
Correct Execution of Transactions at
Different Isolation Levels

Shiyong Lu, Member, IEEE, Arthur Bernstein, Fellow, IEEE, and Philip Lewis, Fellow, IEEE

Abstract—Many transaction processing applications execute at isolation levels lower than SERIALIZABLE in order to increase

throughput and reduce response time. However, the resulting schedules might not be serializable and, hence, not necessarily

correct. The semantics of a particular application determines whether that application will run correctly at a lower level and, in

practice, it appears that many applications do. The decision to choose an isolation level at which to run an application and the

analysis of the correctness of the resulting execution is usually done informally. In this paper, we develop a formal technique to

analyze and reason about the correctness of the execution of an application at isolation levels other than SERIALIZABLE. We use a

new notion of correctness, semantic correctness, a criterion weaker than serializability, to investigate correctness. In particular, for

each isolation level, we prove a condition under which the execution of transactions at that level will be semantically correct. In

addition to the ANSI/ISO isolation levels of READ UNCOMMITTED, READ COMMITTED, and REPEATABLE READ, we also prove

a condition for correct execution at the READ-COMMITTED with first-committer-wins and at SNAPSHOT isolation. We assume that

different transactions in the same application can be executing at different levels, but that each transaction is executing at least at

READ UNCOMMITTED.

Index Terms—Isolation levels, correctness, serializability, transactions.
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1 INTRODUCTION

SERIALIZABILITY has been widely accepted as the correct-
ness criterion for concurrently executing transactions. Its

implementation is generally based on a strict two-phase
locking mechanism [12], [8], in which a transaction holds
the locks it has acquired until it terminates. Unfortunately,
this implies that locks might be held for long periods of
time, causing performance to suffer, particularly in applica-
tions having long-running transactions and/or data hot-
spots. To support the trade off between correctness and
performance, the notion of isolation levels was first
introduced in [13] under the name of Degrees of Consistency,
and then defined in the ANSI/ISO SQL-92 standard [1].
Currently, most commercial DBMSs support isolation levels
other than SERIALIZABLE.

Unfortunately, executing transactions at isolation levels
lower than SERIALIZABLE might result in schedules that
are not serializable and, hence, not necessarily correct. The
semantics of a particular application determines whether
that application will run correctly at a lower level and, in
practice, it appears that many applications do. The choice of
an isolation level at which to run an application and the
analysis of the correctness of the resulting schedules is
usually done informally. The development of a formal
technique for analyzing execution at different isolation
levels will have both theoretical and practical impact.

Since the execution of an application at an isolation level
other thanSERIALIZABLEmightbe correct, the conventional

correctness criterion, serializability, is too strong. In this
paper, we use a correctness criterion proposed in [9], [5] and
further developed in [6], called semantic correctness, to
investigate correctness. The semantic correctness of a
schedule resulting from the concurrent execution of a set of
transactions requires that the schedulehave the same semantic
effect as a serial schedule of the same set of transactions. The
semantic correctness condition for a transaction schedule is
based on the conditions developed in [17] for the correct
execution of an arbitrary concurrent program.

In this paper, we assume that the locking algorithm
described in [3] is used to implement different isolation levels
and we analyze the pattern of interleavings that results. For
each isolation level, we prove a condition under which
schedules will be semantically correct. In addition to the
ANSI/ISO isolation levels [1] of READ UNCOMMITTED,
READ COMMITTED, and REPEATABLE READ, we also
prove a correctness condition for READ-COMMITTED with
first-committer-wins and at SNAPSHOT isolation. We
assume that different transactions of an application can be
executing at different isolation levels, but that each transac-
tion is executing at least at READ UNCOMMITTED. The
main contributions of this paper are:

. We prove a correctness condition for both page
databases (this will be defined later) and relational
databases for each isolation level.

. We provide an algorithm to determine the lowest
isolation level at which the execution of each transac-
tionof anapplicationwill be semantically correct. This
algorithm maximizes the performance of running an
application without sacrificing correctness.

. While all possible interleavings need to be consid-
ered for analyzing correctness of a concurrent
program [17], our results show that only a few
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noninterference checks are necessary. This greatly
reduces the amount of analysis work.

. The conditionswe identify provide a formal basis that
underlies the informal reasoning that justifies the use
of isolation levels other than SERIALIZABLE.

This paper extends the result presented in [10] with
complete proofs of the theorems for relational databases
and with an axiomatization of SQL statements that forms
the basis of these proofs. The theorems for page databases
are stated without proofs, and readers interested in the
proofs are referred to [10]. The rest of the paper is
organized as follows: Section 2 presents an overview of the
semantic-correctness theory. Section 3 identifies semantic
correctness conditions for each isolation level for page
databases. Section 4 identifies their counterparts for
relational databases. Based on these conditions, Section 5
presents an algorithm to determine the lowest isolation
level for each transaction of a particular application.
Section 6 describes a customer order example to illustrate
the analysis. Finally, Section 7 concludes the paper and
points out some future work.

2 SEMANTIC CORRECTNESS

The notion of isolation levels was introduced to improve the
performance of transaction processing. In general, the lower
the isolation level, the better the performance. However, the
correctness of schedules produced at isolation levels lower
than SERIALIZABLE is not ensured. For example, READ
COMMITTED is subject to lost update, write skew, and
phantom anomalies. A detailed description of the anomalies
to which each isolation level is subject is presented in [3]. The
goal of this research is to develop correctness conditions for
each isolation level. We assume that the locking algorithm
proposed in [3] is used to implement isolation levels. For
convenience, we summarize this in Fig. 1, in which a long-
term lockwill be held until the owner transaction terminates,
and a short-term lock will be released immediately when an
operation completes.

We use Hoare logic [8] to reason about correctness. Well-
formed formulas are called triples and have the form:
fPg S fQg, where P and Q are well-formed formulas of
predicate logic [15], which we refer to as preconditions and
postconditions, respectively, or assertions, generally, and S is
a syntactically correct statement or sequence of statements
in some imperative programming language. A triple has the
following partial correctness semantics.

Definition 1 (Partial correctness). fPg S fQg is valid if and
only if, whenever S starts execution from a state satisfying P
and execution terminates, the resulting state satisfies Q.

Hoare logic is an extension of predicate logic in that any
well-formed formula in predicate logic is also a well-formed
formula in Hoare logic. In addition to the axioms and
inference rules of predicate logic, Hoare logic includes
axioms and inference rules related to the data types and the
program constructs of a programming language. These
axioms and inference rules form the proof system of Hoare
logic. Readers are referred to [8], [15] for a detailed
description. Although Hoare logic is sound, it is incomplete
[2]. Cook circumvented the incompleteness problem by
defining the notion of relative completeness [11]. A descrip-
tion of the expressiveness and completeness of Hoare logic
can be found in [4].

Using Hoare logic, we describe the semantics of a
transaction Ti by a triple as follows:

fIi ^Bi ^ ðxi ¼ X iÞg Ti fIi ^Qig: ð1Þ

I is the consistency constraint of the database, and Ii
represents those conjuncts of I required to guarantee that
I is preserved by the execution of Ti and that Ti produces its
intended result, Qi (described below). We assume that
I �

Vn
i¼1 Ii, where n is the number of transactions types in

the system (i.e., each conjunct of I is required by at least one
transaction type). For example, suppose a banking system
has two transaction types: T1 withdraws cash from a
savings account and T2 withdraws cash from a checking
account. The consistency constraint I might assert that both
savings and checking accounts have nonnegative balances.
However, T1 only requires that the balance of a savings
account is nonnegative (specified by I1), and T2 only
requires that the balance of a checking account is
nonnegative (specified by I2). Ii is a postcondition of Ti

since we require that any conjunct of I that is made false
during the execution of Ti is returned to the true state when
Ti terminates. Bi describes all conditions that Ti assumes to
be true of the arguments passed to it. For example, if Ti is a
deposit transaction and dep is the parameter representing
the money to be deposited, then Bi might assert dep � 0.

Qi is called the result and asserts that Ti has performed its
intended function. Continuing the above example, if Ti

deposits dep dollars into an account whose balance is bal,
we need to assert as a postcondition of Ti that the final
balance is dep more than the initial balance. In order to refer
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to the initial balance in the postcondition, we introduce a
logical variable, X i, whose sole purpose is to record the
initial value of a database variable, xi. X i is not referenced
by Ti. In the example, we characterize Ti with the following
triple:

fbal >¼ 0 ^ dep � 0 ^ bal ¼ BALg Ti

fbal >¼ 0 ^ bal ¼ BALþ depg:

Equation (1) goes beyond the requirement that a
transaction maintains the consistency of the database by
asserting that not only must Ti move the database from one
consistent state to another, but that only a subset of the
consistent states are acceptable when the transaction
terminates. Equation (1) can be regarded as a formal
restatement of the specification of Ti. We can demonstrate
that Ti is correct by proving that (1) is a theorem using
Hoare logic.

To overcome the limit of serializability and to increase
performance, in [5], we propose a new correctness criterion,
called semantic correctness. We assume that the execution of
each statement of a transaction is atomic and isolated. A
schedule, Sch, of transactions is semantically correct if

fIg Sch fI ^QSchg ð2Þ

is true. A semantically correct schedule must maintain the
consistency of the database, as indicated by the fact that I is
a pre and postcondition of Sch. A semantically correct
schedule must also transform the database to a state that
reflects the cumulative results of all the transactions in Sch.
We denote the assertion that describes that set of states by
QSch, the cumulative result. The relationship between QSch

and the results, Qi, of the individual transactions is
described in [6]. In essence, Sch is semantically correct if
its postcondition is the same as the postcondition of a serial
schedule of the same set of transactions, where the serial
order is the order of transaction completion in Sch. For
example, if Sch consists of several deposit transactions on
some bank account, QSch might assert that the final balance
is greater than the initial balance by an amount equal to the
sum of the deposits. We will state a sufficient condition that
guarantees the semantic correctness of schedules in
Theorem 1, which forms the basis of the results presented
in this paper. Readers are not required to understand the
notion of cumulative result, but are referred to [6] if they are
interested.

As illustrated in [5], semantic correctness is weaker than
serializability, and it allows schedules that result in states
that could not have been reached in any serial schedule. For
example, a stock trading application might have a buy
transaction type that takes as parameters the identity of a
stock and the number of shares, n, to be purchased and a
result that states “when each share was purchased no
cheaper unbought shares of the stock existed in the
database.” In a semantically correct schedule, two con-
current transactions, T1 and T2, could each buy some shares
at $30 and some at $31 per share, even though initially there
are n shares available at $30. First, T1 buys n=2 shares at $30;
then, T2 buys n=2 shares at $30; then, since there are no
more shares available at $30, T1 buys n=2 shares at $31; and,
finally, T2 buys n=2 shares at $31. When each transaction

terminates, its result is true since, when each share was
bought, no cheaper unbought shares existed in the
database. The final state could not have been produced by
a serializable schedule since the purchase price of all shares
bought by one or the other of the two transactions would
have been $30. Since the set of semantically correct
schedules properly includes the set of serializable sche-
dules, a concurrency control that enforces semantic correct-
ness can perform significantly better than one that enforces
serializability [7].

A proof of (1) can be abbreviated by an annotated
program in which each statement Si;j of Ti is preceded by its
precondition Pi;j that describes the state of the system at the
time Si;j is eligible for execution, and succeeded by its
postcondition Pi;jþ1 that describes the state of the system
when the execution of Si;j terminates. Hence, assertions are
associated with control points and we say that an assertion
and its corresponding control point are active if the
following statement is eligible for execution. In this paper,
we assume transactions are executed in an interleaved
fashion, and each statement of a transaction is executed as
an isolated and atomic unit. A sufficient condition to
guarantee the correctness of the concurrent execution of a
set of transactions is that proofs of the transactions can be
found such that for each pair of transactions in the set, Ti

and Tk, the triple

fPi;j ^ Pk;lg Sk;l fPi;jg ð3Þ

is a theorem for each assertion Pi;j of Ti and each statement
Sk;l of Tk [17]. In this case, we will say that the proofs do not
interfere and, more particularly, (3) asserts that Sk;l does not
interfere with Pi;j. The notion of interference is given below.

Definition 2 (Interference). LetPi;j beanassertion in theproof of
Ti andSk;l be a statement characterized byfPk;lg Sk;l fPk;lþ1g in
the proof of Tk. If fPi;j ^ Pk;lg Sk;l fPi;jg is a theorem, then Sk;l

does not interferewithPi;j; otherwise,Sk;l interfereswithPi;j.

If Sk;l interferes with Pi;j, the execution of Sk;l from a state
satisfying Pi;j and Pk;l might make Pi;j false (the execution
will not necessarily make Pi;j false as explained later). If the
execution makes Pi;j false, then we say that the execution of
Sk;l invalidates Pi;j. Then, the subsequent behavior of Ti is
unpredictable and semantic correctness is not guaranteed.
We define the notion of invalidation formally as follows:

Definition 3 (Invalidation). LetPi;j beanassertion intheproofof
Ti, and Sk;l be a statement characterized by fPk;lg Sk;l fPk;lþ1g
in the proof ofTk. IfSk;l is executed froma state satisfyingPi;j and
Pk;l, and the resulting state does not satisfy Pi;j, then the
execution of Sk;l has invalidated Pi;j.

The following example illustrates the notions of inter-
ference and invalidation.

Example 1. Consider the triple fx ¼ Xg x :¼ xþ 1 fx ¼
X þ 1g characterizing the statement Sk;l in the proof of
transaction Tk. Sk;l interferes with assertion x ¼ y in the
proof of Ti, but not with assertion x > y; during
execution, x :¼ xþ 1 will invalidate x ¼ y, but not x > y.

However, interference does not necessarily lead to in-
validation. For example, the locking scheme that implements
a particular isolation level might prevent interleavings that
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lead to invalidation. The resulting schedules will be semanti-
cally correct despite the presence of interference. As another
example, suppose the proof of Ti is replaced by another proof
in which Pi;j is replaced by a stronger assertion P 0

i;j such that
P 0
i;j ) Pi;j. Let Sk;l be a statement characterized by

fPk;lg Sk;l fPk;lþ1g in the proof of transaction Tk. Suppose
Sk;l interfere with Pi;j, but not with P 0

i;j. Then, executing Sk;l

froma state that satisfiesP 0
i;j (and, thus, alsoPi;j) andPk;l does

not invalidate P 0
i;j and, therefore, does not invalidate Pi;j.

Hence, condition (3) is too strong for semantic correctness. In
[6], a weaker condition is identified to ensure the semantic
correctness of schedules. We state it in Theorem 1 after we
introduce the notion of semantic correctness of transaction
execution.

Definition 4 (Semantic correctness of transaction execu-

tion). The execution of a particular transaction, Ti, is
semantically correct in schedule Sch if 1) Pi;j is true when
Si;j is executed and 2)Qi is not invalidated by any statement of
other transactions interleaved in Sch with Ti.

Theorem 1. A schedule Sch is semantically correct if the
execution of each transaction Ti in Sch is semantically correct.

Proof. See [6]. tu

While (3) requires the proof of a significant number of
triples of the form (3), the intuition that “the locking scheme
that implements a particular isolation level might prevent
some interleavings that lead to invalidation” motivates us
to develop correctness conditions that only require the
proof of a small number of critical triples. We prove that, if
these triples are demonstrated to be theorems, then no
invalidation will occur and, according to Theorem 1, the
resulting schedule will be semantically correct. A major
goal of this research is to determine, for each isolation level,
which triples must be checked. This dramatically reduces
the amount of analysis. For example, for SNAPSHOT,
isolation only K2 triples must be checked in a system of K
transactions types, regardless of the number of operations
per transaction.

3 SEMANTIC CONDITIONS FOR PAGE DATABASES

In this section, we present conditions which, for each
isolation level, enumerate the noninterference theorems that
must be demonstrated in order to ensure semantic correct-
ness. We consider a mixed system in which different
transactions can be executing at different isolation levels,
but that each transaction is executing at least at the READ
UNCOMMITTED level. SNAPSHOT isolation is not con-
sidered as part of the mixed system and is addressed
separately since we assume it does not use a locking
scheme. We first consider page databases and then
relational databases. In page databases, no database items
are deleted or inserted, and each item is referred to by name
in read or write statements. In relational databases,
predicates are used in SQL statements to specify the
database items they access.

In page databases, a transaction program accesses local
variables (in its workspace) and database variables using
the following constructs:

. Assignment statement. There are three kinds of
assignment statements: a read statement, which
atomically assigns the value of a database item to a
local variable; a write statement, which atomically
assigns the value of a local variable to a database
item; and a local assignment statement, which does
not involve any database items.

. Conditional statement. We assume that the condi-
tion is constructed from local variables.

. Loop statement. We assume that the condition is
constructed from local variables.

Local variables will be denoted X; Y and database
variables will be denoted x; y. We use the notation
spðP; Si;kÞ to denote the strongest postcondition of Si;k that
can be asserted when it is executed starting in a state that
satisfies P . We assume that the locking protocols given in
[3] are used to implement all isolation levels.

A write block of a transaction Tj is a segment of code of Tj

which contains at least one write statement. Thus, any
single write statement in Tj is a write block of Tj, and Tj is a
write block of Tj if it contains at least one write statement.

3.1 Semantic Condition for READ UNCOMMITTED

The locking implementation for READ UNCOMMITTED
[3] requires that transactions obtain long-term write locks
on items that they write,1 but no read locks are acquired on
items that they read. Long term locks are held until the
transaction completes. The following theorem states a
condition under which a transaction will execute correctly
at READ UNCOMMITTED.

Theorem 2. The execution of a transaction Ti at READ
UNCOMMITTED will be semantically correct if each write
statement (including those that rollback a transaction) in every
transaction does not interfere with Ii, the postcondition of
every read statement in Ti, and Qi.

Proof. See [10]. tu

The first thing to note is that only a write statement that
modifies a database item in one transaction can interfere
with an assertion in another. Intuitively, we need to worry
about the postcondition of a read statement since the
postcondition might assert something about the database
stronger than its precondition. We do not need to worry
about the postcondition of a local assignment statement
since the statement does not involve any database item and,
thus, the postcondition cannot assert something about the
database stronger than its precondition. Also, we do not
need to worry about the postcondition of a write statement
x :¼ X since the strongest thing we can say about x is
x ¼ X. As a long-term write lock will be held on x, this
assertion cannot be invalided by the execution of any other
concurrent transaction. Finally, since a transaction execut-
ing at READ UNCOMMITTED can read uncommitted data,
it is necessary to consider the interference caused by write
statements that rollback any transaction.

Example 2. Suppose there are n customers, each of whom
has multiple valid email addresses. Here, we say an
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email address is valid if it is indeed for the corresponding
customer. The primary email address of each customer is
registered in array cust½n�. Two transaction types access
the array: The Email List transaction type scans the
array and prints out an email mailing list; the
Update Email transaction type changes an existing valid
email address to another valid email address.

. I1 is an integrity constraint of the database
required for the correct execution of Email List
and it asserts “each email address in cust½n� is
valid.”

. Email List has n read statements in the form of
Ej :¼ cust½j� (j ¼ 1; � � � ; n), where Ej is a local
variable; each statement has a postcondition P1;j

that asserts “Ej is a valid email address.”
. Q1 is the postcondition of Email List that asserts

“the n printed email addresses are valid.”

It is obvious that the write statement of Update Email,
as well as the abort of Update Email, does not interfere
with I1, P1;j (j ¼ 1; � � � ; n), and Q1, respectively. Hence,
Email List can run at READ UNCOMMITTED with
semantic correctness ensured.

3.2 Semantic Condition for READ COMMITTED

The locking implementation of READ COMMITTED [3]
requires that transactions obtain long-term write locks on
items that they write and short-term read locks on items
that they read. A short-term lock is released when the
operation completes. The following theorem states a
condition under which a transaction will execute correctly
at READ COMMITTED.

Theorem 3. The execution of a transaction Ti at READ
COMMITTED will be semantically correct if each transaction
Tj (including those that rollback a transaction) does not
interfere with the postcondition of every read statement in Ti,
and with Qi.

Proof. See [10]. tu

In contrast to Theorem 2 in which each write statement
of a transaction is considered individually, here we consider
an entire transaction as a single isolated unit. The intuition
is that, since each transaction Tj is executed at READ
UNCOMMITTED or a higher isolation level, Tj will hold a
long term write lock on any item it writes. Since, at READ
COMMITTED, Ti uses short term read locks, Ti cannot read
any item written by Tj until Tj terminates. Thus, each read
statement of Ti will not see any intermediate result of Tj and
the whole transaction Tj can be considered as a single
isolated unit to reason about its interference to Ti.

Example 3. Suppose the database contain an array emp,
with one record for each employee. emp½i�:rate is the
ith employee’s hourly rate, emp½i�:num hrs is the
number of hours that the employee has worked so
far this week, and emp½i�:sal is that employee’s
accumulated salary for the week. A conjunct of the
integrity constraint, Isal, asserts that, for all records in
emp, “emp½i�:rate � emp½i�:num hrs ¼ emp½i�:sal.”

The granularity of locking is at the level of records. An
instance of transaction typeHours is executed at the endof

each workday to record the number of hours worked by
the ith employee that day. It executes one write statement
to increment emp½i�:num hrs and another to update the
accumulated salary. Hence, although the two write
statements together preserve Isal, individually they do
not. A second transaction type, Print Records causes the
records to be printed. Its specification requires that each
printed record be a consistent snapshot of that employee’s
information at the time the record is printed. Since each
individual write statement of Hours interferes with Isal,
the conditions of Theorem 2 are violated. Therefore, the
correctness of the execution of Print Record at READ
UNCOMMITTED cannot be ensured.

However, since transaction Hours, as a whole isolated
unit, does not interfere with the postcondition of read
statement of Print Record, and with the postcondition of
Print Record, the conditions of Theorem 3 are satisfied.
Hence, the execution of Print Record at READ COM-
MITTED will be semantically correct.

3.3 Semantic Condition for READ COMMITTED with
First-Committer-Wins

The READ COMMITTED with first-committer-wins isolation

level is an extension of READ COMMITTED with one

feature from SNAPSHOT isolation. Transactions obtain

long-term write locks on items that they write and short-

term read locks on items that they read. In addition, if T1

writes a data item and commits between the times that T2

has read and attempts to write the item, T2 will be aborted

(first-committer-wins). READ COMMITTED with first-

committer-wins is easily and often implemented in rela-

tional databases by running an application at READ

COMMITTED and ensuring that whenever a database item

x is updated, a sequence number snðxÞ that is associated

with x is incremented. An update statement that updates x

will read snðxÞ to determine whether the value of x has

changed since it was read. This isolation level is also

supported by a number of vendors. Some vendors call this

level READ COMMITTED with optimistic reads.

Theorem 4. The execution of a transaction, Ti, at READ

COMMITTED with first-committer-wins will be semantically

correct if each transaction does not interfere with the

postconditions of those read statements in Ti that are not

followed by a write statement on the same item, and with Qi.

Proof. See [10]. tu

Note that READ COMMITTED with first-committer-

wins effectively holds a read lock on an item that it reads,

then subsequently writes for the time period between the

execution of the read statement and the execution of the

write statement and, henceforth, a long-term write lock.
Also note that, if transaction Ti writes all the data items it

reads, then when Ti commits, it has effectively held long-

term read locks on those items and, hence, in this case,

READ COMMITTED with first-committer-wins is equiva-

lent to REPEATABLE READ. We give an example of correct

execution at the READ COMMITTED with first-committer-

wins level in Section 6.
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3.4 Semantic Condition for REPEATABLE READ

The locking implementation of the REPEATABLE READ
isolation level [3] requires that a transaction acquire long-
term read and write locks on the data items that it accesses.
The only problem at the REPEATABLE READ level is the
possibility of phantoms [12]. Since phantoms do not occur
in page (nonrelational) databases, REPEATABLE READ
ensures serializability. A serializable schedule can be
transformed into an equivalent serial schedule, in which
no assertions of an arbitrary transaction Ti will be
invalidated by any step of a transaction interleaved with
Ti (since no other transaction is interleaved with Ti in a
serial schedule). Thus, the semantic correctness of Ti is
guaranteed.

3.5 Semantic Condition for SNAPSHOT Isolation

SNAPSHOT isolation is not one of the ANSI/ISO standard
isolation levels, but is implemented in at least one
commercial DBMS. The implementation of SNAPSHOT
isolation given in [3] does not use locks. Instead, it uses a
multiversion concurrency control that satisfies each read
request made by transaction Ti with values from the version
of the database, called a snapshot, that reflects the effect of
all committed transactions at the time Ti executed its first
read statement. Hence, read requests never wait. Requests
to write are deferred until the transaction commits. Ti can
be committed as long as no other transaction that
committed after Ti’s first read has updated a data item that
Ti has also updated. This mechanism is referred to as first
committer wins because the first transaction that has updated
a particular data item and requests to commit is allowed to
do so, while concurrent transactions that have updated that
item are ultimately aborted. Thus, first committer wins has at
least the effect of a long-term write locks on the items
written.

We model a transaction Ti at SNAPSHOT isolation as
two isolated atomic steps: a read step followed by a write
step. The read step reads a snapshot of the database that
reflects the effect of all committed transactions at the time Ti

executed its first read statement. The write step is the
remainder of the transaction. The step boundary reflects the
fact that other transactions can commit while Ti is active,
creating new versions of the database that might invalidate
assertions that Ti has made about the database based on its
snapshot. If Ti commits, its write step must commute with
the write steps of these other transactions because they
must have written to disjoint data items. Note that the
postcondition of the snapshot does not necessarily state that
the value of a data item in a snapshot is equal to the most
recent committed value of that data item. It only needs to be
strong enough to support the proof of the transaction [9].

Theorem 5. A schedule produced under SNAPSHOT isolation is
semantically correct if, given any two transactions Ti and Tj

from the schedule, either:

. Ti’s write set intersects Tj’s write set (in which case
one of the transactions will be aborted) or

. Tj’s write step does not interfere with the postcondition
of the read step of Ti, and with Qi.

Proof. See [10]. tu

Example 4. Suppose we have two types of withdraw
transactions, Withdraw savði; wÞ and Withdraw chði; wÞ,
which withdraw w from the ith depositor’s savings and
checking accounts, respectively. Savings and checking
account information is held in arrays acct sav and acct ch,
respectively, and a conjunct of the integrity constraint, Ii,
requires that acct sav½i�:bal þ acct ch½i�:bal � 0. An an-
notated version of the Withdraw sav program is given in
Fig. 2. The annotation forWithdraw ch is similar.

Sav0 is a logical variable that is introduced to record
the initial value of acct sav½i�:bal and its value will not be
changed. Sav and Ch are local variables. The first two
statements constitute the read step of Withdraw sav, and
the rest of the statements constitute the write step. The
postcondition of the read step (the second assertion in
Fig. 2) of Withdraw savði; w1Þ is interfered with by the
write step of Withdraw chði; w2Þ. Hence, the theorem
states that a concurrent schedule of the two transactions
might not be semantically correct. A schedule in which
the write step is interleaved between the read and write
step of the other exhibits write skew [3]. Note that,
although this same precondition is also interfered with by
another instance of Withdraw sav, a concurrent schedule
in which two instances ofWithdraw sav are interleaved is
semantically correct because the first-committer-wins
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Fig. 2. Withdraw from savings account.



rule implies that one of them will be aborted (this is
reflected in the first condition of the theorem). Finally, a
Deposit sav (Deposit ch) transaction, which adds money
to acct sav (acct ch), does not interfere with the post-
condition of the read step of Withdraw sav. In this case,
their concurrent execution is semantically correct (this is
reflected in the second condition of the theorem).

4 SEMANTIC CONDITIONS FOR RELATIONAL

DATABASES

In adapting the conditions for semantic correctness to
relational databases, we must deal with database operations
that involve predicates. The read statement is now the
SELECT and its postcondition might assert that it read all
the tuples that satisfy a certain predicate. Similarly, the
write statements are UPDATE, INSERT, and DELETE, and
their postconditions might assert that they wrote, inserted,
or deleted all the tuples that satisfy a certain predicate.

Interference now takes new forms. For example, the
postcondition of a SELECT statement might assert that the
statement read all the tuples that satisfy a predicate, P . That
assertion can be interfered with by another transaction that
inserts a phantom tuple that also satisfies P .

Phantoms can occur in connection with write statements
as well as in connection with SELECT. Thus, the postcondi-
tion of an UPDATE that asserts that the value of all tuples
satisfying P have been updated can be interfered with by an
INSERT that inserts a phantom tuple that satisfies P . That
interference might not cause invalidation of the predicate,
however, if the locking policy prevented the INSERT from
executing after the UPDATE had taken place.

The locking policy for implementing the ANSI isolation
levels discussed in [3] states that all “write locks on data
items and predicates (are) long duration.” Thus, at an
isolation level that uses predicate locking, when an
UPDATE, INSERT, or DELETE statement is executed, the
referred predicate is write-locked for the duration of the
transaction, and phantoms cannot be inserted into that
predicate. Most DBMSs do not implement predicate lock-
ing, but instead use a locking protocol (perhaps consisting
of some combination of table locks and index locks) that is
equivalent to, or stronger than, predicate locking. We
assume in what follows that the DBMS uses such a locking
protocol. Then, Theorems 2 and 3 remain valid for relational
databases, although the proofs are different since we need
to consider phantoms.

In the following, we model SELECT, INSERT, DELETE,
and UPDATE as assignment statements and axiomatize
them using their strongest postconditions. This axiomatiza-
tion enables us to apply the reasoning technique employed
in page databases to relational databases.

SELECT statement: Assume a SELECT statement reads
all the tuples in relation T that satisfy predicate pr. We
introduce the relation variable

r ¼ ft j prðtÞ ^ ðt 2 T Þg

to denote the set of tuples returned by the SELECT
statement. We model the SELECT statement as an assign-
ment statement that assigns all the tuples in r to a local

relation variable R. Then, we can use the following triple to
specify the semantics of a SELECT statement.

fPg R :¼ r fQg:

If Q is the strongest postcondition of the SELECT statement
with precondition P , by [14], we can specifyQ in terms of P :

Q : 9vðPR
v ^ R ¼ rÞ:

INSERT statement: Assume an INSERT statement
inserts all the tuples that satisfy predicate pr into relation
T . Using the same relation variable r defined for the
SELECT statement, we model the INSERT statement as an
assignment statement that assigns to T the value T [ r.
Thus, we can use the following triple to specify the
semantics of an INSERT statement

fPg T :¼ T [ r fQg:

If Q is the strongest postcondition of the INSERT statement
with precondition P , by [14], we can specify Q in terms of P

Q : 9vðPT
v ^ T ¼ v [ rÞ:

DELETE statement: Assume a DELETE statement
deletes all the tuples in T that satisfy predicate pr. Using
the same relation variable r as above, we model the
DELETE statement as an assignment statement that assigns
to T the value T � r. Thus, we can use the following triple
to specify the semantics of a DELETE statement:

fPg T :¼ T � r fQg:

If Q is the strongest postcondition of the DELETE statement
with precondition P , by [14], we can specifyQ in terms of P :

Q : 9vðPT
v ^ T ¼ v� rÞ:

UPDATE statement: Assume an UPDATE statement
updates all the tuples in T that satisfy predicate pr. Let r be
the set of tuples in T that satisfy pr and r0 be the updated
values of these tuples. We model the UPDATE statement as
an assignment statement that is equivalent to a DELETE
statement that deletes the tuples in r followed by an
INSERT statement that inserts the tuples in r0. Thus, we can
use the following triple to specify the semantics of an
UPDATE (predicate) statement:

fPg T :¼ ðT � rÞ [ r0 fQg:

If Q is the strongest postcondition of the UPDATE
statement with precondition P , by [14], we can specify Q
in terms of P :

Q : 9vðPT
v ^ T ¼ ðv� rÞ [ r0Þ:

The following lemma is the basis for proving the theorems for
relational databases. We use � to stand for the empty set.

Lemma 1. Let Si;k be an INSERT, DELETE, or UPDATE
statement on table T in transaction Ti. Suppose Si;k is
characterized by fPi;kg Si;k fPi;kþ1g in the proof of Ti, and
pdi;k is the predicate in the WHERE clause of Si;k. Let Sj;h be
an INSERT, DELETE, or UPDATE statement on table T of
another transaction Tj and pdj;h be the predicate in the
WHERE clause of Sj;h, and pdi;k \ pdj;h ¼ �. Let spðPi;k; Si;kÞ
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be the strongest postcondition of Pi;k with respect to Si;k. If the

tuples that Si;k writes do not satisfy pdj;h
2 and the tuples that

Sj;h writes do not satisfy pdi;k, then if Sj;h does not interfere

with Pi;k, it does not interfere with spðPi;k; Si;kÞ either.
Proof. To simplify notations, in this proof, we denote Pi;k by

P and spðPi;k; Si;kÞ by Q. Suppose Si;k and Sj;h are

UPDATE statements. We characterize Si;k as

fPg T :¼ ðT � rÞ [ r0 fQg;

where Q is the strongest postcondition of Si;k with

precondition P , given by [14]:

Q : 9vðPT
v ^ T ¼ ðv� rÞ [ r0Þ: ð4Þ

Since Sj;h does not interfere with P , the triple

fP ^ P 0g Sj;h fPg; ð5Þ

where P 0 is the precondition of Sj;h, is a theorem. Our

goal is to show that

fQ ^ P 0g Sj;h fQg ð6Þ

is also a theorem. Suppose q is an arbitrary state

satisfying Q ^ P 0, and q0 is the state that results after

Sj;h is executed starting in q. We would like to show that

q0 satisfies Q. Let v0 be a value such that the assertion

PT
v0

^ T ¼ ðv0 � rÞ [ r0

is true in q. The tuples in T in state q can be divided into
two disjoint subtables: st1 and st2, where st2 ¼ r0 and
st1 \ r ¼ �. Since no tuple in r0 satisfies pdj;h, Sj;h can
only change the value of st1. Suppose in the transition
from q to q0, st1 is changed to st10. Then, in state q0,
T ¼ st10 [ r0. Since Sj;h does not produce any tuple that
satisfy pdi;k, st1

0 \ r ¼ �. Let v1 ¼ st10 [ r. We have T ¼
ðv1 � rÞ [ r0 in state q0. Thus,

fPT
v0

^ ðT ¼ ðv0 � rÞ [ r0Þ ^ P 0g Sj;h fT ¼ ðv1 � rÞ [ r0g
ð7Þ

is a theorem. Since pdj;h \ r0 ¼ �, the following triple

must also be a theorem:

fPT
v0

^ ðT ¼ v0 � rÞ ^ P 0g Sj;h fT ¼ v1 � rg:

According to the conditionsof the lemma,pdi;k \ pdj;h ¼ �,

thus, we get:

fPT
v0

^ T ¼ v0 ^ P 0g Sj;h fT ¼ v1g: ð8Þ

From (5) and (8), we get

fPT
v0

^ T ¼ v0 ^ P 0g Sj;h fPT
v1
^ T ¼ v1g: ð9Þ

Since pdi;k \ pdj;h ¼ � and pdj;h \ r0 ¼ �, from (9) we

have

fPT
v0

^ T ¼ ðv0 � rÞ [ r0 ^ P 0g Sj;h fPT
v1
^ T ¼ ðv1 � rÞ [ r0g:

ð10Þ

From (10), we get (4) is true in state q0. Since q is an
arbitrary state satisfying Q ^ P 0, (6) is a theorem. For
other write statements, similar proofs can be carried out.

The semantic condition for the correct execution of a
transaction at READ UNCOMMITTED in a relational
database is the same as the one for the page database,
although the proof is different since we need to consider
phantoms. tu

Theorem 6. The execution of a transaction Ti at READ
UNCOMMITTED will be semantically correct if each write
statement (including those that rollback a transaction) in every
transaction does not interfere with Ii, the postcondition of
every read statement in Ti, and Qi.

Proof. Let Si;k be an arbitrary write statement (INSERT,
DELETE, UPDATE) of Ti and we characterize it as triple
fPg Si;k fQg, where Q is the strongest postcondition of
Si;k with precondition P . Suppose Sj;h is an arbitrary
write statement (INSERT, DELETE, UPDATE) of Tj and
it does not interfere with P . In the following, we prove
that Sj;h will not interfere with Q either, or if it does, it
will not invalidate Q during execution.

Consider Sj;h is interleaved after Si;k. If Si;k is the last
statement of Ti, Q � Ii

V
Qi, according to the conditions

of the theorem, Q is not interfered with by Sj;h. If not,
since we assume the predicates in the WHERE clauses of
Si;k and Sj;h, denoted by pdi;k and pdj;h, respectively, are
long-term, pdi;k \ pdj;h ¼ �, otherwise, Tj will wait until
Ti terminates. Furthermore, Si;k does not produce any
tuples that satisfy pdj;h since, if it does, it will hold long-
term write locks on the tuples that it produces, and Tj

will be prevented from being interleaved right after it, as
a matter of fact, Tj has to wait until Ti terminates; Sj;h

cannot produce any tuples that satisfy pdi;k either since,
otherwise, the long-term predicate pdi;k will prevent Sj;h

from being interleaved right after Si;k.
In any cases, either Sj;h is delayed until Ti terminates,

in which case, Q is not invalidated; or the conditions of
Lemma 1 are satisfied, thus, Q will not be interfered
with. The rest of the proof would be similar to the one for
Theorem 2. tu

The semantic condition for READ COMMITTED of
relational databases is the same as the one for the page
database, although the proof is different since we need to
consider phantoms.

Theorem 7. The execution of a transaction Ti at READ
COMMITTED will be semantically correct if each transaction
does not interfere with the postcondition of every read
statement in Ti, and with Qi.

Proof. Let Tj be an arbitrary transaction in the system. Since
the isolation level of Tj is at least READ UNCOM-
MITTED, Tj will hold a long-term write lock on any item
it writes. Since at the READ COMMITTED level, Ti uses
short-term read locks, Ti cannot read any item written by
Tj until Tj terminates, thus, each read statement of Ti

either sees the whole result of Tj or it does not see any
result of Tj, and when we reason about the semantic
correctness of a schedule that includes Ti, as far as Ti is
concerned, Tj can be considered as a single isolated unit.
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Let Si;k be an arbitrary write statement (INSERT,
DELETE, UPDATE) of Ti and we characterize it as triple
fPg Si;k fQg, where Q is the strongest postcondition of
Si;k with precondition P . Suppose Tj does not interfere
with P . In the following, we prove that Tj will not
interfere with Q either, or if it does, it will not invalidate
Q during execution.

Consider Tj is interleaved after Si;k. If Si;k is the last
statement of Ti, Q � Ii

V
Qi, according to the conditions

of the theorem, Q is not interfered with by Tj. If not, since
we assume the predicates in the WHERE clauses of Si;k

and Tj are long-term, they must not intersect, otherwise,
Tj will wait until Ti terminates. Furthermore, Si;k does
not produce any tuples that satisfy the predicate of any
write statement in Tj; otherwise, it will hold long-term
write locks on the tuples that it produces, and Tj will be
prevented from being interleaved right after it and Tj has
to wait until Ti terminates. Tj cannot produce any tuples
that satisfy pdi;k either, otherwise, the long-term pre-
dicate pdi;k will prevent Sj;h from being interleaved right
after Si;k.

In any cases, either Tj is delayed until Ti terminates, in
which case, Q is not invalidated; or the conditions of
Lemma 1 are satisfied, thus, Q will not be interfered
with. The rest of the proof would be similar to the one for
Theorem 3. tu
For READ COMMITTED with first-committer-wins,

taking into account the effect of phantoms, the conditions
have to be strengthened to be the one for READ
COMMITTED (the same as Theorem 7).

The semantic condition for REPEATABLE READ in page
databases can be restated for relational databases by
considering the possibility of phantoms. At REPEATABLE
READ, the long-term read locks obtained on tuples read by
a SELECT statement block the execution of a statement in a
concurrent transaction that attempts to delete or update
such tuples. Hence, the postcondition of the SELECT
statement cannot be invalidated by a transaction that
attempts to delete or update such a tuple. As a result, we
get the following theorem.

Theorem 8. For a transaction, Ti, executed at REPEATABLE

READ, let Si;j be an arbitrary SELECT in Ti. Ti will execute

semantically correctly if each transaction does not interfere

with Qi and either 1) does not interfere with the postcondition

of Si;j, or 2) includes DELETE/UPDATE statements whose

predicates intersect the predicate of Si;j.

Proof. If 1) applies, similar proof as the one for Theorem 7
exists; otherwise, 2) applies, and Tj will be delayed until

Ti terminates, where Qi is not interfered with. tu

For SNAPSHOT isolation, phantoms will not occur in
both page and relational databases. Theorem 5 remains

valid for relational databases, so does the proof.

5 CHOOSING AN ISOLATION LEVEL

Given the set of transaction types of an application, the

problem faced by the applicationdesigner is to determine, for
each type, the lowest isolation level at which a transaction of

that type can execute correctly. Since SNAPSHOT isolation is

not generally offered in the context of the other isolation

levels, we do not consider it in what follows.
Using the previous results, it follows that, while we

determine the isolation level at which to execute transac-

tion, T1, we do not have to be concerned about the level of

other transactions. Specifically, we are performing an

interference analysis to determine the correctness of

executing T1 at READ UNCOMMITTED, we must consider

the interference effects of each write of another transaction,

T2, individually, regardless of the level of T2. Similarly, if

we are considering executing T1 at any higher level, we

consider the interference effects of the whole transaction T2

as an atomic isolated unit, regardless of the level of T2.

Then, a procedure for determining the lowest isolation level

at which each transaction can execute semantically correctly

is: For each transaction, Ti, in the set, consider the isolation

levels READ UNCOMMITTED (Theorem 6), READ COM-

MITTED (Theorem 7), REPEATABLE READ (Theorem 8),

and SERIALIZABLE in sequence and return the first at

which execution is semantically correct.

6 AN EXAMPLE

To motivate the conditions for semantic correctness in a

relational setting, consider a business application that

accesses a schema with the following three tables (primary

keys are underlined):

� ORDERSðorder info; cust name; deliv date; doneÞ
� CUSTðcust name; address; #ordersÞ
� MAXDATEðmaximum dateÞ
A conjunct of I, Io, asserts that each row of ORDER describes

an order and done is true if that order has been delivered.

MAXDATE is a table containing a single row that satisfies a

second conjunct, Imax, that asserts that maximum_date is

the maximum delivery date for any order in ORDERS.

#orders records the number of orders for each customer.
This application has four transaction types shown in

Figs. 3, 4, 5, and 6. Each figure shows an annotation of a

transaction program indicating the pre and postconditions

of the transaction and the postcondition of each SELECT

statement. These are the critical assertions. The purpose of
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the figures is to display the critical assertions; the code is
just sketched.

Mailing_List (Fig. 3): This transaction scans CUST and
prints a label using cust_name and address. The
specification of the transaction places no condition on the
labels printed. Since no critical assertion is interfered with
by any single write statement in any of the transaction
types, this transaction will execute correctly at READ
UNCOMMITTED.

New_Order (Fig. 4): This transaction inserts a new order
into ORDERS and, if this is the first order for customer,

inserts a new tuple into CUST. In order to keep the delivery
truck busy, a business rule asserts that there can be no gaps
in the sequence of delivery dates: There must be at least one
order to be delivered on each date up to some maximum
date which is the delivery date of the last outstanding order.
A conjunct of the integrity constraint of the database, which
we call “no gaps,” asserts this fact. However, there can be
more than one order for any particular delivery date.
Furthermore, the number of orders for a particular
customer in ORDERS must be equal to the value of the
#orders field of that customer’s tuple in CUST. We refer to
this integrity constraint as “order consistency.” The inter-
mediate assertion I 0max in Fig. 4 asserts that maximum_date
is one greater than the latest delivery date in ORDERS. Thus,
New Order reads the value of maximum_date in MAX-

DATE into the workspace variable maxdate; and increments
maximum_date in MAXDATE by 1. If the customer is new,
it inserts the tuple ðcustomer; address; 1Þ into CUST; other-
wise, it increments #orders in the customer’s tuple in
CUST.3 Finally, it inserts ðorder info; customer;maxdateþ
1; falseÞ into ORDERS.4

Since no critical assertion is interfered with by any
transaction type, this transaction can run at READ
COMMITTED. The transaction cannot run at READ UN-
COMMITTED because, for example, the no gap assertion
that is a conjunct of assertions in a New Order transaction,
T1, is interfered with by the rollback statement of another
New Order transaction, T2, that deletes a tuple from
ORDERS (it might leave a gap in delivery dates below the
delivery date selected by T1).
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Fig. 4. Processes a new order.

3. The postcondition of New Order in Fig. 4 indicates that the inserted
tuple has a particular value in the #orders field. Since the value will
change as the customer adds new orders, in order to avoid interference, the
postcondition should actually be weakened to assert that, at commit time,
this tuple was an element of CUST.

4. Since the value of donewill subsequently change, the comments in the
previous footnote apply.

Fig. 5. Delivers an order.



Suppose an additional business rule is imposed: there
must be exactly one order with a particular delivery date for
each date up to some maximum. The “no gap” conjunct of
the integrity constraint is replaced by the conjunct
“one order per day” which asserts the new requirement.
The same New_Order transaction can be used to enforce this
rule if it is run at READ COMMITTED with first-committer-
wins. At READ COMMITTED, the INSERT into ORDERS in
the New Order transaction interferes with the conjunct
one order per day in the postcondition of the SELECT.
However, since New Order updates MAXDATE after read-
ing it, one order per day cannot be invalidated at the READ
COMMITTED with first-committer-wins isolation level.
Also note the postcondition of the whole transaction is
not interfered with by any transaction type and, thus, this
transaction can run at READ COMMITTED with first-
committer-wins.

Delivery (Fig. 5): This transaction delivers an order.
Thus, Delivery scans ORDERS to find all the orders that are
due today and updates the done attributes in the orders to
be delivered to true.

The postcondition of the SELECT statement of a Delivery

transaction is interfered with by another Delivery transac-
tion. Thus, this transaction type cannot execute at READ
COMMITTED. However, if the transaction is executed at
REPEATABLE READ, the selected tuples are read locked
after the SELECT statement is executed. Hence, a Delivery

transaction would not be allowed to update these tuples
and the assertion could not be invalidated. Thus, this
transaction meets the condition for correct execution at the
REPEATABLE READ isolation level.

Audit (Fig. 6): This transaction checks that order

consistency is true. Thus, Audit scans ORDERS and counts
the number of orders registered for a particular customer

and reads the tuple for that customer in CUST and compares
#orders with the count.

This transaction must run at the SERIALIZABLE level
because the postconditions of both SELECT statements
might be interfered with by a New Order transaction that
inserts a (phantom) new order. Note that this transaction
does not satisfy the second half of the condition for correct
execution at REPEATABLE READ because tuple locks do
not prevent the insertion of a phantom new order.

7 CONCLUSIONS AND FUTURE WORK

We have used semantic correctness as the criterion to
investigate the correctness of schedules at different isolation
levels. Specifically, for each isolation level, we prove a
condition under which transactions that execute at that
level will be semantically correct. This technique also
clarifies the relationship between interference and invalida-
tion. Interference does not necessarily lead to invalidation
because the underling locking scheme might prevent the
offending interleavings from happening. Furthermore, an
assertion that is interfered with can often be replaced by a
stronger assertion that is not interfered with. In that case,
the weaker assertion is not invalidated. Our analysis is
based on the assumption that all isolation levels except
SNAPSHOT isolation are implemented using a locking
scheme.

To promote the practical significance of the results in this
paper, we are looking at Nipkow’s recent work on
formalizing Hoare logic in Isabelle/HOL [16], one of the
most popular theorem provers. We plan to develop a tool
based on Isabelle/HOL to automate the correctness analysis
of the execution of transactions at various isolation levels.
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