As a consequence, the history H generated by O-Pre algorithm
has no cycle in the serialization graph; the history is always serializable. �

3.3. Discussion

Firstly, the proposed algorithms, O-Post and O-Pre, are very simple. The things that clients
have to do to execute mobile transactions are to tune up broadcast channel and to maintain cache
data, which do not need complex algorithms. Since the algorithms are mainly based on optimistic
execution, they need a small number of message exchanges; in case of an update transaction, only
one message from a client to the server is needed when all data operations are completed and the
validation request is delivered. In case of a read-only transaction, there is no message exchange
between a client and the server. This property is very desirable in mobile computing systems since
scalability can be improved considerably when broadcasting mechanism is adopted. The server is
only in charge of both validating update transactions and broadcasting database contents peri-
odically. And mobile clients also make good use of poor battery power and low bandwidth.

Data currency may be an important attribute for some applications. In this paper, however, the
currency of broadcast data is older than that of database in the server since new values are
continuously generated by committed transactions while the server disseminates data items. And
the overall throughput in an optimistic execution may be deteriorated under some environments
in spite of the notion of reordering.

4. Local caching technique

Client caching reduces not only the latency but also the span of transactions, since transactions
find data of interest in their local cache and thus need to access the broadcast channel for a smaller
number of cycles; if local cache is not supported, the average data access time on a single item is a
half cycle, which increases response time excessively according to the volume of the data being
broadcast. In this section, we discuss the related issues to mobile transactional cache management.

88 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

4.1. Cache management

Disseminating both the values of data objects and additional control information (BC.Cont)
can be useful in maintaining consistency of cache data in broadcast environment. Namely,
BC.Cont which the server broadcasts at the beginning of each cycle is used as an ‘‘invalidation
report’’ for cache data; invalidated data can be auto-prefetched with recent value passed through
wireless channel without imposing any additional load on shared resources [2,3]. The basic
assumption for cache management is that updates in the server can not be shown until next
cycle and therefore all data on the air during a cycle are in consistent state. For cache re-
placement policy we simply accept least recently used (LRU) in this paper and don�t touch on it
in detail.

If cache data does not stale after BC.Cont is examined at the beginning of each cycle, it has the
same value as that broadcast during the current cycle. Thus, when a client tries to access a data in
cache, he or she can just do it with no check except only one case. The case is that a read-only
transaction has already found w–r conflicts. In this case, the transaction has to check whether the
accessed data in cache is an element of UpdateList. If so, the transaction has to be aborted; if not,
it just executes the operation by using cache data. The reason is also to hold the notion of pre-
reordering and to maintain serializability. The remaining parts are the same. Therefore, main-
taining and accessing mobile cache are very simple and cost low.

4.2. Supporting fast re-execution

Caching improves the response time for mobile transactions. However, our algorithms are
basically based on the optimistic execution, which causes frequent restarts due to abortion, re-
sulting in much worse response time under high conflicts environments. Therefore, we devise
cache management algorithm to cope with such cases.

At first, local cache data is divided into the following two parts: N Cache (Normal cache) and
T Cache (Transaction cache). N Cache is general purpose cache and the consistency is main-
tained as explained before. T Cache only maintains the data for active transactions. That is, after
a data operation, oðxÞ, is executed, the data x is stored into T Cache. The data in T Cache is
never removed until the transaction commits, and the recent values are always auto-prefetched if
they become stale. However, it is not reasonable to assume that the transaction will always
execute the same data operations after abortion. Consider, for example, the following query from
a client:

if ðx > 0Þ then read y; else read z;

If the value of data x is positive, only y is maintained in the cache. If the transaction is aborted
and restarted later and the value of x is changed to negative one, it needs the value of data z not y,
thus has to wait for the data to appear on the wireless channel. To cope with the problem, a client
possibly maintains all data of the query into the T Cache regardless of its actual execution. Of
course, T Cache rarely incurs additional overhead to mobile computer in pure-push broadcast
environments. Although a transaction is aborted, T Cache maintains almost all data objects that
the transaction needs at restart time and thus it comes to nearly the same state as the time before
abortion within at most one cycle. As a consequence, based on the notion of ‘‘reordering’’, a large

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 89

number of transactions can continue their remaining operations and come to commit although
conflicts are found. And by using T Cache, we can cope with a weak point such as frequent aborts
in optimistic transaction processing under high conflict environments. Performance improvements
from both transaction processing algorithms and cache are shown in Section 6.

5. Related issues

5.1. Disconnections

One key aspect of the mobile computing systems is the ability to deal with disconnections.
Client disconnections are very common when data are delivered through wireless channel. There
are many research efforts to cope with this problem [6,11,19], many of which focus on maintaining
the consistency of mobile cache data. To support arbitrary disconnection pattern as opposed to
broadcasting invalidation report, new cache scheme, called AS, is proposed in [12].

Our algorithms depend greatly on invalidation report (IR) both to maintain cache data con-
sistent and to execute transactions locally. If a disconnection occurs, a client cannot listen to this
information. Thus, it is possible to discard all cache data and temporary results for active
transactions although some portion of them are still valid. As a consequence, one of the solutions
to disconnections is to send more IRs during several cycles. That is, the server maintains control
information for the previous N cycles (BCi.Cont ¼ the array [1 . . .N] of fUpdate;Commit;Abortg);
N turns out the tolerable cycle from disconnections. After reconnection, a client first checks how
long it has been disconnected. If a disconnection is within a tolerable range, a client checks all
control information which it did not listen to.

Of course, when long disconnections occur frequently, the size of invalidation reports should
increase. In this case, Bit-Sequence method [11] is applicable to our algorithms.

5.2. Broadcast organization

When the server disseminates data objects to clients, the structure of broadcast data has a
special feature according to the primary purpose. For example, the authors in [1] proposed
Broadcast Disk approach to reduce the expected delay for a single data request in asymmetric
environments. In contrast, the proposed indexing algorithms in [8,10,23] lead to significant im-
provement in terms of energy consumption while retaining a low access time. In [17], an adaptive
access method based on the distributed indexing scheme is developed for the error-prone mobile
environment. Like those examples, there are various kinds of broadcast structures, which affect
on the mobile transaction processing algorithms. The authors in [16] try to combine broadcast
and on-demand data delivery to build a highly scalable information system with limited band-
width.

Although we consider a flat disk approach in this paper, the server can alternatively generate
a multi-disk broadcast program based on a given access probability [1]. In this environ-
ment, however, to support transactional service, the following respects should be further con-
sidered:

90 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

• Currency interval: All data objects in one currency interval are in consistent state. If one major
cycle consists of several minor cycles, how do we determine the proper interval and how many
times are invalidation reports delivered during one major cycle?

• Allowing explicit request: There are some advantages if a client is allowed to request data ob-
jects through a wireless channel, which may change the server�s broadcast program and client
algorithms for processing transactions and maintaining cache consistency [13].

If several currency intervals consist of one major cycle, the server may need to disseminate as
many control information as the number of currency intervals, since data accesses during some
currency intervals may interrupt the consistency of transactions. On the other hand, if clients are
allowed to request data objects to the server explicitly, they can access the recent values which are
scheduled to be shown at the next cycle, which may also be a problem. To deal with this case, one
of solutions is that a client sends the data request with the current timestamp of broadcast. If the
server knows the timestamp, it will be able to reply the proper data value.

6. Performance analysis

6.1. Simulation model

In this section, we aim at studying the performance of our algorithms by way of simulation
(Fig. 5). The simulation model is similar to that presented in [1].

The server continuously and repetitively broadcasts both all data objects (1 to NumberOfData)
and control information. For simplicity, we assume that broadcast model is flat; that is, the server
broadcasts each data object just once on a single wireless channel during one cycle. As we
mentioned in Section 2, all data objects in a cycle are in a consistent state and control information
is first delivered at the beginning of broadcast. In the experiments, the update probabilities follow
a zipf distribution with a parameter theta to model the non-uniform access; the first data is up-
dated the most frequently, and the last data is updated the least frequently. We assume that
UpdateRate data objects are updated during one cycle and default value is 100. There is one
queue for storing uplink messages in the server. When an update transaction completes all its
data operations, the commit request is delivered to the server and enqueued. The server validates

Fig. 5. Simulation model.

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 91

requests in FIFO mode. Except for a validation request, there is no message from clients to the
server in broadcast environments. For simplicity, the issues related with disconnections are not
considered.

Mobile transactions access data objects within the range of AccessRange which are the subset of
the broadcast data objects (AccessRange � ½1 . . .NumberOfData
). In the range, access probabil-
ities also follow a zipf distribution. In case of update transactions, the number of read operations
is four times of write operations on average. To model the disagreement between the access
pattern of a transaction and update pattern in the server, the first data object in AccessRange
starts at offset. Each client maintains local cache which can hold up to CacheSize data objects. The
cache replacement policy is LRU in conjunction with auto-prefetching: when the cache is full,
invalidated data objects from BC.Cont are first replaced; if cache does not contain those data, the
least recently used data object is replaced. After invalidated, stale cache data is auto-prefetched
from broadcast.

In the experiments, the time unit is set to the time which is needed for the server to disseminate
one data object, and we also assume that the time unit is the same as that which is required to
execute one read operation in the client. Table 1 summarizes the parameters and the default
values.

With the parameter setting, we have implemented our simulator by using Java programming
language. In the experiments, we compare our algorithms with others introduced in [20,21].
Specifically, in case of update transactions, Invalidation-Only (IO) method is chosen for a com-
parison counterpart. In case of read-only transactions, both IO and Multiversion with Invalidation

(MI) methods are considered. This is because these methods accept serializability as a correctness
criterion for transaction processing, and the system model is very similar to ours.

IO method is an optimistic algorithm and a client does consistency checks based on periodic
control messages. Note that IO method does not consider update transactions. However, we
choose it by changing the method a little; namely, a client executes update transactions opti-
mistically. When all operations are completed, a client sends a commit request to the server, which
validates the request identically with O-Post algorithm. With MI method, by disseminating multi-

Table 1

Parameter description

Parameter Value Meaning

NumberOfData 1000 Number of data objects

UpdateRate Varied Number of updated data objects during a cycle

Theta (h) Varied zipf distribution parameter

NumClient Varied The number of mobile clients

CacheSize 100 The size of local cache

AccessRange 400 Average access range for mobile transaction

Offset 0, 50 Disagreement between access patterns

ReadTime 1 Execution time for read operation––time unit

WriteTime 3 Execution time for write operation

BCCheckTime 3 The time for checking when receive BC.Cont

msgTransferTime 100 The time needed to send a commit request

ValidationTime 10 Time for validation in the server

RestartTime 10 Time between abort and restart

92 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

versions per each data item, the following two problems can be addressed. One is to handle
disconnection and the other is to maintain transactional consistency. We assume disconnection-
free environment in the paper. To explain the latter case, let us consider the situation where
mobile clients execute their transactions based on broadcast data. If clients can find proper
versions on broadcast channel although data items have been updated continuously in server side,
the clients can continue their remaining operations, resulting in the decreased number of trans-
action abortion. For the purpose, the authors in [20,21] devise MI method. In our work, it is
assumed that from 1 to 4 version(s) consist of one cycle and thus, the length of a single cycle in MI
is longer than that in O-Pre or IO methods.

As stated before, the basic cache maintenance algorithm in IO and MI methods is LRU with
autoprefetching. That is, the proposed cache algorithm in this paper is applied to only the pro-
posed methods––O-Post and O-Pre.

6.2. Experimental results

Response time is measured from the time a transaction starts its execution to the time the
transaction commits. If a transaction aborts, it has to wait during RestartTime and then restarts
again. Thus, if it aborts frequently, the response time is longer and longer. In experiments for all
methods, mobile computers make use of local cache when executing transactions.

We have made experiments to show the superiority of our algorithms by mainly examining
response time. Since the response time suffers from the occurrence of abortion and restarts, the
number of aborted transactions is also considered. Once a transaction is aborted, we have the
following three choices to examine the effects of abortion on local cache data: (a) the same
transaction is executed again, (b) some of data operations are changed, and (c) entirely new
transaction is generated. In these experiments, we set up 5:4:1 ratio for the choices.

6.2.1. Response time of update transactions
To allow transactions to be executed by IO method for update transactions, the server dis-

seminates the sets which contain data object identifiers updated and read by committed trans-
actions during the last cycle.

Fig. 6 represents the effect of number of data operations per transaction on response time, when
the number of clients is set to constant value ((a) 100 and (b) 300). As the number of operations

Fig. 6. Effect of number of operations: (a) clients ¼ 100, (b) clients ¼ 300.

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 93

increases, the transaction lifetime ranges over several broadcast cycles. This is because, the
probability of abortion increases since both methods execute local transactions optimistically. IO
method, which is a pure optimistic method, unconditionally aborts transactions whenever any
kind of conflicts is found, resulting in high response time. In contrast, the response time in O-Post
method is comparatively small, because it can reduce the number of aborted transactions by
applying both the post-reordering technique and the proposed cache algorithm. When a trans-
action has a small number of operations (in this analysis, 10), the difference between the two
methods is insignificant. For a large number of operations (in this analysis, 18), however, O-Post

is superior to IO almost by a factor of 2.
The figure also contains the results when Offset parameter is set to 50. Recall that positive value

of Offset means that hot data in the server side may not be accessed frequently any more in the
client side. We can observe that, although the number of conflicts decreases and the two methods
can reduce response time to a certain degree, the tendency of increase in response time is very
similar.

Fig. 7 shows the performance behavior of the two methods as the number of clients varies. For
this experiment, each transaction has 10 data operations and the number of write operations is set
to 2 (Fig. 7(a)) or 4 (Fig. 7(b)). From the figure, we see that the probability of a transaction being
aborted one or more times gets higher as the number of clients increases. As expected, in a general
case, if a transaction executes more update operations, the response time gets worse.

The performance difference between the two methods, however, is not so big as our expectation
in this experiment. This is due to the following reason: as the number of clients who execute
update transactions increases, the data objects are more frequently updated in the server. This
incurs a lot of conflicts in clients side, thus the overall response time is negatively affected. To cope
with the case, some other techniques, such as timestamp and multi-version, could be combined
with the optimistic algorithms.

The interesting thing from the results in Fig. 7 is that O-Post method with 4 write operations
shows better response time than that with 2 write operations, which seems to be counter intuitive.
In O-Post method, transactions have to be aborted only when w–r conflict is found. If there are
the same number of operations per transaction and transactions execute more write operations
under some condition, the probability of w–r conflicts occurrence decreases a little (just 3–7%) and
thus we come to obtain the results shown in Fig. 7.

Fig. 7. Effect of number of clients: (a) write operations ¼ 2, (b) write operations ¼ 4.

94 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

Fig. 8 shows the effect of theta value in zipf distribution. As stated in the system model, the
value determined affects the access pattern in the server. If it has a higher value (¼ 5), most ac-
cesses come together into a small portion of data (¼ hot data), which increases the probability of
conflict occurrences. The results follow our expectation: response time suffers from high theta
value and frequent updates in the server, which are found in both methods. However, transactions
in O-Post method can decrease the probability of abortion particularly under low theta value. For
example, a transaction restarts 1.7 times on average where there are 300 clients and theta value is
5, while most transactions commit without abortion under low theta value (¼ 0:1).

6.2.2. Response time of read-only transactions
When we make experiments for read-only transactions, we consider only one client instead of

several clients in experiments for update transactions. This is because there is no conflict rela-
tionship among them. In case of read-only transactions, three methods are compared. Before we
go into analyzing the results, we have to observe the properties of broadcast carefully. In O-Pre
and IO methods, the server disseminates the value of each data object exactly once during a cycle.
For MI method, however, from 1 to 4 version(s) per each data object consist of one cycle. Thus,
the length of one cycle with MI method is longer than both O-Pre and IO methods. We expect
that this difference will be one of dominating factors to the relative performance behavior.

Fig. 9 shows a variation of response time as transactions execute various number of read
operations when UpdateRate is set to 100. From both (a) and (b), we observe that the response
time of IO method is increasing rapidly. This is because a large number of operations cause

Fig. 8. Effect of theta value in zipf distribution: offset ¼ 0.

Fig. 9. Effect of number of operations: (a) offset ¼ 0, (b) offset ¼ 50.

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 95

frequent conflicts, and decrease the probability of a transaction�s commitment. As a result, a
transaction suffers from many restarts until it commits. Turning to MI method, it can avoid the
problem with IO method by making a client access old versions, thereby increasing the chance of a
transaction�s commitment. Thus, the performance of MI shows a stable linear distribution. This
means that transactions are rarely aborted. Actually, almost all transactions can commit without
abortion in MI method. This accounts for the superiority of MI to IO for a moderate and large
number of operations. However, some older versions per data object are delivered during a cycle
in MI method, which increases the length of a cycle, resulting in poor response time. Therefore, in
the case where a transaction has a small number of operations and the probability of conflict
occurrence is low, MI is inferior to IO, on the contrary. As opposed, the response time of O-Pre is
comparatively small and stable, since transactions can execute the remaining operations by ap-
plying pre-reordering technique although conflicts occurred. Furthermore, our cache management
allows the aborted transactions, if any, to re-execute operations fast.

Before examining the effect of update rate, we briefly discuss the effectiveness of local cach-
ing with the three methods. For MI method, each cache entry is composed of hdataidentifier;
datavalue; versioni. If an active transaction is invalidated, the remaining operations need to access
proper versions and thus a local cache has to maintain multiple versions for each data. It naturally
drops the effective size of cache and accordingly the cache hit ratio. For example, while O-Pre and
IO methods shows 12–19% cache hit ratio, cache hit ratio in MI method is approximately 7–12%.
Of course, if transactions are aborted one or more times, the cache scheme proposed in this paper
shows higher cache hit rate (about 60% in our analysis).

From the first experiment for read-only transactions, we note that the number of aborted
transactions in MI method is very small in spite of its poor response time. For example, no
transaction is aborted among 1000 transactions where each transaction executes 8 operations and
UpdateRate is 100. Under the same environments, 9 transactions are aborted in O-Pre and 26
transactions in IO. Even when each transaction executes 16 read operations, the number in MI
method is only 3. However, 191 in O-Pre method and 394 in IO method. From these results, we
conjecture that disseminating a lot of information to clients may be useful in some application
area where correctness criterion, for example, can be weakened or long transaction has to be
supported.

Fig. 10 shows the effect of UpdateRate parameter when each transaction executes 10 data
operations. The overall behavior in response time is very similar to Fig. 9. Here again, a pure

Fig. 10. Effect of update rate: (a) offset ¼ 0, (b) offset ¼ 50.

96 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

optimistic method, IO, suffers heavily from frequent update pattern. For example, when
UpdateRate increases from 20 to 200, the response time becomes three times. The response time
of the other two methods, however, does not get worse heavily than IO. Notice that the
underlying reason is not same. For MI method, the number of aborted transactions is very
small (in our analysis, only 2 transactions are aborted when UpdateRate is 200). For O-Pre
method, although the number of aborted transactions is moderate (¼ 145), the length of one
cycle is very small and fast re-execution after abortion is supported by an efficient local
caching.

In addition to the results on average response time in Fig. 9 and Fig. 10, another point we need
to address is the worst case response time. If a transaction is aborted several times until com-
mitment, its response time increases highly, which is also unacceptable property in mobile com-
puting environments. In experiments under some condition such as high update rate (¼ 200) and
low offset value (¼ 0), a transaction is aborted 7 times in IO method and 4 times in O-Pre method
at the worst case. At that case, the response time is 22361 and 8347, respectively. Considering the
number of aborts for two methods at the worst case, the reason is also the same as the average
case. In contrast, transaction abort merely affects response time in MI method. However, if a lot
of data objects are updated in the server and the length of a broadcast cycle is longer due to older
versions, response time also deteriorates.

Fig. 11 contains the results from two kinds of experiments. In Fig. 11(a), theta value is set to
0.95 and 5 where there are 300 clients and offset value is set to 0. Overall graph patterns are
conformed with those of the other experiments. However, there is one point to note from the
results of MI method. There are also a few number of conflicts where UpdateRate is 200 and theta
is 0.95 but the number of old versions per data object increases, resulting in extending the length
of a cycle. While theta is 5, a large portion of data updates are occurred in hot data and most data
interesting to mobile transactions may be found in the tail of broadcast, which resulting in longer
average waiting time.

Fig. 11(b) shows the effect of local cache size. The response times in all methods are improved
but the patterns are not similar. In IO method, there is a limitation in response time improvement
since transactions are aborted frequently due to conflicts occurrence. The improvement in O-Pre
method is mainly from T Cache and thus the range of improvement from cache size is also limited
to a degree. In contrast, MI method is less benefited from the same size of cache than other two
methods where since old versions are also maintained in the cache. However, as stated before,

Fig. 11. Effect of (a) theta value in zipf distribution and (b) cache size: client ¼ 100, offset ¼ 0.

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 97

there are few aborts in MI method. Therefore, the response time is improved considerably as
cache size grows larger and larger.

7. Conclusion

From the limited resource point of view, data broadcast is especially suitable in mobile com-
puting environments. However, the volume of information required for clients to execute mobile
transactions is considerable, which may need frequent message deliveries from clients to the
server, resulting in poor utilization of resources.

In this paper, we have presented two transaction processing algorithms, O-Post and O-Pre,
which are based on reordering technique. Since mobile transactions are executed optimistically
and the role of maintaining transactional consistency is delivered to clients partially or fully, the
overhead of the server can be taken off considerably and each mobile client can make good use of
its limited resources. In particular, the introduced reordering technique, which is based on both
periodic control information and the properties of broadcast data, decreases the number of
aborted transactions. Further performance improvement could also be achieved by adopting an
effective local cache algorithm, which allows aborted transactions to restart fast.

References

[1] S. Acharya, R. Alonso, M. Franklin, S. Zdonik, Broadcast disks: data management for asymmetric communi-

cations environments, in: Proc. of the ACM SIGMOD Conference on Management of Data, 1995, pp. 199–

210.

[2] S. Acharya, Broadcast disks: dissemination-based data management for asymmetric communication environments,

Ph.D. thesis, Brown University, 1998.

[3] S. Acharya, M. Franklin, S. Zdonik, Prefetching from a broadcast disk, in: Proc. of 12nd International Conference

on Data Engineering, 1996, pp. 276–285.

[4] D. Barbara, Certification reports: supporting transactions in wireless systems, in: Proc. of the 17th IEEE

International Conference on Distributed Computing Systems, 1997, pp. 466–473.

[5] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Database Systems, Addison

Wesley, 1987.

[6] D. Barbara, T. Imielinski, Sleepers and workaholics: caching strategies in mobile environments, in: Proc. of the

ACM SIGMOD Conference on Management of Data, 1994, pp. 1–12.

[7] M.H. Dunham, A. Helal, Mobile computing and databases: anything new? ACM SIGMOD Record 24 (4) (1995)

5–9.

[8] Q. Hu, W.-C. Lee, D.L. Lee, Indexing techniques for wireless data broadcast under data clustering and schedul-

ing, in: Proc. of International Conference on Information and Knowledge Management, 1999, pp. 351–358.

[9] Q. Hu, D.L. Lee, Adaptive cache invalidation methods in mobile environments, in: Proc. of 6th IEEE International

Symposium on High Performance Distributed Computing, 1997, pp. 264–273.

[10] T. Imielinski, S. Viswanathan, B.R. Badrinath, Energy efficient indexing on air, in: Proc. of the ACM SIGMOD

International Conference on Management of Data, 1994, pp. 25–36.

[11] J. Jing, A. Elmagarmid, A.S. Helal, R. Alonso, Bit-Sequence: an adaptive cache invalidation method in mobile

client/server environments, ACM/Baltzer Mobile Networks and Application 2 (3) (1997) 115–127.

[12] K.S. Khurana, S.K. Gupta, P.K. Srimani, An efficient cache maintenance scheme for mobile environment, in: Proc.

of the 20th International Conference on Distributed Computing Systems, 2000, pp. 530–537.

98 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

[13] S.S. Kim, S.K. Lee, C.-S. Hwang, S.Y. Jung, O-PreH: optimistic transaction processing algorithm based on pre-

reordering in hybrid broadcast environments, in: Proc. of 10th International Conference on Information and

Knowledge Management, 2001, pp. 553–555.

[14] V. Lee, S. Son, K. Lam, On the performance of transaction processing in broadcast environments, in: Proc. of 1st

International Conference on Mobile Data Access, 1999, pp. 61–70.

[15] Y. Lee, S. Moon, Commit-reordering validation scheme for transaction scheduling in client-server based teleputing

systems: COREV, in: Proc. of the International Conference on Information and Knowledge Management, 1997,

pp. 59–66.

[16] C.W. Lin, D.L. Lee, Adaptive data delivery in wireless communication environments, in: Proc. of the 20th

International Conference on Distributed Computing Systems, 2000, pp. 444–452.

[17] S.C. Lo, A. Chen, An adaptive access method for broadcast data under an error-prone mobile environment, IEEE

Transactions on Knowledge and Data Engineering 12 (4) (2000) 609–620.

[18] A. Al-Morgren, M.H. Dunham, BUC, a simple yet efficient concurrency control technique for mobile data broad-

cast environment, in: Proc. of the 12th International workshop on Database and Expert Systems Applications,

2001, pp. 564–569.

[19] S.H. Phatak, B.R. Badrinath, Conflict resolution and reconciliation in disconnected databases, in: Proc. of 10th

International Workshop on Database and Expert Systems Applications, 1999, pp. 1–6.

[20] E. Pitoura, P. Chrysanthis, Exploiting versions for handling updates in broadcast disks, in: Proc. of the

International Conference on Very Large Data Bases, 1999, pp. 114–125.

[21] E. Pitoura, P. Chrysanthis, Scalable processing of read-only transactions in broadcast push, in: Proc. of the 19th

IEEE International Conference on Distributed Computing System, 1999, pp. 432–441.

[22] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, K. Ramamritham, Efficient concurrency control for

broadcast environments, in: Proc. of the ACM SIGMOD Conference on Management of Data, 1999, pp. 85–

96.

[23] N.H. Vaidya, S. Hameed, Scheduling data broadcast in asymmetric communication environments, Wireless

Network 5 (3) (1999) 171–182.

[24] J. Xu, D.L. Lee, Querying location-dependent data in wireless cellular environments, in: WAP Forum/W3C

Workshop on Position Dependent Information Services, 2000.

SungSuk Kim received his BS, MS degrees in computer science and engineering from Korea University, Seoul,
South Korea, in 1997 and 1999, respectively. He is currently a Ph.D. candidate in computer science and
engineering in Korea University, Seoul, South Korea. His current research interests include distributed
database systems, mobile information systems and moving objects management. He is a member of ACM and
IEEE Computer Society.

SangKeun Lee received his BSc., MSc. and Ph.D. degrees in Computer Science and Engineering from Korea
University, Seoul, South Korea, in 1994, 1996 and 1999, respectively. From April 2000 to March 2001, he was
a visiting postdoctoral fellow, supported by Japan Society for the Promotion of Science (JSPS), in Institute of
Industrial Science, University of Tokyo, Japan. He is currently a research engineer in 3G Handsets Lab., LG
Electronics Inc., South Korea. His research interests include mobile information access, data dissemination,
Wireless Application Protocol (WAP), WWW applications and distributed heterogeneous database systems.
He is a member of ACM and IEEE Computer Society.

S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100 99

Chong-Sun Hwang received his BS and MS degrees in mathematics from Korea University, Seoul, South
Korea, in 1966 and 1970, respectively. He received his Ph.D. in computer science and statistics from Uni-
versity of Georgia in 1978. He was an assistant professor of Lander University in Greenwood, South Car-
olina, USA, and is currently a professor in Department of Computer Science and Engineering, Korea
University, Seoul, South Korea. His research interests include mobile computing systems, parallel and dis-
tributed database systems and knowledge-based systems.

100 S.S. Kim et al. / Data & Knowledge Engineering 45 (2003) 79–100

	Using reordering technique for mobile transaction management in broadcast environments
	Introduction
	Related works

	Preliminaries
	System model
	The notion of reordering
	Post-reordering for update transactions
	Pre-Reordering for read-only transactions

	Proposed scheduling algorithms
	Optimistic algorithm based on post-reordering: O-Post
	Mobile computer’s algorithm
	Server’s algorithm

	Optimistic algorithm based on Pre-Reordering: O-Pre
	Mobile computer’s algorithm
	Server’s algorithm

	Discussion

	Local caching technique
	Cache management
	Supporting fast re-execution

	Related issues
	Disconnections
	Broadcast organization

	References

