
M.-S. Chen et al. (Eds.): MDM 2003, LNCS 2574, pp. 106-121, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Using Separate Processing for Read-Only Transactions in
Mobile Environment

Eddie Y.M. Chan, Victor C.S. Lee, Kwok-Wa Lam

Department of Computer Science
City University of Hong Kong,
83 Tat Chee Avenue, Kowloon,

Hong Kong.
{ymchan, kwlam}@cs.cityu.edu.hk; csvlee@cityu.edu.hk

Abstract. In mobile environment, the asymmetric communication between
mobile clients and server is a distinguishing feature. The conventional query
processing mechanisms cannot be directly applied. In this research, we
investigate the approach of using separate processing for read-only transactions
(ROTs). Since ROTs have a significant proportion in several applications like
traffic information service, stock market and auction, using a separate algorithm
to process ROTs from update transactions may reduce the degree of data
contention. Thus, both the update and read-only transactions can be executed in
a more efficient manner. Besides, using separate algorithm for ROTs allows
higher degree of concurrency than standard concurrency control protocols. To
require a group of ROTs to be conflict serializable with respect to the update
transactions, a consistency requirement called Group Strong Consistency is
defined. The performance of the protocol for Group Strong Consistency was
examined through a series of simulation experiments.

1 Introduction

A read-only transaction (ROT) is a transaction that only enquires information from
database, but does not update any data [17]. Many applications in mobile broadcast
environment process relatively more ROTs than update transactions. Examples of
these applications are online auction, road traffic information system and stock
markets. Most users issue ROTs to enquire and monitor the current status rather than
update the information inside the system.

ROTs can be processed with general concurrency control protocols that ensure
serializability [10], [11], [12]. However, the concurrency control protocols do not
differentiate ROTs from ordinary update transactions. In this approach, ROTs may be
required to hold locks on large amount of data items for long periods of time, thus
causing a high degree of data contention with update transactions.

In mobile environment, there are some characteristics [8] that make the system
unique. The limited amount of bandwidth available for the clients to communicate
with the server poses a new challenge to implement transaction processing efficiently.
Traditional concurrency control protocols require large amount of interaction [14],
[15] between a database server and clients. Those interactions are only made possible

Using Separate Processing for Read-Only Transactions in Mobile Environment 107

with symmetric communication bandwidth likes fixed network. Thus, these protocols
become handicapped in mobile environment. Besides, large population size of mobile
clients [13] may subscribe the services. The large amount of enquiry makes the
processing of ROT an important performance issue in mobile environment.

Broadcast-based data dissemination [1], [2], [3], [9] becomes a widely accepted
approach of communication in mobile environment. A server broadcasts data and
clients tune in to the broadcast channel to retrieve their data of interest. The
distinguishing feature of this broadcast mode is the asymmetric communication
property [1], where the �downstream� (server to client) communication capacity is
relatively much greater than the �upstream� (client to server) one.

Serializability is the standard notion of correctness in transaction processing [7].
Serializability preserves database consistency. That is, when transactions are
processed in a serializable execution, the database is guaranteed to remain in a
consistent state. Serializability requires that concurrent transactions, including read-
only ones, be scheduled in a serializable way. While this strictness of serializability is
necessary for update transactions to maintain database consistency, it may place
unnecessary restriction on processing ROTs. Consequently, this may have a negative
impact on the system performance.

In this paper, we investigate the approach of using separate algorithm for
processing ROTs. The remainder of this paper is organized as follows. In Section 2,
we discuss some related work. Section 3 describes the consistency requirements of
ROTs. Section 4 introduces a separate algorithm for ROTs. In Section 5, an
enhanced algorithm called Group Strong Consistency is proposed for mobile
environment. We present preliminary performance results of Group Strong
Consistency in Section 6. Finally, we conclude our study in Section 7.

2 Related Work

Transaction processing in mobile environment receives a lot of attention in these few
years. Acharya et al proposed the Broadcast Disks [1], [2] (Bdisks) to deliver data in
mobile environment. The basic idea is using the downstream to act as the I/O device
for mobile clients. Server broadcasts the database repeatedly and mobile clients tune-
in to retrieve their data of interest without contacting the server. Bdisks fits the
asymmetric communication well because it uses the downstream efficiently and
preserves the use of upstream bandwidth.

In [3], the authors consider the database to be partitioned into clusters, cluster is
treated as the units of consistency. All data items inside a cluster must be fully
consistent while data items stored in different clusters may allow bounded
inconsistency. Besides, the cluster configuration is dynamic. Clusters may be created
or merged based on different conditions. However, inconsistency may not allow in
some applications. Whenever some clusters are merged, the conflicts between
clusters have to be solved by roll-backing some transactions.

In [4], [5], [6], a number of algorithms is introduced to guarantee correctness of
ROTs in broadcast environment. The multiversion broadcast approach broadcasts a
number of versions for each data item along with the version numbers. For the
conflict-serializability method, both the clients and server have to maintain a copy of

108 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

serialization graph for conflict checking. It incurs high overheads to maintain
serialization graph. The integration of updates into the local copy of the serialization
graph and the cycle detection may be too complicated for certain portable mobile
computers. In the invalidation-only approach, a ROT is aborted if any data item that
has been read by ROT was updated at the server. In [10], a similar protocol
WoundCertifier is suggested and capable to process update transactions. But both
methods lack concurrency.

3 Analysis of Data Inconsistency Perceived by a ROT

3.1 Motivation for Relaxing Serializability

Serializability preserves database consistency. Under serializability, both update
transactions and ROTs are required to serialize with each other on the same
serialization order. If semantic knowledge about transactions is available, it is
possible to devise concurrency control mechanisms that guarantee the consistency of
the database while allowing non-serializable executions of concurrent transactions.
Consider the following example:

Example 3.1
Q1: r(x) r(y) U2: r(x) r(y) w(x) U3: r(y) w(y)
S1: r1(x) r2(x) r2(y) w2(x) c2 r3(y) w3(y) c3 r1(y) c1

Q1 → U2 → U3

Serialization Graph of S1

If conflict-based serialization order is required, it follows that there is a cycle in the
serialization graph of S1. Hence, S1 is not conflict serializable. Since ROT Q1 does not
change the database state, their presence can be ignored as long as database
consistency is the only concern. The remaining update transactions U2, U3 would then
form a serializable schedule and hence database consistency can be preserved in S1.

Although S1 has been proven to preserve database consistency, it may be an
incorrect schedule unless Q1 reads consistent data. Fortunately, this is the case. Since
the derivation of new y that Q1 reads from U3 is independent of the new x written by
U2, the state of the database read by Q1 is identical to that if U2 was removed from S1.
Hence, S1 is a correct (although non-serializable) schedule.

Normally, ROTs and update transactions are processed together with general
concurrency control protocols that ensure conflict serializability. As seen from above,
non-serializable schedules may still be correct. It is not difficult to see that a non-
serializable schedule is still correct if it satisfies both the conditions below:

(i) the concurrent execution of all update transactions (non-ROTs) in a schedule
is serializable, and

(ii) each ROT involved in the schedule does not read inconsistent data.

Using Separate Processing for Read-Only Transactions in Mobile Environment 109

3.2 Data Inconsistency Perceived by a ROT in a Non-serializable Schedule

The following example illustrates a simple scenario in which a ROT reads
inconsistent data.

Example 3.2
Q1: r(x) r(z) U2 : r(x) w(x) U3: r(x) r(y) w(y) U4: r(y) r(z) w(z)
S2 : r1(x) r2(x) w2(x) c2 r3(x) r3(y) w3(y) c3 r4(y) r4 (z) w4 (z) c4 r1(z) c1

Q1 → U2 → U3 → U4

Serialization Graph of S2

In the schedule S2, a ROT Q1 reads a data object x which is subsequently written by
U2. Then, U3 reads the new value of x from U2 and use this new value of x to update
data object y. U4 then reads this new value of y from U3 and use this new value of y to
update another data object z. Finally, Q1 reads the new value of z. Since this new
value of z read by Q1 depends on the new value of x produced by U2, it should be
considered inconsistent with the original value of x read by Q1. Hence, Q1 reads
inconsistent data and S2 is incorrect, despite the database consistency is preserved by
the serial execution of U2, U3 and U4. In order to facilitate the following
investigation, some definitions concerning derivation of data values are given below:

Definition 1: A value y1 of a data object y is said to be derived directly from a value
x1 of another data object x if either of the following conditions hold:
(I) a committed update transaction has performed a read operation r(x1) and

then a write operation w(y1), without updating the value of x, or
(II) a committed update transaction has performed write operations w(x1) and

w(y1) after reading the initial value x0 of the data object x.

Definition 2: A value y1 of a data object y is said to be derived indirectly from a
value x1 of another data object x if both of the following conditions hold:
(I) the value y1 of the data object y is derived directly from some value z1 of

another data object z, and
(II) the value z1 is derived either directly or indirectly from the value x1 of the

object x.

For instance, the value of z written by U4 in Example 3.2 is derived directly from
the value of y written by U3, which in turn is derived directly from the value of x
written by U2. Thus, the value of z written by U4 is derived indirectly from the new
value of x written by U2. Q1 reads inconsistent data because Q1 have already read an
older version of x.

If we assume that the consistency of database is preserved by serializable execution
of update transactions, the following conclusion can be arrived:

110 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

Theorem 1: A read-only transaction Q reads inconsistent data if and only if:
(I) Q has read some data object x whose value is subsequently updated by an

update transaction U, and
(II) Q later reads some data object y whose value is derived, either directly or

indirectly, from the new value of x written by U.

3.3 Data-Passing Graph (DP-graph)

DP-graph is defined in order to help visualizing the formation of inconsistent data
read by a ROT. Each read-only transaction Q is associated with a DP-graph, which is
a directed graph with Q and its dependent update transactions (transactions that may
affect the database state read by Q) as its nodes. Directed edges are added to join two
nodes under either of the following cases:
Case 1: When a transaction (Q or Ui) reads a data object x from an update

transaction (Uj), a directed edge with label x is added from the latter to the former
(i.e. Uj →,

x
 Q or Uj →,

x
 Ui).

Case 2: When a ROT, Q, has read some data object x, and the value of x is
subsequently updated by an update transaction U before Q commits, a directed
edge with label x is added from Q to U (i.e. Q →,

x
 U).

Based on Theorem 1, a read-only transaction Q reads inconsistent data if there is a
cycle in the DP-graph of Q. For example, consider the DP-graph of Q1 in Example
3.2 below:

Q1 →,
x
 U2 →,

x
 U3 →,

y
 U4

(1) the edge Q1 →,
x
 U2 shows that Q1 has read x and the value of x is

subsequently updated by U1 before Q1 commits, and
(2) the path Q1 →,

x
 U2 →,

x
 U3 →,

y
 U4 →,

z
 Q1 shows that Q1 has read a data

object z whose value is derived indirectly from the new value of x written by
U2.

(3) Q1 has read inconsistent data because there is a cycle in the DP-graph.

Based on the above analysis, new algorithms for processing ROTs separately from
update transactions with data consistency preserved can be achieved by designing
algorithms that never allow the formation of cycles in DP-graphs.

4 Separate Algorithm for ROTs

For the sake of exposition, we describe a basic separate algorithm to process a single
ROT only, named the NRS-Algorithm. We adopt the following assumptions:

(a) It is possible to distinguish read-only transactions from update transactions
upon their arrival.

(b) A transaction can read only those values that are written by committed
transactions.

z

Using Separate Processing for Read-Only Transactions in Mobile Environment 111

(c) There are no blind write operations, i.e. every write operation on a data object
must be preceded by a read operation on that data object.

(d) A transaction does not read from or write to the same data object more than
once.

(e) All update transactions are themselves globally serializable, which is
guaranteed by the standard concurrency control protocols.

Since the serializability of update transactions is assumed to be guaranteed, the
following discussion will only examine schedules in which all the update transactions
are executed in a serial manner, just for the sake of simplicity. Moreover, transactions
are assumed to read only those values that are written by committed transactions. It is
thus reasonable as well as convenient to consider ROTs to have their read operations
interleaved between two consecutive update transactions, but not between operations
within an update transaction.

4.1 No-Read-Set of Read-Only Transactions

For each active read-only transaction Q, a No-Read-Set is maintained. We indicate
this set by NRS(Q). During the execution of Q, all those data objects with values that
are found to be inconsistent with those already read by Q are placed into NRS(Q).

Each NRS(Q) of a read-only transaction Q is initialized as φ. After then, NRS(Q)
will be updated in either of the following holds:

Rule 1: An data object x is added to NRS(Q) if Q has read x and subsequently
updated by a committed update transaction U.

Rule 2: If the value of a data object y is derived either directly or indirectly
from value of some data objects that is already in NRS(Q), y is added to NRS(Q).

If the data object x is added to NRS(Q) according to rule 1, it corresponds to a path
Q →,

x
 U in the DP-graph of Q. On the other hand, if the data object y is added to

NRS(Q) according to rule 2, it means that y is inconsistent with the value of x that Q
has read before. It follows that Q should not be allowed to read those data objects
already in NRS(Q), in order to read consistent data. In fact, rule 1 and rule 2
respectively handles case 1 and case 2 described in the previous section.

4.2 The NRS-Algorithm

Let CRS(Q) denote the current read set of a read-only transaction Q, i.e. the set of
data objects that Q has already read at the moment. Let RS(U) and WS(U) be the
read set and write set of an update transaction U respectively. In order to maintain the
data consistency in the view of an active read-only transaction Qa, the following NRS-
Algorithm is implemented.

112 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

 NRS(Qa):= φ ;
do while Qa is active
{
Whenever an update transaction Uc commits, do
{

for each x ∈ WS(Uc)∩CRS(Qa) do
NRS(Qa):= NRS(Qa)∪ {x};

if RS(Uc)∩NRS(Qa) ≠ φ then
for each y ∈ [WS(Uc)\CRS(Qa)] do
NRS(Qa):= NRS(Qa)∪ {y};

}
}

Abort Rule : Qa aborts when it tries to read a data object in NRS(Qa).

The following example illustrates the NRS algorithm.

Example 4.1
Q1: r(x) r(y)
U2: r(x) r(y) w(x) U3 : r(y) w(y)
S3: r1(x) r2(x) r2(y) w2(x) c2 r3(y) w3(y) c3 r1(y) c1

Q1 → U2 → U3 Q1 →,
x
 U2 U3

 Serialization Graph of S3 DP-Graph of Q1

S3 is not serializable because there is a cycle in its serialization graph.
Nevertheless, it is still a correct schedule since the update transactions are executed in
a serial manner and the read-only transaction Q1 does not see any inconsistent data
(DP-Graph of Q1 is acyclic). The development of the NRS of Q1 during the
successful commitments of the update transactions is shown in the following table:

operation NRS(Q1)
r1(x) φ

c2 { x }
c3 { x }

r1(y) { x }
c1 OK

Result: The algorithm allows Q1 commit.
Explanation: When Q1 executes r(x), NRS(Q1) = φ and hence Q1 reads x
successfully. When U2 commits, x is added to NRS(Q1) since x ∈ WS(U2)∩CRS(Q1).
When U3 commits, y is not added to NRS(Q1) in both cases since y ∉ CRS(Q1) and
the only element in NRS(Q1), x, is not read by U3. Consequently, when Q1 executes
r(y), y ∉ NRS(Q1) and hence Q1 reads y successfully and finally it commits.

(Rule 1)

(Rule 2)

y

Using Separate Processing for Read-Only Transactions in Mobile Environment 113

5 Group Strong Consistency

In this section, we consider more than one ROT that perceive the same serialization
order with respect to the update transactions they directly or indirectly read from. In
other words, ROTs need to be serialized with each other as well as the update
transactions. This requirement is termed as Group Strong Consistency. The group
concept is introduced to characterize all ROTs in the same group that meet the strong
consistency requirement. Let us consider the following example.

Example 5.1
Q1 : r(x) r(y) Q2 : r(y) r(z)
U3 : r(x) r(z) w(x) U4 : r(z) w(z) U5 : r(y) w(y) U6 : r(y) w(y)
S5: r1(x) r2(y) r3(x) r3(z) w3(x) c3 r4(z) w4(z) c4 r5(y) w5(y) c5 r6(y) w6(y) c6 r1(y) c1 r2(z)c2

Q1→U3→U4→Q2→U5→ U6 Q1 →,
x
 U3 U5 →,

y
 U6 U4→,

z
Q2→,

y
U5→,

y
U6

 Serialization Graph of S5 DP-Graph of Q1 DP-Graph of Q2

Since the DP-graph of both Q1 and Q2 are acyclic, they do not read any
inconsistent data themselves. However, Q1 and Q2 do not perceive the same
serialization order with respect to the update transactions U3 , U4 , U5 and U6. So, in
case that both Q1 and Q2 belong to the same group while group strong consistency is
required, Q2 should be aborted after Q1 successfully commits.

In order to achieve group strong consistency within a certain group of ROTs, the
DP-graphs have to capture the information about the read-write conflicts between
update transactions. In particular, U4 in the above example should be serialized after
U3 because of the read-write conflict between r3(z) and w4(z). To deal with this
conflict, the following rule is added to the NRS algorithm:

Rule 3: When an update transaction Uc commits, the data objects in the read
set of Uc will be added to the current read set, CRS(Qa), of the active read-only
transaction Qa if (i) Uc updated the value of some data object after Qa has read it,
or (ii) Uc has read some data objects which is already in NRS(Qa).

i.e. if WS(Uc)∩CRS(Qa)≠φ or RS(Uc)∩NRS(Qa)≠φ then
CRS(Qa):= CRS(Qa)∪ RS(Uc);

Rule 3 is a little bit tricky because it adds data objects that are not yet read by Qa to
CRS(Qa). The rationale behind the rule is as follows. When the conditions for rule 3
holds, there must be a path from Qa to Uc in the DP-graph of Qa. In other words, Uc
must be serialized after Qa. Suppose that Uc has read-write conflict with another
update transaction U, i.e. U write a certain x after Uc has read it. In this case, U must
be serialized after Uc and hence it must be also serialized after Qa. So Qa must be
forbidden to read anything from U. If the data objects in RS(Uc) are added to
CRS(Qa) according to rule 3, any of them that is subsequently updated by U will be

y

114 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

placed into NRS(Qa) and hence Qa cannot read the new values of these data objects
from U in a later stage. It must be emphasized that Qa is still allowed to read those
data objects in RS(Uc) as long as they are not updated by another update transaction.

In addition, rule 4 is needed:

Rule 4: Whenever a read-only transaction Q commits, the conflict between Q
and active read-only transaction Qa that belongs to the same group as Q will be
checked. If Q has read some data objects in NRS(Qa) and Qa has read some data
objects in NRS(Q), Qa should be aborted. If Q has read some data objects in
NRS(Qa) only, the data objects in NRS(Q) are inherited to the NRS(Qa).
Moreover, the data objects that Q has read are added to CRS(Qa).

i.e. Whenever a ROT Q of the same group as Qa commits, do
if RS(Q)∩NRS(Qa) ≠ φ then {
if NRS(Q) ∩ RS(Qa) ≠ φ then {
abort Qa;

}
NRS(Qa):= NRS(Qa)∪ NRS(Q);
CRS(Qa):= CRS(Qa)∪ RS(Q);

}

The rule 4 serves to find any cycle when the DP-graph of Q and Qa are combined
together. If Q has read some data objects in NRS(Qa), a path from Qa to Q is found in
the serialization graph. If Q has read some data objects in NRS(Qa) and Qa has read
some data objects in NRS(Q), it means there is a path from Qa to Q and from Q to Qa.
Obviously, there is a cycle in the serialization graph after combining Q and Qa. In this
case, Qa should be aborted.

The NRS-Algorithm for Group Strong Consistency
RS(Qa):= φ ;
do while Qa is active {
Whenever an update transaction Uc commits, do
{

if WS(Uc)∩CRS(Qa)≠φ or RS(Uc)∩NRS(Qa)≠φ then
CRS(Qa):= CRS(Qa)∪ RS(Uc);

for each x ∈ WS(Uc)∩CRS(Qa) do
NRS(Qa):= NRS(Qa)∪ {x};

if RS(Uc)∩NRS(Qa) ≠ φ then
for each y ∈ [WS(Uc)\CRS(Qa)] do
NRS(Qa):= NRS(Qa)∪ {y};

}

(Rule 3)

Using Separate Processing for Read-Only Transactions in Mobile Environment 115

Whenever a ROT Q of same group as Qa commits, do
if RS(Q)∩NRS(Qa) ≠ φ then {
if NRS(Q) ∩ RS(Qa) ≠ φ then {

abort Qa;
}
NRS(Qa):= NRS(Qa)∪ NRS(Q);
CRS(Qa):= CRS(Qa)∪ RS(Q);

}
}

Abort Rule: Qa aborts when it tries to read a data object in NRS(Qa).

Example 5.1 (Cont'd)
Q1: r(x) r(y) Q2: r(y) r(z)
U3: r(x) r(z) w(x) U4: r(z) w(z) U5: r(y) w(y) U6: r(y) w(y)
S5: r1(x) r2(y) r3(x) r3(z) w3(x) c3 r4(z) w4(z) c4 r5(y) w5(y) c5 r6(y) w6(y) c6 r2(z) c2 r1(y)c1

Q1→U3→U4→Q2→U5→U6 Q1 →,
x
 U3 U5 →,

y
 U6 U4→,

z
Q2→,

y
U5→,

y
U6

Serialization Graph of S5 DP-Graph of Q1 DP-Graph of Q2

The following table shows the development of NRS(Q1) and NRS(Q2), using the
algorithm for group strong consistency.

operation NRS(Q1) NRS(Q2)
r1(x) φ φ
r2(y) φ φ

c3 { x } φ
c4 { x, z } φ
c5 { x, z } { y }
c6 { x, z } { y }

r2(z) { x, z } { y }
c2 { x, y, z } OK

r1(y) { x, y, z }
c1 aborts

(Q1 and Q2 belong to the same group.)

Result: Q2 commits but Q1 aborts.
Explanation: When Q1 executes r(x), NRS(Q1) = φ and hence Q1 successfully
reads x. When Q2 executes r(y), NRS(Q2) = φ and Q2 reads y successfully too. When
U3 successfully commits, z is firstly added to CRS(Q1) since WS(U3) ∩ CRS(Q1) ≠ φ
and z ∈ RS(U3). After then, x is added to NRS(Q1) since x ∈ WS(U3) ∩ CRS(Q1).
When U4 commits, z is added to NRS(Q1) since z ∈ WS(U4) ∩ CRS(Q1). Similarly,
when U5 commits, y is added to NRS(Q2) since y ∈ WS(U5) ∩ CRS(Q2). Finally,
when Q2 executes r(z), z ∉ NRS(Q2) and hence Q2 reads z successfully and then

(Rule 4)

y

116 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

commits. Since Q1 and Q2 belongs to the same group and z ∈ RS(Q2) ∩ NRS(Q1), y
∈ NRS(Q2) is inherited to NRS(Q1) when Q2 commits. Consequently, when Q1

executes r(y), y ∈ NRS(Q1) and hence Q1 aborts.

6 Performance Evaluation

The simulation experiments are aimed at studying the performance of our proposed
algorithm, Group Strong Consistency (GS), and the WoundCertifier [10] in broadcast
disk environments. For WoundCertifier (WC), a certification report is broadcasted
periodically. An active transaction is aborted if the readset is overlapped with
certification report�s writeset. When a transaction is ready to commit, client sends a
request-to-commit message to the server and the server validates the request with
other committed transactions.

We choose WC for comparison because it performs partial validation check at
client side. This is a favorable feature for mobile transaction since the mobile client
can detect the data conflict without consulting the server. We believe that the
comparison is fair as both algorithms have the ability to detect data conflict in the
early stage at the client side. We do not consider the effects of caching in the
performance study. In other words, a ROT may have to wait for the requested data
object in the next broadcast cycle if the data object is missed (broadcast) in the current
broadcast cycle.

The performance of these algorithms is compared by miss rate, which is the
percentage of transactions missing their deadline. Other performance metrics
including restart rate, response time and throughput are also collected. In order to
have a better understanding on the efficiency of the algorithms, we collect local-
restart rate which is the percentage of transaction restarts caused by partial validation
checking at mobile clients.

6.1 Experimental Setup

The simulation model consists of a server, 300 mobile clients and a broadcast disk for
transmitting both the data objects and the required control information. It is
implemented using the simulation tool OPNET [16]. These 300 mobile clients are
assumed belonging to the same group. The mobile clients only process ROTs while
the server processes update transactions as well. For mobile clients, the transactions
are submitted one after another. After a transaction has committed, there is an inter-
transaction delay before next transaction is submitted.

We consider a soft real-time database system in broadcast environments where a
ROT is processed until it is committed even though the deadline is missed. The
deadline of a ROT is assigned to be (current time + slack factor × predicted execution
time) where predicted execution time is a function of transaction length, mean inter-
operation delay and broadcast cycle length. The data objects accessed by a transaction
are uniformly distributed in the database containing 300 data objects. A relatively
small database size is used to model the hotspot effect of a real database system. It
helps to intensify data conflicts between transactions at server and mobile clients.

Using Separate Processing for Read-Only Transactions in Mobile Environment 117

A range of server transaction arrival rate is used to simulate different level of
server loading. Thus, we can study the performance of the algorithms under different
degree of data contention. The server transaction arrival rate is the number of server
transaction issued per bit-time at the server. For example, 4e-6 means 1 server
transaction per 250,000 bit-times. Table 1 lists the baseline setting for the simulation
experiments. The time unit is in bit-time, the time to transmit a single bit. For a
broadcast bandwidth of 64Kbps, 1 M bit-times is equivalent to approximately 15
seconds and the mean inter-operation delay and the mean inter-transaction delay is 1
second and 2 seconds respectively.

Table 1. Baseline Setting

Parameter Value
Mobile Clients

Number of Mobile Client 300
Transaction Length
 (Number of read operations)

6

Mean Inter-Operation Delay 65,536 bit times
(exponentially distributed)

Mean Inter-Transaction Delay 131,072 bit times
(exponentially distributed)

Slack Factor 2.0 � 8.0 (uniformly distributed)
Concurrency Control Protocol Group Strong Consistency

Server
Number of Server 1
Transaction Length
(Number of operations)

8

Write Operation Probability 0.6
Number of Data Objects in Database 300
Size of Data Objects 8,000 bits
Concurrency Control Protocol Optimistic Concurrency Control with

Forward Validation
Priority Scheduling Earliest Deadline First

6.2 Performance Results

Figure 1 gives the miss rate of ROTs issued by mobile clients when the server
transaction arrival rate varies. The figure indicates that the miss rate of both
algorithms increases when the server transaction arrival rate increases. It also shows
that the performance of GS is comparatively better than WC. Although WC is able to
detect data conflict in the read phase, the validation algorithm does not allow high
degree of concurrency. The mobile transactions suffer from excessive restart when
there is a high server loading. It can be observed that GS improves the system
performance more than WC. The separate algorithm for ROTs allows higher degree
of concurrency than WC. In other words, GS allows some transaction schedules
which cannot be produced by WC.

118 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

Figure 2 gives the restart rate of the transactions. It can help to investigate the
effectiveness of the algorithms. Despite both algorithms perform similar in light
server loading, we note that WC is sensitive to the server transaction arrival rate. The
performance of WC drops sharply when the server is in high loading. Since WC aims
to detect data conflicts by comparing with the certification report, it will restart the
transaction if any possible data conflict is detected. In case of GC, a ROT will not be
restarted as far as the data read by the ROT are consistent. Thus, GS can avoid some
unnecessary restarts and accept more schedules than WC.

A similar trend is observed in response time (Figure 3). The response time of WC
increases relatively more sharply when the server transaction arrival rate increases. It
can be easily noted that when the number of restart is high, there will be a longer
response time. Even if WC is able to detect data conflicts and restart transactions
locally, it does not help to improve the response time due to the high number of
restart. Conflict resolution appears to be more efficient in GS, a better performance is
observed under different server transaction arrival rate. The response time of both
algorithms is consistent with the number of restart.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6

Server Tx Arrival Rate (1e-6)

M
is

s
R

at
e

Group Strong
WoundCertifier

0%

200%

400%

600%

800%

1000%

1200%

0 1 2 3 4 5 6

Server Tx Arrival Rate (1e-6)

R
es

ta
rt

 R
at

e

Group Strong
WoundCertifier

Figure 1: Miss Rate Figure 2: Restart Rate

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

7.0E+07

0 1 2 3 4 5 6

Server Tx Arrival Rate (1e-6)

R
es

po
ns

e
Ti

m
e

Group Strong
WoundCertifier

0

100

200

300

400

500

600

0 1 2 3 4 5 6

Server Tx Arrival Rate (1e-6)

Th
ro

ug
hp

ut

Group Strong
WoundCertifier

Figure 3: Response Time Figure 4: Throughput

Figure 4 gives the throughput of the algorithms. GS consistently performs better
than WC. It can be explained in three ways. Firstly, both algorithms use the same
amount of time to read data objects. The major factor is the efficiency of algorithm in
resolving data conflict. From the view of restart rate, GS gets a lower restart rate than
WC. A lower restart rate results in using shorter time to process a successfully-

Using Separate Processing for Read-Only Transactions in Mobile Environment 119

committed transaction. It is easily to reason that GS has a higher throughput than WC.
Secondly, the restart rate of WC increases sharply when the arrival rate of server
transaction is high. It is reasonable to notice that the throughput of WC drops more
deeply than GS. On the contrary, the restart rate of GS is increased proportionally
with the server transaction arrival rate. Thus, the throughput of GS drops
proportionally. The final factor is ability to detect irresolvable conflict as soon as
possible. We will explain with the aid of local-restart rate.

The local-restart rate is used to measure the ability of the algorithms to detect data
conflicts at the mobile client and restart the transaction locally. We believe that it is a
favorable feature of mobile client in transaction performance. Since a late restart will
prolong a transaction lifetime, it is better to detect data conflicts at client side and
restart immediately. Thus, a high rate of local-restart is preferred when processing
mobile transactions. Figure 5 records the percentage of restart happened at mobile
client out of total number of restart. The general trend of GS shows a better
performance than WC. GS almost detects all data conflicts at the client side. WC
indicates a notable gain when the server loading is increased. However, it does not
mean that it will have a great performance gain since WC suffers from excessive
restart in high rate of data conflict. On the whole, GS performs better than WC.

Finally, we show the throughput of GS and WC with different mobile transaction
lengths in Figure 6. It can be observed that the performance difference between the
two algorithms decreases as mobile transaction length increases. It implies that it is
less likely for a long ROT to read consistent data. On the whole, the results of this
series of simulation experiments show that GC outperforms WC under different
server loadings and transaction lengths.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

Server Tx Arrival Rate (1e-6)

Lo
ca

l-r
es

ta
rt

 R
at

e

Group Strong
WoundCertifier

0

200

400

600

800

1000

0 1 2 3 4 5 6
Server Tx arrival Rate (1e-6)

Th
ro

ug
ht

pu
t

GS (MT=4)
WC (MT=4)
GS (MT=6)
WC (MT=6)
GS (MT=8)
WC (MT=8)

Figure 5: Local-restart Rate Figure 6: Effect of Mobile Transaction Length

7 Conclusion

In this paper, we discuss the issues of transaction processing in mobile environment.
We examine the conditions which a read-only transaction (ROT) reads inconsistent
data. Data-passing graph is devised as a tool to check whether a ROT has read
inconsistent data. We first suggest NRS-algorithm to process ROT separate from the
update transactions and prevent ROT from reading inconsistent data by maintaining
the No-Read-Set at the client. Second, Group Strong Consistency is proposed to

120 Eddie Y.M. Chan, Victor C.S. Lee, and Kwok-Wa Lam

restrict ROTs within a group to perceive the same serialization order of update
transactions, as required by the serializability. Partial validation is performed at the
client side to detect data conflicts at an early stage and restart the transaction locally.

In our simulation experiments, a significant performance improvement of Group
Strong Consistency is showed when comparing with WoundCertifier. Besides, we
investigate the advantages of applying partial validation at the mobile client. It can be
concluded that using separate processing for ROTs is a viable approach to transaction
processing in Bdisk environment. Thus, the system can scale up with more clients
without weakening the performance.

References

1. S. Acharya, R. Alonso, M. Franklin and S. Zdonik, �Broadcast Disks: Data
Management for Asymmetric Communications Environments�, Proceedings of the
ACM SIGMOD Conference, California, pp. 199-210, May 1995.

2. S. Acharya, M. Franklin and S. Zdonik, �Disseminating Updates on Broadcast
Disks�, Proceedings of 22nd VLDB Conference, Mumbai(Bombay), India, pp. 354-
365, 1996.

3. E. Pitoura, B. Bhargava, �Maintaining Consistency of Data in Mobile Distributed
Environments�, Proceedings of the 15 th International Conference on Distributing
Computer System, Vancouver, British Columbia, Canada, pp. 404-413, 1995.

4. E. Pitoura, �Supporting Read-Only Transactions in Wireless Broadcasting�,
Proceedings of the DEXA98 International Wordshop on Mobility in Databases and
Distributed Systems, pp. 428-433, 1998.

5. E. Pitoura, �Scalable Invalidation-Based Processing of Queries in Broadcast Push
Delivery�, Proceedings of the Mobile Data Access Workshop, in coopeation with the
17th International Conference on Conceptual Modeling, pp. 230-241, 1999.

6. E. Pitoura, and P. K. Chrysanthis, �Scalable Processing of Read-Only Transactions in
Broadcast Push,� Proceedings of the 19th IEEE International Conference on
Distributed Computing System, pp. 432-439, 1999.

7. P.A. Bernstein, V. Hadzilacos, N. Goodman, �Concurrency Control and Recovery in
Database Systems�, Addison-Wesley, Reading, Massachusetts.

8. D. Barbara, �Mobile Computing and Databases � A Survey�, IEEE Transactions on
Knowledge and Data Engineering, Vol. 11, No. 1, pp. 108-117, 1999.

9. M.S. Chen, P.S. Yu, K.L. Wu, �Indexed Sequential Data Broadcasting in Wireless
Mobile Computing�, 17th International Conference on Distributed Computing
Systems, pp. 124-131, 1997.

10. D. Barbara, �Certification Reports: Supporting Transactions in Wireless Systems�,
Proc. 17th International Conference on Distributed Computing Systems, Baltimore,
pp. 466-473, May 1997.

11. J. R. Haritsa, M. J. Carey, M. Livny, �Data Access Scheduling in Firm Real-time
System�, Real-Time Systems, Vol. 4, No. 3, pp. 203-241, 1992.

12. J. Huang, J. A. Stankovic, K. Ramamritham, D. Towley, �Experimental Evaluation of
Real-Time Optimistic Concurrency Control Schemes�, Proceedings of the 17th

International Conference on Very Large Data Bases, pp. 35-46,1991.
13. M. Franklin, S. Zdonik, �Dissemination-Based Information Systems�, IEEE Data

Engineering Bulletin, Vol.19, No.3, pp.: 20-30, September, 1996.
14. M. Franklin, �Concurrency Control and Recovery�, Handbook of Computer Science

and Engineering, A. Tucker, ed., CRC Press, Boca Raton, 1997.

Using Separate Processing for Read-Only Transactions in Mobile Environment 121

15. H. T. Kung, John T. Robinson, �On Optimistic Methods for Concurrency Control�,
ACM Transactions on Database System, Vol. 6, No. 2, pp. 213-226, June 1981.

16. OPNET Modeler / Radio 6.0 (c), MIL3, Inc., 1987-1999.
17. H. Garcia-Molina, G. Wiederhold, �Read-only transactions in a distributed database�,

ACM Transactions on Database Systems, Vol. 7, No. 2, pp. 209-234, June 1982.

	1	Introduction
	2	Related Work
	3	Analysis of Data Inconsistency Perceived by a ROT
	3.1	Motivation for Relaxing Serializability
	3.2	Data Inconsistency Perceived by a ROT in a Non-serializable Schedule
	3.3	Data-Passing Graph (DP-graph)
	4	Separate Algorithm for ROTs
	4.1	No-Read-Set of Read-Only Transactions
	4.2	The NRS-Algorithm
	5 	Group Strong Consistency
	6	Performance Evaluation
	6.1	Experimental Setup
	6.2	Performance Results
	7	Conclusion
	References

