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Abstract—As technological advances are made in software and hardware, the feasibility of accessing information “any time,

anywhere” is becoming a reality. Furthermore, the diversity and amount of information available to a given user is increasing at a rapid

rate. In a mobile computing environment, a potentially large number of users may simultaneously access the global data; therefore,

there is a need to provide a means to allow concurrent management of transactions. Current multidatabase concurrency control

schemes do not address the limited bandwidth and frequent disconnection associated with wireless networks. This paper proposes a

new hierarchical concurrency control algorithm. The proposed concurrency control algorithm—v-lock—uses global locking tables

created with semantic information contained within the hierarchy. The locking tables are used to serialize global transactions, detect

and remove global deadlocks. Additionally, data replication, at the mobile unit, is used to limit the effects of the restrictions imposed by

a mobile environment. The replicated data provides additional availability in case of a weak connection or disconnection. Current

research has concentrated on page and file-based caching or replication schemes to address the availability and consistency issues in

a mobile environment. In a mobile, multidatabase environment, local autonomy restrictions prevent the use of a page or file-based data

replication scheme. This paper proposes a new data replication scheme to address the limited bandwidth and local autonomy

restrictions. Queries and the associated data are cached at the mobile unit as a complete object. Consistency is maintained by using a

parity-based invalidation scheme. A simple prefetching scheme is used in conjunction with caching to further improve the effectiveness

of the proposed scheme. Finally, a simulator was developed to evaluate the performance of the proposed algorithms. The simulation

results are presented and discussed.

Index Terms—Mobile computing environment, global information sharing process, concurrency control, caching and prefetching,

simulation and analysis.

æ

1 INTRODUCTION

THE conventional notion of timely and reliable access to
global information sources is rapidly changing. Users

have become much more demanding in that they desire and
sometimes even require access to information “any time,
anywhere.” The extensive diversity in the range of
information that is accessible to a user at any given time
is also growing at a rapid rate. Furthermore, rapidly
expanding technology is making available a wide breadth
of devices with different memory, storage, network, power,
and display requirements to access this diverse data set.

Current multidatabase systems (MDBS) are designed to
allow timely and reliable access to large amounts of
heterogeneous data from different data sources in an
environment that is characterized as “sometime, some-
where.” Within the scope of these systems, multidatabase
researchers have addressed issues such as autonomy,
heterogeneity, transaction management, concurrency con-
trol, transparency, and query resolution [6], [7], [9], [14],
[18]. These solutions were based upon fixed clients and
servers connected over a reliable network infrastructure.
However, the concept of mobility, where a user accesses data

through a remote connection with a portable device, has
introduced additional complexities and restrictions in a
multidatabase system. These include: 1) a reduced capacity
network connection, 2) processing and resource restrictions,
and 3) effectively locating and accessing information from a
multitude of sources. An MDBS with such additional
restrictions is called a mobile data access system (MDAS).

Nevertheless, regardless of the hardware device, con-
nection medium, location of data, and type of data accessed,
all users share the same requirements: timely and reliable
access to various types of data that can be classified as:

Private data, i.e., personal schedules, phone numbers,
etc. The reader of this type of data is the sole owner/user of
the data.

Public data, i.e., news, weather, traffic information, flight
information, etc. This type of data is maintained by one
source and shared by many.

Shared data, i.e., a group data, replicated or fragmented
data of a database. A node actually may contribute to
maintaining consistency and participate in distributed
decision making with this type of data.

Traditionally, in a distributed environment, to achieve
higher performance and throughput, transactions are
interleaved and executed concurrently [28]. Concurrent
execution of transactions should be coordinated such that
there is no interference among them. In an MDAS
environment, the concurrent execution of transactions is a
more difficult task to control than in distributed database
systems. This is mainly due to the inferences among global
transactions, inferences among global and local transac-
tions, local autonomy of each site, and frequent network

1330 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

. J.B. Lim is with MJL Technology, MJL Building, 204-5 Nonhyun-1 Dong,
Kangnam-ku, Seoul 135-826, South Korea. E-mail: jblim@mjl.com.

. A.R. Hurson is with the Department of Computer Science and
Engineering, 220 Pond Lab., The Pennsylvania State University,
University Park, PA 16802. E-mail: hurson@cse.psu.edu.

Manuscript received 19 Aug. 1998; revised 3 Mar. 2001; accepted 10 July
2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 107298.

1041-4347/02/$17.00 ß 2002 IEEE



disconnection. Furthermore, to mitigate the effects of weak
communications or disconnection, some form of data
duplication should be used, at the mobile unit, to provide
additional availability in case of a weak connection or
disconnection.

Researchers have extensively studied caching and
replication schemes that may be used to address the
constraints of a wireless link [6], [9], [21], [36], [42]. Current
distributed database replication schemes are not suitable for
an MDAS environment because consistency cannot be
effectively maintained due to local autonomy requirements
and communication constraints. The proposed caching
schemes in distributed databases are also not suitable for
an MDAS environment. Due to the autonomy requirements
of the local DBMS, the local information about the validity
of a page or file in the local system is not available globally.
Accordingly, any type of invalidation, polling, or time-
stamp-based method would be too impractical and ineffi-
cient to use and, in many cases, impossible.

In this paper, a new hierarchical concurrency control
algorithm is introduced to reduce the required communica-
tion overhead. The proposed scheme offers higher overall
throughput and faster response times—timely access to
data. The concurrency control for global transactions is
performed at the global level in a hierarchical, distributed
manner. A hierarchical structure was chosen for several
reasons:

1. A hierarchical organization offers potentially higher
performance in that processing and data structures
can be easily distributed.

2. The reliability of the system is increased by
eliminating a single point of failure for the MDBS
involved in a global transaction.

3. The algorithm is designed to work with the
Summary Schemas Model (SSM), which is a dis-
tributed, hierarchical, multidatabase environment
[10]. The proposed algorithm is easily integrated
into the SSM.

Concurrent execution of transactions is accomplished by
creating global locking tables using semantic information
within the hierarchy of the SSM.

This work also addresses the limited bandwidth and
local autonomy restrictions of an MDAS by using automated
queued queries ðAQ2Þ and caching of data in the form of a
bundled query (BUNQ). An AQ2 is a form of prefetching that
preloads data onto the mobile unit to allow the user to have
access to the required data in case of a disconnection. A
bundled query is an object that consists of a query and its
associated data. Read-only queries are cached as a bundled
query and are validated using a simple parity-checking
scheme. Guaranteeing write consistency while disconnected
is extremely difficult or impossible due to local autonomy
requirements in an MDAS. Consequently, any transactions
containing write operations are directly submitted to the
MDAS system or are queued during disconnection and
submitted upon reconnection. The proposed caching and
prefetching algorithm reduces the access latency and
provides timely access to data, notwithstanding the limited
bandwidth restrictions imposed by an MDAS environment.

The remainder of this paper is organized into several
sections. Section 2 addresses the necessary background
material on mobile systems and multidatabase systems,

concurrency control, and data replication. A new comput-
ing environment in which wireless-mobile computing
elements are superimposed on a multidatabase system is
also introduced. In Section 3, the proposed multidatabase
concurrency control algorithm is introduced and discussed.
Additionally, this section addresses the proposed data
duplication model and presents protocols for maintaining
consistency in the MDAS environment. In Section 4, a
simulation of the proposed concurrency control scheme and
the data duplication scheme is introduced. A simulation
model is developed to test the effectiveness of the proposed
schemes. Subsequently, the results are presented and
analyzed. Finally, Section 5 concludes the paper and gives
future directions.

2 BACKGROUND

Accessing a large amount of data over a limited capability
network connection involves two general aspects: 1) the
mobile networking environment and 2) mobility issues. The
mobile environment includes the physical network architec-
ture and access devices. Mobility issues include adaptability
to a mobile environment, autonomy, and heterogeneity.

A mobile application must be able to adapt to changing
conditions [41]. These changes include the network envir-
onment and resources available to the application. A
balance between self-autonomy and dependence on a
server for a mobile user is very critical. A resource-scarce
mobile system is better served by relying upon a server.
However, frequent network disconnection, limited network
bandwidth, and power restrictions argue for some degree of
autonomy. As the environment changes, the application
must adapt to the level of support required from stationary
systems (servers).

The concept of mobility implies a much more diverse
range and amount of accessible data. Subsequently, a
remote access system must provide access to a larger set
of heterogeneous data sources. Moreover, it must be able to
facilitate the bandwidth, resource, and power restrictions of
mobile systems. Multidatabase systems share many of the
same characteristics as mobile systems.

2.1 A New Computational Environment

A multidatabase system (MDBS) provides a logical inte-
grated view and method to access multiple local database
systems while hiding the hardware and software intricacies
from the user. Access to the local DBMS through a much
more diverse and restrictive communication and access
devices is the natural extension to a traditional MDBS
environment, i.e., an MDAS environment [31]. The follow-
ing section briefly introduces this environment and dis-
cusses various issues involved in providing multidatabase
functionality to a mobile user. The current SSM model is
extended to incorporate data replication for mobile units in
an MDAS environment. The interested reader is referred to
[10], [31] for a more detailed discussion of the SSM and an
MDAS environment.

2.1.1 Multidatabase Environment

A multidatabase system is a global system layer that allows
distributed access to multiple preexisting local database
systems. One of the essential features of a multidatabase
system is local site autonomy that comes in the form of

LIM AND HURSON: TRANSACTION PROCESSING IN MOBILE, HETEROGENEOUS DATABASE SYSTEMS 1331



Design Autonomy, Communication Autonomy, and Execution
Autonomy. When joining an MDBS, a local DBMS should not
require any software or hardware changes—each local
database management system (DBMS) maintains complete
control over local data and resources.

In addition to autonomy, heterogeneity is also an
important aspect of a multidatabase system. Support for
heterogeneity is a tradeoff between developing and making
changes in both hardware and software and limiting
participation. Consequently, as the number of systems
and the degree of heterogeneity among these systems
increases, the cost of integration into the global MDBS
increases. In an MDBS, autonomy and heterogeneity leads
to issues in schema integration, query languages, query
processing, and transaction management [9].

2.1.2 Summary Schemas Model for Multidatabase

Systems

Accessing data in a heterogeneous system is a challenging
problem. Multidatabase language and global schema
systems suffer from inefficiencies and scalability problems.
The summary schemas model (SSM) has been proposed as
an efficient means to access data in a heterogeneous
multidatabase environment [10]. It acts as a backbone to a
multidatabase for query resolution. The identification of the
terms that are semantically similar is one of the key
concepts in SSM. Terms in language can be related with
each other through semantic relationships like synonyms,
hypernyms, hyponyms and antonyms. SSM uses the
taxonomy of the English language that contains at least
hypernym/hyponym, and synonym links among terms to
build a hierarchical metadata. This hierarchical meta

structure provides an incrementally concise view of the
data in the form of summary schemas. The SSM hierarchy
(Fig. 1) consists of leaf-node schema and summary schemas.
A leaf node schema represents an actual database, while a
summary schema gives an abstract view of the information
available at the schemas of its children. The hypernyms of
terms in the children of a particular SSM node form the
summary schema of that node. Since hypernyms are more
general or abstract than their hyponyms, many terms could
map into a common hypernym. This reduces the overall
memory requirements of the SSM metadata as compared to
the global schema approach. As can be noted from Fig. 1,
terms “Salary, Wage, Interest, and Pension” are integrated
into various hypernyms at different levels of the SSM
hierarchy and ultimately, all are semantically represented
as “Volition” at the root of the hierarchy. The semantic
distance metric (SDM) between the hypernym and their
respective hyponyms are relatively small; hence, even
though each summary schema does not contain exact
information of its children but only an abstracted version,
it preserves the semantic contents of its children—the
summary schema nodes provide a more concise view of the
data by summarizing and integrating the schemas of its
children nodes. Each local access term needs to be mapped
to an entry-level term in the underlying linguistic taxon-
omy. This mapping is represented in a data-structure called
the Local-Global-Schema (LGS). This structure contains
pairwise mapping between a local access term (could be
cryptic) and the leaf level term in the linguistic taxonomy.
The LGS is implemented semiautomatically by the local
DBA(s). The procedure of populating the SSM hierarchy
after the creation of LGS is automated.
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The SSM intelligently resolves user queries [10]. A goal
of a multidatabase system is to allow the user to extract
information desired from distributed heterogeneous data-
bases transparently—i.e., Data-Location Transparency,
Data-Representation Transparency, and Data-Distribution
Transparency. The user of SSM could issue either imprecise
or precise queries. The imprecise queries are those that may
have access term(s) different from the local access term(s)
and/or may not specify the location(s) of the data. A precise
query, on the other hand, uses the exact local-access terms
and has the location of the database specified. A precise
query is resolved by querying the specified database. The
imprecise query resolution is more involved in that the
semantic intent of the user query has to be identified and,
based on that intention, the query will be resolved.

The hierarchical structure of the SSM is used to resolve
imprecise queries. The query resolution starts at the node
issuing the query. Each term “a” in the query is compared
with the terms in the schema “s” at that node. If the SDM(s)
between all query terms and schema terms are less than or
equal to the specified semantic distance metric, the query is
resolved either at that node (if local node) or in the children
of that node (if an SSM node). On the other hand, if “a” does
not match with “s,” that is, “a” and “s” within the boundary
of the specified semantic distance, are not linguistically
related, the search proceeds to the parent of the current
node. This process recursively continues until either the
search reaches the top of the hierarchy with no downward
search path or it reaches the local-node where the search is
resolved or the search fails at a particular node on a
downward traversal. The latter condition arises when the
query terms do not match the schema terms at a particular
node. Resolution of a global query allows the translation of
a query into the corresponding subqueries and identifica-
tion of a global coordinator in charge of global concurrency
control for that query.

Definition 1. A global coordinator of a query is the lowest
summary schema node that semantically contains the
information space requested by the query.

A simulation and benchmark of the SSM model was
performed and the benefits were shown in [10], [16]. The
simulator compared and contrasted the costs of querying a
multidatabase system using precise queries (access terms
and locations are known) against the intelligent query
processing capability of the SSM for the imprecise queries.
The results showed that the intelligent query processing
(imprecise query) of the SSM and an exact query (precise
query) incurred very comparable costs (i.e., there were only
small overhead costs involved) [10]. Interestingly, using
intelligent SSM query processing actually outperformed an
exact query in certain circumstances [16]. The SSM provides
several benefits to the traditional multidatabase systems
that can be directly applied to an MDAS. These include:

. The SSM provides global access to data without
requiring precise knowledge of local access terms or
local views. The system can intelligently process a
user’s query in his/her own terms.

. The SSM’s hierarchical structure of hypernym/
hyponym relationships produces incrementally con-
cise views of the global data. The overall memory
requirements for the SSM hierarchical metadata,

compared to the requirements of a global schema,
are drastically reduced by up to 94 percent [16].
Subsequently, the SSM’s metadata could be kept in
main memory, thus reducing the access time and
query processing time. Furthermore, for very re-
source limited devices in an MDAS, only portions of
the upper levels of the SSM metadata structure could
be stored locally, which would still provide a global
(albeit less detailed) view of the data.

. The SSM can be used to browse/view the global
data. The user can either 1) follow semantic links in a
summary schemas node or 2) query the system for
terms that are similar to the user’s access terms. In
either case, the SSM could be used to browse data by
“stepping” through the hierarchy, or view semanti-
cally similar data through queries.

An SSM prototype in C++ on the Solaris platform,
through a project funded by the US Defense Advanced
Research Projects Agency, was developed to identify the
practicality and feasibility of the SSM approach. The
prototype is based on the client/server model and is a
totally distributed system. The prototype is capable of
performing both imprecise and precise queries successfully.
To demonstrate the capability of the SSM in handling
heterogeneous data sources, the prototype was tested using
two Oracle databases—1) flight databases and 2) steam
boiler databases. The SSM hierarchy was created on Sparc-
station, Alpha, and Indy platforms. The user queries, both
precise and imprecise queries, were submitted from a PC. A
graphical user interface (GUI) was developed to facilitate
user communication. In addition, a translator capable of
translating the GUI to SQL query was developed. The
prototype demonstrated the functionality and feasibility of
SSM. The prototype also showed the bottlenecks of the
system, for instance, in some cases, we found a heavy
amount of communication in the SSM hierarchy. In
addition, it was found that, based on the underlying
application databases, the development of application-
specific thesaurus would improve accuracy and perfor-
mance of the system.

Based on the experiences gained and to reduce the
communication bottleneck, a decision was made to enhance
the scope of the prototype by application of the mobile
software agent technology. At present, an SSM user is able
to initiate queries in the form of software agents. Our
preliminary performance analysis has shown that, in many
instances, transferring computation (software mobile agent)
rather than massive data, across the network reduces the
network traffic.

2.1.3 The MDAS Environment

In addition to the issues involved in an MDBS, accessing a
large amount of data over a network connection of an
MDAS involves the mobile networking environment and
mobility issues. Overall, the main differentiating feature
between an MDAS and an MDBS is the connection of
servers and/or clients through a wireless environment and
the devices used to access the data. However, both
environments are intended to provide timely and reliable
access to the globally shared data.

A summary of the issues facing a multidatabase and
mobile system is given in Table 1. Due to the similarities in the
objectives of effectively accessing data in a multidatabase and
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a wireless-mobile computing environment, we propose to
superimpose a wireless-mobile computing environment on
an MDBS [31]. We call this new system a mobile data access
system (MDAS). By superimposing an MDBS onto a mobile
computing environment, one should be able to easily map
many solutions from one environment to another. In
Sections 2.2 and 2.3, two of these issues—concurrency control
and data duplication—are examined in more detail.

2.2 Transaction Management and Concurrency
Control

In a distributed environment, concurrency is used as a
means to increase the throughput and to reduce the
response time. Data access in an MDBS is accomplished
through transactions. Concurrency control involves coordi-
nating the operations of multiple transactions that operate
in parallel and access shared data. By interleaving the
operations in such a manner, the potential of interference
between transactions arises. The concurrent execution of
transactions is considered correct when the ACID proper-
ties (Atomicity, Consistency, Isolation, and Durability) are
hold for each individual transaction [26]. Maintaining the
ACID properties is desirable in any MDBS. The autonomy
requirement of local databases in an MDAS (multidatabase
system) introduces additional complexities in maintaining
serializable histories because the local transactions are not
visible at the global level. Consequently, the operations in a

transaction can be subjected to large delays, frequent or
unnecessary aborts, inconsistency, and deadlock. Two types
of conflicts may arise due to the concurrent execution of
transactions—direct and indirect conflicts.

Definition 2. A direct conflict between two transactions Ta and
Tb exists if and only if an operation of Ta on data item x
(denoted oðTaðxÞÞ) is followed by oðTbðxÞÞ, where Ta does not
commit or abort before oðTbðxÞÞ and either oðTaðxÞÞ or
oðTbðxÞÞ is a write operation.

Definition 3. An indirect conflict between the two transactions
Ta and Tb exists if and only if there exists a sequence of
transactions T1;T2; . . . Tn such that Ta is in direct conflict
with T1, T1 is in direct conflict with T2; . . . ; , and Tn is in
direct with Tb [7].

An MDAS should maintain a globally serializable history
for correct execution of concurrent transactions. This means
that the global history should be conflict-free while
preserving as much local autonomy as possible. While the
MDBS is responsible for producing a globally serializable
history, it is assumed that the local concurrency control
system will produce a locally serializable history as well. It
is important to note that the MDBS needs to address both
direct and indirect conflicts between global transactions.
Table 2 summarizes several concurrency control algorithms
that have been advanced in the literature [43].
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2.3 Data Replication for Weak Connections and
Disconnection

The communication limitations of an MDAS environment,
i.e., restricted bandwidth, weak connections, and discon-
nection (either voluntary or involuntary), may require that a
portion of the data in some form be made readily available
to the mobile unit. A large amount of related work has been
reported in the area of distributed file systems [30], [40],
[42], distributed replication [3], [22], [29], [37], and
distributed/web caches [12], [14], [27]. The local autonomy
requirement of an MDAS environment does not lend itself
to the direct application of these works. There are two main
objectives in maintaining replicated data in a mobile or
distributed environment:

. Data Consistency. The duplicate copies of data should
be somehow consistent within the system. Current
schemes do not maintain transactional (ACID) con-
sistency. Several research models address the con-
nectivity issues related to a wireless environment.
These include weak and lazy consistency models that
relax the consistency requirements of a system and
allow the existence of inconsistent copies of data [1],
[36], [37]—operations are performed on a conditional
or delayed basis. These models eventually find
discrepancies among the replicated copies of data
and attempt to reconcile the differences by either
updating the information or semantically compensat-
ing for the discrepancy.

. Data Access. When bandwidth limitations or dis-
connection occurs, the impact on the availability of
the data to the mobile user should be minimized as
much as possible. Our work addresses the ability to
process data in a transactional sense in an MDAS
environment—i.e., read and write operations are
guaranteed to be consistent while connected to the
system, and read-only operations are allowed dur-
ing disconnection.

2.3.1 Data Replication

Replication schemes differ slightly from caching schemes in
that the replicated data is accessible by other systems outside
of the system on which the data resides. There are two types of
general replication schemes: 1) primary/secondary copy
(PSC) replication [34], [35] and 2) voting-based replication
schemes [4], [27]. Depending upon the PSC replication
scheme, read operations may access data that is inconsistent
with the primary copy. PSC replication does not work in an
MDAS environment because write operations to replicated
data do not reach the primary copy when disconnected.
Therefore, write consistency is not guaranteed. In a dis-
tributed system, data consistency is guaranteed with voting

based replications; however, they tend to be more expensive
and require much more communication. In an MDAS
environment, the local replica, while disconnected, cannot
participate in the decision/voting process and any changes to
the local data may result in an inconsistency.

2.3.2 Data Caching

Caching is an effective means of data duplication that is
used to reduce the latency of read and write operations on
data. Early research on the disconnected operation was
done with file system based projects, e.g., the Coda file
system [42]. When a disconnection occurs, a cache manager
services all file system requests from the cache contents.
Coda logs all transactions during periods of disconnection
and replays the log upon reconnection to synchronize the
two copies of data. Ficus [39], Little Work [28], Bayou [17],
and Odyssey [41] are some of the projects that support the
disconnect operation.

File or page-based caching schemes use invalidation
protocols in order to maintain data consistency. The mobile
unit and server keep track of cached data—each time the
data item changes, the server notifies the mobile unit.
Alternatively, to reduce the amount of communication, the
mobile unit can check for invalidated data only when
accessing data. As with replication, the invalidation of data
is not possible when disconnected and, thus, consistency
cannot be guaranteed.

Web-based caching is becoming more important as
information on the Internet continues its rapid expansion.
The two most common forms of cache consistency mechan-
isms used on the Internet include time-to-live fields (TTL)
and client polling [12].

There is currently no replication or cache-based scheme
for mobile distributed systems that guarantees consistency.
The disconnected operation of a mobile system and the local
autonomy requirements of the local systems make consis-
tency management extremely difficult. Some schemes try to
use the concept of compensating transactions (or opera-
tions) to keep replicated data consistent. However, com-
pensating transactions are difficult to implement and, in
some cases, a compensating transaction cannot semantically
undo the transaction (or operation) [7].

3 CONCURRENCY CONTROL AND DATA

REPLICATION FOR AN MDAS

Within the scope of the MDAS environment, information
sources can be either stationary or mobile [21]. In addition, a
user request could be either directed toward public data or
shared data. Issues regarding accessing public data are
beyond the scope of this work and the interested reader is
referred to [13]. The proposed concurrency control algorithm
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is defined on an environment in which information sources
are stationary and user requests are aimed at shared data
sources. Under these conditions, the v-locking algorithm is
intended to reduce the amount of communication and,
hence, to reduce the effect of frequent disconnections in
wireless environment.

3.1 Concurrency Control Scheme

The proposed v-locking algorithm uses a global locking
scheme (GLS) to serialize conflicting operations of global
transactions. Global locking tables are used to lock data
items involved in a global transaction in accordance with
the two-phase locking (2PL) rules. In typical multidatabase
systems, maintaining a global locking table would require
communication of information from the local site to the
global transaction manager (GTM) regarding locked data
items. In an MDAS environment, this is impractical due to
the delay, amount of communication overhead, and
frequent disconnections involved. The MDAS software is
distributed in a hierarchical structure similar to the
hierarchical structure of the SSM (see Section 2.1.2).
Subsequently, transaction management is performed at
the global level in a hierarchical, distributed manner.

The motivation behind using a hierarchical transaction
management organization was due to the hierarchical
structure of the SSM and the fact that such an organization
offers higher performance and reliability [10], [32]. A global
transaction is submitted at any node in the hierarchy—either
at a local node or at a summary schema node. The transaction
is resolved, mapped into subtransactions, and its global
transaction manager is determined by the SSM structure [10].

Our concurrency control algorithm is based upon the
following assumptions:

1. There is no distinction between local and global
transactions at the local level.

2. A local site is completely isolated from other local
sites.

3. Each local system ensures local serializability and
freedom from local deadlocks.

4. A local database may abort any transaction at any
time within the constraints of a distributed atomic
commit protocol. The most widely supported dis-
tributed atomic commit protocol in commercial
systems is the two-phase commit (2PC) and, there-
fore, our algorithm relies on the constraints of the
2PC. A distributed atomic commit protocol usually
means that the local system will have to give up a
certain degree of autonomy. In the case of the 2PC,
once the “Yes” vote is given in response to a
“Prepare to Commit” message, the local system
may not subsequently abort any operation involved
with the vote.

5. Information pertaining to the type of concurrency
control used at the local site will be available. In
order for systems to provide robust concurrency and
consistency, in most systems, a strict history is
produced through the use of a strict 2PL scheme.
Therefore, the majority of local sites will use a strict
2PL scheme for local concurrency control.

Consequently, the MDAS coordinates the execution of
global transactions without the knowledge of any control
information from local DBMS. The only information (loss of

local autonomy) required by the algorithm is the type of
concurrency control protocol performed at the local sites,
i.e., locking, time stamp, unknown, etc.

The semantic information contained in the summary
schemas is used to maintain global locking tables. As noted
before, each node in the summary schema hierarchy captures
the semantic contents of its children in a hierarchical fashion
(see Section 2.1.2). As a result, the “data” item being locked is
reflected either exactly or as a hypernym term in the summary
schema of the transaction’s GTM. The locking tables can be
used in an aggressive manner where the information is used
only to detect potential global deadlocks. A more conserva-
tive approach can be used where the operations in a
transaction are actually delayed at the GTM until a global
lock request is granted. Higher throughput at the expense of
lower reliability is the direct consequence of the application of
semantic contents rather than exact contents for an aggressive
approach. In either case, the global locking table is used to
create a global wait-for-graph, which is subsequently used to
detect and resolve potential global deadlocks.

Definition 4. The wait-for-graph is a directed graph that shows
dependence/independence among global transactions. Each
node in the graph represents a transaction and an edge
Ti ! Tj, from node Ti to node Tj represents the fact that
transaction Ti is waiting for transaction Tj to release some
lock. In a distributed environment, each scheduler at site i can
maintain a local wait-for-graph. In addition, the global
manager also maintains a global-wait-for-graph that is the
union of all local wait-for-graphs. In the proposed v-locking
algorithm, due to the hierarchical nature of the summary
schemas model (Fig. 1), the global wait-for-graphs are
maintained in hierarchical fashion within the summary
schemas nodes—each summary schemas node acts as the
global coordinator (see Definition 1) for queries and subqueries
under its control and, hence, it maintains a wait-for-graph for
them. In addition, edges in the wait-for-graphs, as discussed
later are labeled as exact or imprecise.

The accuracy of the “waiting information” contained in
the graph is dependent upon the amount of communication
overhead that is required. The proposed algorithm can
dynamically adjust the frequency of the communications
(acknowledgment signals) between the GTM and local sites
based on the network traffic and/or a threshold value.
Naturally, the decrease in communication between the local
and global systems comes at the expense of an increase in
the number of potential false aborts. The extent of detection
of false deadlocks is studied in the simulation.

The pseudocode for the global locking algorithm is given

in Figs. 2 and 3. Fig. 2 describes how the wait-for-graph is

constructed based upon the available communication. Three

cases are considered: 1) Each operation in the transaction is

individually acknowledged, 2) write operations are only

acknowledged, and 3) only the commit or abort of the

transaction is acknowledged. For the first case, based upon

the semantic contents of the summary schema node, an edge

inserted into the wait-for-graph is marked as being an exact

or imprecise data item. For each acknowledgment signal

received, the corresponding edge in the graph is marked as

exact. In the second case, where each write operation

generates an acknowledgment signal, for each signal only

the edges preceding the last known acknowledgment are
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marked as being exact. Other edges that have been

submitted but that have not been acknowledged are marked

as pending. As in the previous two cases, in the third case,

the edges are marked as representing exact or imprecise

data. However, all edges are marked as pending until the

commit or abort signal is received. Keeping the information

about the data and status of the acknowledgment signals

enables us to detect cycles in the wait-for-graph.
Fig. 3 shows how to detect cycles in the wait-for-graph

based on the depth first search (DFS) policy [15]. The graph
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is checked for cycles after a time threshold for each
transaction. For all of the transactions involved in a cycle,
if the exact data items are known and all of the acknowl-
edgments have been received, then a deadlock is precisely
detected and broken. When imprecise data items are
present within a cycle, the algorithm will consider the cycle
a deadlock only after a longer time threshold has passed.
Similarly, a pending acknowledgment of a transaction is
only used to break a deadlock in a cycle after an even longer
time threshold has passed. The time thresholds can be
selected and adjusted dynamically to prevent as many false
deadlocks as possible.

To clarify the sequence of the operations we will focus on
several scenarios:

. Assume a global transaction is resolved in an SSM
node (this SSM node is then the GTM of this global
transaction) without any conflict with other global
transactions resolved in the same SSM node. Further
assume that global locks are requested and granted
for all the data items acquired by this transaction.
Consequently, at this SSM node, the global locking
table is updated and a node is inserted in the global
wait-for-graph. Under these conditions, GTM will
initiate execution of related subtransaction.

. Assume a global transaction is resolved in an SSM
node with at least a conflict with another global
transaction resolved in the same SSM node. Under
this situation, the global locking table is updated and
a node representing this transaction, along with
dependence link(s), is added to the global wait-for-
graph. Note that a dependence link is labeled as
exact or imprecise based on the degree of similarity
between the query term and entries in summary
schema.

. Assume a global transaction completes its opera-
tions. This releases some resources; consequently,
the global locking table and the global wait-for-
graph of corresponding GTM are updated. This
could allow some global transaction(s) that are
resolved in the same SSM to be ready for execution.
Now, an independent global transaction takes steps
to request global lock for its data items.

It should be noted that the above sequence of operations
would be done recursively within the SSM hierarchy. In
another words, insertion of entries in the locking table and
wait-for-graph at the GTM node of a global transaction
would also initiate update at the lower level summary
schemas nodes where the corresponding subtransactions
are resolved.

A potential deadlock situation may also occur due to the
presence of indirect conflicts. By adding site information to
the global locking tables, an implied wait-for-graph could
be constructed using a technique similar to the potential
conflict graph algorithm [8]. A potential wait-for-graph is a
directed graph with transactions as nodes. The edges are
inserted between two transactions for each site where there
are both active and waiting transactions. The edges are then
removed when a transaction aborts or commits. A cycle in
the graph indicates the possibility that a deadlock has
occurred.

Here, the term active simply means that the transaction
has begun execution at a site and is either actively

processing or waiting for a blocked resource. For the
transactions that are waiting, it is much more difficult to
determine exactly which resource is not available. In
particular, indirect conflicts, where global transactions are
waiting for some local transaction, are not exactly detected.
Since the status of the locks at the local sites is not known,
there is no way to accurately determine this information
without severely violating the autonomy of the local DBMS.
Therefore, the potential wait-for-graph is used to detect
potential deadlocks. The actual deadlocks in the system are
a subset of the deadlocks that are contained in the implied
wait-for-graph. Thus, as is the case when detecting
deadlocks using global locking, there is also the potential
for false deadlock detection. To decrease the number of
false deadlocks, the potential wait-for-graph is used in
conjunction with a waiting period threshold. The waiting
period threshold is longer than the maximum time thresh-
old used in the global locking tables. This allows the global
locking algorithm to “clear” as many deadlocks as possible
and, hence, reduces the possibility of detecting false cycles
in the potential wait-for-graph.

3.1.1 Handling Unknown Local Data Sources

Our algorithm was extended to handle the local “black box”
site in which the global level knows nothing about the local
concurrency control. Since nearly every commercial data-
base system uses some form of 2PL, this case will only
comprise a small percentage of local systems. The algorithm
merely executes global transactions at such a site in a serial
order. This is done by requiring any transaction involving
the “black box” to obtain a site lock before executing any
operations in the transaction. These types of locks will be
managed by escalating any lock request to these sites to the
highest level (site lock).

3.2 Proposed Data Replication Protocol

3.2.1 Communication Protocol

Maintaining the ACID properties of a transaction with
replicated data in an MDAS environment is very difficult.
The proposed scheme considers three levels of connectivity
in which a mobile unit operates. During a strong connection,
the mobile unit sends/receives all transactions and returns
data directly to/from land-based, fixed sites for processing.
When the communication link degrades to a weak connec-
tion, transactions are queued at the mobile unit and passed
through the system according to the availability of
bandwidth. Returned data is also queued at the fixed site.
The queuing of operations during a weak connection allows
a mobile unit to continue processing at the expense of
increased latency.

In the disconnected state, a user may perform read-only
queries on any cached data. For this case, the consistency of
the data is not guaranteed, i.e., the user may receive stale
data. Any transaction that contains a write operation is
queued and submitted to the system when the connection is
reestablished. Naturally, if a read-only access does not find
the data locally, the query is queued and submitted later
when the connection is established.

3.2.2 Cached Data—Bundled Queries (BUNQ)

Data that is cached on the mobile unit consists of a query
and its associated data. There are several reasons for using a
BUNQ instead of page-based or file-based data. In a tightly
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coupled distributed system, it is possible to cache data at
the local unit. However, in a multidatabase system, the
structure of the data at the local databases will vary
(structural differences—the information may be stored as
structured data, unstructured data, web pages, files, objects,
etc.). This variaition of data at each local site makes it
difficult to cache the data in a uniform manner. In addition,
the autonomy requirement of the local database imposes
further restrictions for caching data. It may not be possible
to determine the underlying structure of the data at the
local site without violating local autonomy requirements.
For instance, to determine the pages of data accessed in a
query from a local DBMS, knowledge regarding the tuples
as well as the mapping to pages may be required. In order
to provide this information, the local DBMS would have to
be modified, directly violating autonomy requirements.
Furthermore, the invalidation of the data at the local sites
should be propagated to the mobile unit. This would also
require major changes to the local systems and, hence,
would violate local autonomy.

Consequently, instead of caching individual data items
from each local source, the data set associated with a
particular transaction is cached—a bundled query. By
caching a BUNQ, the resolution of the structural differences
is done at the MDAS level while still maintaining the local
autonomy requirements. The primary advantage is the ease
and simplicity of implementation. This comes at the
expense of retaining data in the cache at a very coarse
grained level.

3.2.3 Prefetching and Replacement/Invalidation Policy

. Prefetching. The proposed scheme uses a simple
prefetching and replacement policy. The literature
has addressed prefetching algorithms based upon
user profiles and usage histories [30], [34], [40]. The
limited power, storage, processing capability, and
bandwidth of a mobile unit make the incorrect
prefetch of data extremely expensive. The idea is to
prefetch enough data such that the user can still
operate during a disconnection (albeit with relaxed
consistency requirements) while minimizing the use
of additional energy and bandwidth.

Allowing the user to specify a particular read-
only transaction as an automated queued query
prefetches the data. An AQ2 has a relaxed require-
ment for consistency, which is defined by the user.
The user sets a valid time threshold for each AQ2

when defining such a transaction. The mobile unit
automatically submits the transaction to the MDAS
when the threshold has expired—i.e., prefetches the
data. The results are stored as a BUNQ. If the user
requests the data in the AQ2 before the BUNQ is
invalidated, the query is serviced from the local
cache.

. Replacement. The data in the cache consists of both
automated queued queries and other user submitted
read-only queries. The data in the cache is replaced
based upon the least recently used (LRU) policy. The
LRU policy has its advantages in that it is well-
understood and easy to implement. Moreover, other
than some web-based caching algorithms, the LRU

policy is the most widely used replacement policy in
DBMS caches [12], [24].

. Invalidation. To maintain consistency between the
copies of data residing on the fixed and mobile units,
the data in the cache must be correctly invalidated
when the main copy changes. To accomplish this, we
propose using a parity-based signature for each
BUNQ in the cache. When the user submits a
transaction, if a corresponding BUNQ is present in
the cache, the transaction (along with the parity
code) is sent to the fixed node. The fixed node then
performs the query and delays the transmission of
the information back to the mobile unit until it
generates and compares the two parity codes. If they
are identical, only an acknowledgment is sent back
to the mobile unit and the data is read locally from
the cache. Otherwise, the resultant data, along with
its new parity sequence, is returned and replaced in
the cache. The old copy of the BUNQ is invalidated
according to the LRU rules.

The use of a parity signature for invalidation incurs a

small overhead. The parity sequence is generated for

every user submitted read-only transaction, and once for

each time quantum of the AQ2. The only additional

overhead that the mobile unit incurs is the added space

required for storing the parity sequence. The fixed

systems (assumed to have a relatively high degree of

processing power) will perform all of the parity genera-

tion and validation. A high degree of certainty is assured

by using a relatively small number of bits and standard

error detection or correction techniques [37]. The number

of bits required should be less than 64 bits per BUNQ.

With 64 bits of parity, the approximate probability of

incorrectly detecting a matching BUNQ is 1=264.

4 EVALUATION OF PROPOSED ALGORITHM

4.1 Simulation

The performance of the proposed v-locking and p-caching
algorithms was evaluated through a simulator written in
C++ using CSIM. The simulator measures performance in
terms of global transaction throughput, response time, and
CPU, disk I/O, and network utilization. In addition, the
simulator was extended to compare and contrast the
behavior of the v-lock algorithm against the site-graph,
potential conflict graph, and the forced conflict algorithms.
This includes an evaluation with and without the cache.

The MDAS consists of both local and global components,
as well as mobile units. The local component is comprised
of local database systems, performing local transactions
outside the control of the MDAS. The global component
consists of transactions executing under the control of the
MDAS. The mobile units generate the actual global
transactions. Figs. 4, 5, and 6 depict the flow of operations
in the mobile, global, and local units, respectively.

There are a fixed number of active global transactions
present in the system at any given time. An active
transaction is defined as being in the active, CPU, I/O,
communication, or restart queue. A global transaction
received from a mobile unit enters a communication queue,
and subsequently enters the active queue. Each operation of
the transaction is scheduled and is communicated to the
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local system based upon the available bandwidth. The

global scheduler acquires the necessary global virtual locks

and processes the operation. The operation(s) then uses the

CPU and I/O resources and is communicated to the local

system based upon the available bandwidth. When

acknowledgments or commit/abort signals are received
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from the local site, the algorithm determines if the
transaction should proceed, commit, or abort. For read-
only transactions following a global commit, a parity code is
generated for the resultant data and compared to the parity
code of the BUNQ. For a matching code, only an acknowl-
edgment signal is sent back to the mobile unit. Otherwise,
the data and the new parity code are sent back to the mobile
unit. Transactions containing a write operation are placed
directly in the ready queue. If a deadlock is detected, or an
abort message is received from a local site, the transaction is
aborted at all sites and the global transaction is placed in the
restart queue. After a specified time elapses, the transaction
is again placed on the active queue.

At the local sites, there are a fixed number of active local
transactions. The active transactions are comprised of both
local transactions and global subtransactions. The local
system does not differentiate between the two types. An
active transaction is defined as being in the active, CPU, I/O,
communication, blocked, or restart queue. Transactions enter
the active queue and are subsequently scheduled by acquir-
ing the necessary lock on a data item. If the lock is granted, the
operation proceeds through the CPU and I/O queue and, for
global subtransactions, an acknowledgment signal is com-
municated back to the global locking scheme based upon the
available communication bandwidth. If a lock is not granted,
the system checks for deadlocks and will place the transaction
either in the blocked queue, or the restart queue. For local
transactions, it goes into the restart queue if it is aborted and,
subsequently, it will be restarted later. Upon a commit, a new
local transaction is generated and placed in the ready queue.
For global subtransactions, an abort or commit signal is
communicated back to the GLS and the subtransaction
terminates.

4.2 System Parameters

The underlying global information sharing process is
composed of 10 local sites. The size of the local databases
at each site can be varied and has a direct effect on the
overall performance of the system. The simulation is run for
5,000 time units and an average of 10 runs is taken for the
values presented. The global workload consists of randomly
generated global queries, spanning over a random number
of sites. Each operation of a subtransaction (read, write,
commit, or abort) may require data and/or acknowledg-
ments to be sent from the local DBMS. The frequency of
messages depends upon the quality of the network link. In
order to determine the effectiveness of the proposed
algorithm, several parameters are varied for different
simulation runs. These parameters for the global system
are given in Table 3, along with their default values.

A collection of mobile units submits global queries
(selected from a pool of 500 queries) to the MDAS. The
connection between the mobile unit and the MDAS has a
50 percent probability of having a strong connection and a
30 percent probability of having a weak connection. There is a
20 percent probability of being disconnected. A strong
connection has a communication service time of 0.1 to
0.3 seconds, while a weak connection has a service time
range of 0.3 to 3 seconds. When a disconnection occurs, the
mobile unit is disconnected for 30 to 120 seconds. Initially,
one-third of the pool consists of read-only queries, which are
locally cached as a BUNQ. Additionally, 10 percent of the
read-only queries are designated as an AQ2. For read-only
queries, the local cache is first checked for an existing BUNQ.
If present, the query is submitted along with the associated
parity sequence. The MDAS returns either the data or an
acknowledgment signal for a matching BUNQ. Subse-
quently, if signatures do not match, the mobile unit updates
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the cache with the new data according to the LRU scheme.

Upon termination of a transaction, a new query is selected

and submitted to the MDAS. The various parameters for the

mobile units are given in Table 4, along with their default

values.
The local systems perform two types of transactions—

local and global. Global subtransactions are submitted to

the local DBMS and appeared as local transactions. Local

transactions generated at the local sites consist of a random

number of read/write operations. The only difference

between the two transactions is that a global subtransaction

will communicate with the global system, whereas the local

transaction terminates upon a commit or abort. The local

system may abort a transaction, global or local, at any time.

If a global subtransaction is aborted locally, it is commu-

nicated to the global system and the global transaction is

aborted at all sites. The various parameters for the local

system are given in Table 5 along with their default values.

Both the global and local systems are modeled similar to the

models used in [2], [8], [31].

4.3 Simulation Results

The simulator compared and contrasted the v-lock, poten-
tial conflict graph (PCG), forced-conflict, and site-graph
algorithms with and without the proposed p-caching
scheme (Figs. 7 and 8). As can be concluded, the v-Lock
algorithm has the highest throughput. This result is
consistent with the fact that the v-Lock algorithm is better
able to detect global conflicts and thus achieves higher
concurrency than the other algorithms. As can be seen, the
maximum throughput occurs at a multiprogramming level
approximately equal to 40. As expected, as the number of
concurrent global transactions increases, the number of
completed global transactions decreases due to the increase
in the number of conflicts. The peak throughput for each
concurrency control scheme is slightly higher with the use
of caching. Furthermore, the throughput for each number of
active global transactions is also higher than the noncaching
case. This is attributed to the cache hits on the read only
data. For the noncache case, the throughput is low until the
active number of global transactions reaches about 30, with
a rapid increase of the throughput from 30 to 40 active
transactions. This occurs because of the weak connections
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and disconnection. With the p-caching algorithm, the rate of
the increase in throughput is more gradual because the local
cache can service the read-only queries under weak
connectivity or disconnection.

The gain in the throughput—sensitivity—of the p-caching
algorithm upon the different concurrency control schemes is
shown in Fig. 9. The v-locking scheme shows the greatest
sensitivity to the caching algorithm. At 20 active global
transactions, there is an improvement in the throughput of
approximately 0.6 when using a cache. At the peak
throughput of 40 simultaneous transactions, the throughput
is increased by 0.2. The PCG site-graph, and forced conflict
algorithms show similar characteristics to the v-locking
algorithm; however, the sensitivity of these algorithms is
less. The caching becomes ineffective for all schemes when
the number of active global transactions is greater than 75.

Figs. 10 and 11 show the percentage of completed
transactions that the simulator measured for the various
concurrency control algorithms. In general, for all schemes,
the number of completed transactions decreases as the
number of concurrent transactions increases due to more
conflicts among the transactions. However, the performance
of both the forced conflict and site-graph algorithms
decreases at a faster rate. This is due to the increase in the
number of false aborts detected by these algorithms. The v-
Lock more accurately detects deadlocks by differentiating
between global and indirect conflicts, and therefore performs
better than the PCG algorithm. At levels below the peak
throughput of 40 active transactions, all of the concurrency
control schemes using the proposed caching algorithm
perform better than the noncaching case. With caching, the

range of completed transactions through 30 active users for

all schemes is 70 to 90 percent. However, without caching,

the range falls substantially to 27-78 percent. The increase in

completed transactions is due to the cache servicing read-

only transactions as well as the queuing of transactions

during disconnection. Particularly for the nonlock based

schemes—site-graph and forced-conflict—the improvement

in the completed transactions is significant.
The communication utilization was found to decrease

with the use of the cache. Figs. 12 and 13 show the results of

the simulation. Lower than peak throughput, the amount of

communication utilization is lower with the use of caching.

At 20 active global transactions, the v-locking algorithm

utilizes 40 percent of the communication bandwidth versus

69 percent utilization without the cache. Similarly, with

30 active global transactions, there is a 75 percent versus

91 percent communication utilization with and without the

cache, respectively. This is attributed to the reduction in

transferred data from parity acknowledgments and local

accesses to the cache. At peak throughput, both locking

algorithms (v-locking and PCG) are utilizing near 100

percent of the communication channel. The communication

utilization is near 100 percent at peak throughput and

decreases slightly as the number of concurrent transactions

increases. It is easy to determine from this graph that the

communication requirements for the v-locking algorithm

represent the bottleneck of the system for both the caching

and noncaching case.
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5 CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusion

The requirements of an “any time, anywhere” computing
environment motivate new concepts that effectively allow a
user to access information in a timely and reliable manner.
An overview of the characteristics of a new computing
environment, the MDAS, and the requirements and issues
of this environment were introduced and discussed.

In an MDAS, a potentially large number of users may
simultaneously access a rapidly increasing amount of
aggregate, distributed data. In such an environment, a
concurrency control algorithm must offer higher through-
put in the face of the limitations imposed by technology,
reduce communications, while preserving as much local
autonomy as possible, as well as minimizing communica-
tion overhead in the system.

A new, distributed, hierarchically organized concurrency
control algorithm was presented and evaluated. The
semantic information contained within the SSM is used to
maintain the global locking tables in the v-locking algo-
rithm. The global locking tables are used to serialize
conflicting operations of global transactions and detect
and break deadlocked transactions. This algorithm in-
creases the global performance by dynamically adjusting
the amount of communication required to detect and
resolve conflicts.

Data duplication in the form of replication and caches
was also used to lessen the effects of weak communications
or disconnection. The duplicated data at the mobile node
allows the user to continue to work in case of a weak
connection or disconnection. Automated queued queries

and bundled queries were used to address the limited
bandwidth and local autonomy restrictions in an MDAS
environment. To maintain data consistency between fixed
and mobile units, read-only queries are cached as a bundled
query and are validated using a simple parity-checking
scheme. Automated queued queries are used in order to
prefetch data to the mobile unit.

A simulator was developed in C++ using CSIM to
evaluate the performance of these algorithms. The simu-
lator compared and contrasted the proposed V-locking
algorithm to the PCG, site graph, and forced conflict
algorithms. The increased throughput, as well as a
significant increase in the percentage of completed transac-
tions, showed that all of the algorithms benefit from the use
of the cache. The communication requirements were
reduced in all cases with the use of the cache. Furthermore,
it was shown how the proposed algorithm decreases the
communication requirements, resulting in higher global
performance. The performance of the v-locking algorithm
was determined to be better than the other schemes in
throughput, response time, and resource utilization. The
results also verify that communication between the local
and global systems is the bottleneck and, thus, the limiting
factor in throughput and response time of the global
system.

5.2 Future Directions

Although the results we have demonstrated are very

promising, the work presented in this paper can be

extended in several directions:
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. The effect of changing the ratio of global to local
transactions active in the system should be investi-

gated. This is particularly important for systems that

have a very high global transaction requirement. If

the global subtransactions were allowed to dominate

the local systems, the overall global throughput

would increase, while the throughput of local

systems may decrease. It should be determined if

an optimal ratio or even a range of the ratio can be
found.

. As the architecture of the system is hierarchical,
there may be several global coordinators active at
any time. The current algorithm assumes that any
conflicts between these coordinators are not com-
municated directly between the coordinators, but
manifest themselves in the form of an indirect
conflict. If the coordinators were allowed to com-
municate information, would there be a significant
impact on the global performance?

. The effect of various parameters upon the number of
completed/aborted transactions is being investi-
gated. An extensive study on the effects of changing
the number of sites, distribution of data, processing,
I/O, and communication is needed. In addition, the
impact of nonuniform communication requirements
between the client and server as well as between
servers should be investigated.

. The impact of the Internet on data management is
growing at a tremendous pace. Consideration of
how this data (both structured and unstructured)
should be integrated into MDAS systems is
important.

. The data set for the AQ2 is assumed to remain static
for a minimum of at least two accesses and a
maximum of 10 accesses. This is done in order to
simulate slower changing data and to see the
effectiveness of the cache size. The simulated work-
load is not indicative of the possible workloads in an
MDAS. The effect of different workloads and data
sets should be investigated.

. The effect of the cache hit ratio on the MDAS
environment (throughput, utilization, etc.) should be
studied. This could be done by changing the cache-
hit ratio to a raw probability that a read-only query
is valid or invalid. The effect of the cache size could
also be studied under these conditions. By setting
the cache hit ratio instead of relying upon the actual

invalidation of the data, one should roughly be able
to simulate different workloads and, subsequently,
see the effects on the various parts of the MDAS.

. The proposed v-locking and p-caching algorithms

showed promising results in the simulation. How-

ever, the algorithms should be tested on real

database systems.
. Finally, the stationary nodes in the system are

assumed to store most of the data in the MDAS.
The case in which the data in the system primarily
resides on mobile units should be considered.
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