
Recovery Guarantees for
Internet Applications

ROGER BARGA and DAVID LOMET
Microsoft Research
and
GERMAN SHEGALOV and GERHARD WEIKUM
Max-Planck-Institut für Informatik

Internet-based e-services require application developers to deal explicitly with failures of the under-
lying software components, for example web servers, servlets, browser sessions, and so forth. This
complicates application programming, and may expose failures to end users. This paper presents
a framework for an application-independent infrastructure that provides recovery guarantees and
masks almost all system failures, thus relieving the application programmer from having to deal
with these failures—by making applications “stateless.” The main concept is an interaction contract
between two components regarding message and state preservation. The framework provides com-
prehensive recovery encompassing data, messages, and the states of application components. We
describe techniques to reduce logging cost, allow effective log truncation, and permit independent
recovery for critical components. We illustrate the framework’s utility via web-based e-services
scenarios. Its feasibility is demonstrated by our prototype implementation of interaction contracts
based on the Apache web server and the PHP servlet engine. Finally, we discuss industrial relevance
for middleware architectures such as .Net or J2EE.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; C.4 [Performance of Systems]—Fault tolerance, Reliability,
availability, and serviceability; H.2.4 [Database Management]: Systems—Transaction processing

General Terms: Design, Management, Performance, Reliability

Additional Key Words and Phrases: Exactly-once execution, application recovery, interaction
contracts, communication protocols

1. INTRODUCTION

1.1 Motivation and Problem Statement

Internet-based e-services, ranging from B2C (business-to-consumer) e-
commerce and B2B (business-to-business) supply chains to advanced services

Authors’ addresses: R. Barga and D. Lomet, Microsoft Research, One Microsoft Way, Redmond, WA
98052; email: {barga,lomet}@microsoft.com; G. Shegalov and G. Weikum, Max-Planck-Institut für
Informatik, Stuhlsatzenhausweg 85, Saarbrüken, FRG; email: {shegalov,weikum}@mpi-sb.mpg.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1533-5399/04/0800-0289 $5.00

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004, Pages 289–328.

290 • R. Barga et al.

such as web-based auctions, tele-teaching, collaborative authoring, or electronic
tax preparation, require a sophisticated software infrastructure that includes
user browsers, web application servers with servlet engines, workflow engines,
and backend database servers [Debull 2001]. Since all of these components are
failure-prone, application developers have to take measures for dealing with
failures. Database recovery does not mask failures to applications and users.
Transaction atomicity guarantees all-or-nothing but not exactly-once execu-
tion, where the latter means 1) no output to the user is duplicated (to avoid
confusion), 2) the user provides input only once (to avoid irritation), and 3) the
user intent, for example, buying airline tickets, is carried out exactly once. To
achieve this exactly-once behavior, application programs need explicit code for
retrying failed transactions. Often such code is incomplete or missing, expos-
ing failures to users. Or even worse, a failure occurs with no notice provided.
For an e-commerce service, for example, this can lead to user inconvenience
and lost sales when this happens during shopping cart checkout. However, the
application program or user must not blindly re-initiate a transaction when
no result is received, as the transaction may have succeeded and re-execution
is not usually idempotent. Some e-services warn users not to hit the check-
out/buy/commit button twice when a long delay occurs. Users who do not heed
this warning may unintentionally purchase two seats on the same flight or two
copies of the same book.

The current approach to coping with these problems is to combine explicit
failure handling code with the notion of stateless applications. This puts a ma-
jor burden on the application programmer, and generally hampers application
development productivity and maintainability. Rather it is much more desir-
able to factor failure handling out of the applications and provide a generic
solution for “universal recovery” in the surrounding run-time infrastructure.
This way application programs could be written as if there were no failures in
the Internet and the components of an e-service.

TP monitors, exploiting transactional message queues or a database, and
“stateless” applications, have long been the preferred solution for failure-
resilient business applications. Stateless applications are not without state,
however. Rather, they are written so that each application step executes en-
tirely within a transaction. A step begins by retrieving prior state from a queue
or database, executes, and then stores the resulting end state into a queue or
database. Thus, such an application does not have “control state” outside of a
transaction, though of course, the state saved in the queue or database lives
across transaction boundaries.

With the advent of web-based e-services, however, prior solutions have not
been fully carried over to multitier web architectures. Indeed, how they might be
adapted to deal with middle-tier web application servers (e.g., Apache/Tomcat
or IIS) is complex and still speculative. Some e-services are even more complex,
with layers of application servers (e.g., web server, workflow server, activity
server) accessing several database servers but also directly maintaining persis-
tent data in files and requesting services from external providers. For example,
the Expedia travel service integrates services from travel industry providers
such as Amadeus or Sabre. Another example is one-stop shopping services that

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 291

provide a unified view of a diversity of individual e-commerce sites. A somewhat
futuristic e-service of this kind would be an integrated real-estate purchase ser-
vice that automatically handles the entire workflow for the necessary steps with
notaries, land registry offices, banks, insurances, and so on.

For multitier Internet applications with communicating components, a com-
prehensive form of data, component state, and message recovery is needed,
going beyond traditional database recovery. Designing protocols to accomplish
this entails a number of issues:

� To what extent can failures be masked to the end users, and which logging
actions are necessary to this end?

� Which component logs which messages or state to be recoverable, mask fail-
ures, and provide exactly-once semantics to a user?

� How are logs managed, when is a log force written to disk, and how are
logs coordinated for log truncation, crucial for fast restart and thus for high
availability?

� How are critical components, for example, database servers, kept from be-
ing “hostage” to other components (applications servers, clients) that may
hamper or block their independent recovery or normal operation?

1.2 Our Framework for Recovery Guarantees

We have developed a framework for multitier applications in the context of
the Phoenix project [MSR PHOENIX] that answers the above questions [Barga
et al. 2002]. It masks from users all failures of clients, application servers,
or data servers (e.g. database servers) such that all user requests can have
exactly-once semantics (see Subsection 1.1). We identify the logging required
for nondeterministic events so that after a failure, an application component
can be replayed from an earlier installed state (in an extreme case its initial
state) and arrive at the same (abstract) state as in its prefailure incarnation.

Our framework exploits interaction contracts between two components.
For example, a committed interaction contract between persistent components
requires sender and receiver guarantees to ensure that the interaction persists
at both components across system failures. There are also contracts for
persistent component interactions with external components (including users)
and transactional components, which provide all-or-nothing state transitions
(but not exactly-once executions). The bilateral contracts are composed to
make persistent components provably recoverable with exactly-once execution
semantics.

We separate contract obligations from their implementation in terms of log-
ging. As a result, many internal interactions can avoid forced logging or other
expensive measures. We present implementation techniques to a) minimize log-
ging cost, especially forcing the log to disk, b) allow effective log truncation to
limit restart cost and thus provide high availability, and c) permit independent
recovery of certain components.

We have built a prototype implementation of our framework as a proof
of concept. Our prototype directly implements interaction contracts for an

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

292 • R. Barga et al.

Fig. 1. Components in a four-tier electronic travel service.

application server based on Apache and PHP, via changes to the PHP in-
terpreter. It provides browser extensions to enable browser session state to
also be included in our framework, thus extending our recovery guarantees
to the client desktop. The result is a system that can provide an end-to-end
exactly-once execution guarantee, successfully recovering from and masking
system failures from the user. And it achieves this without the application
programmer needing to take any explicit programming steps to deal with
failures.

1.3 Sample Scenario

We illustrate here how our framework deals with an advanced multitier
e-services scenario, the travel services provided by companies such as Expe-
dia.com and Travelocity.com. The system architecture, illustrated in Figure 1,
can be characterized as a four-tier system with clients using Internet browsers,
two tiers of application servers in the middle, and a suite of backend database
servers.

A client sends a travel request to an upper-tier Expedia web server. The
client, whose state is extended via cookies or applets for personalization (e.g.,
frequent flyer numbers, etc., which could be stored locally at a client-side
database or file server), sends the request and related personalization infor-
mation to the Expedia web server. The web server runs workflow-style servlets
in sessions on behalf of client requests. This level hosts business logic and is in
charge of building and maintaining tentative itineraries for users’ travel plans.
To this end, it keeps user state that spans conversational interactions with the
client for the duration of a user session, typically using session objects whose
only job is to hold shared data on the web server. For querying flight fares,
hotel rates and availability, and so on, the web server interacts with lower-tier
application servers. These include servers operated by autonomous travel com-
panies with their own application servers and database servers, for example,
Amadeus and Sabre. One lower-tier application server is an integrated part of

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 293

Expedia, again a server running servlets that communicate with a database for
long-term information about customers.

In this scenario, client, Expedia web server, application server, Amadeus and
Sabre application servers, and database servers all support sessions that retain
state. These sessions are established as a result of user initiation. While servers
are typically multi-threaded, the sessions they support are single-threaded.
Thus, all nondeterminism (outside of data accesses within database servers,
which is captured by database logging) resides in the interactions between
sessions. Our contracts are targeted precisely at these interactions. Each com-
ponent in this picture provides guarantees to the other components via our
framework. This permits them all to be jointly recoverable should a system
failure interrupt execution of a user request. And, importantly, this recovery
ensures that a user will see exactly-once execution of his request. We return to
this application scenario in Subsection 5.4, showing the excellent performance
of the framework in providing its guarantees.

The rest of the article is organized as follows. Section 2 provides background
on transactional recovery, as used by database systems and TP monitors, and
discusses related work. Section 3 introduces the system architecture and com-
putational model that underlie our work, and it provides an overview of the key
concepts of our approach. Section 4 introduces the fundamental notion of inter-
action contracts between two components and their four flavors, and discusses
its ramifications. Section 5 elaborates the implementation techniques for real-
izing interaction contracts, and provides a performance analysis for our sample
application scenario. Section 6 describes our prototype implementation of inter-
action contracts for an application server based on the Apache web server and
the PHP servlet engine. To emphasize the industrial relevance of this work we
discuss, in Section 7, its applicability to widely used middleware architectures
such as .Net or J2EE. Section 8 provides our conclusions.

2. BACKGROUND AND RELATED WORK

2.1 Recovery Basics

In database systems and TP (transaction processing) monitors, which form the
backbone of most mission-critical business applications (both traditional client-
server as well as Internet-based multi-tier), recovery after hardware and soft-
ware failures is based on the fundamental notion of an atomic transaction
[Gray and Reuter 1993, Weikum and Vossen 2001]. Transactions guarantee
all-or-nothing atomicity in the sense that a failure in the middle of an ongo-
ing transaction does not leave any traces and persistence in the sense that
the effects of a committed (i.e., successfully completed) transaction will survive
future failures. These system-provided guarantees simplify the task for appli-
cation developers whose code simply needs to specify the begin and end of a
transaction during program execution.

Atomicity and persistence are usually implemented by logging data mod-
ifications on stable storage, typically, one or more dedicated disks. For effi-
ciency, database updates in the server’s database page cache are not written

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

294 • R. Barga et al.

to disk immediately; rather log entries are generated that contain sufficient
information for either undoing a modification, if the transaction aborts or a
failure occurs before the corresponding transaction’s commit, or redoing it, if
the transaction commits and a failure occurs afterwards. The implementation
may choose to record the state of a data object before and after the modifica-
tion, or may merely record the change to the object in a log entry. Care must be
taken to avoid excessive disk I/O for writing log entries onto disk. To this end,
log entries are first collected in a log buffer and the log buffer is written to disk
only when it is necessary for recoverability (e.g., for a transaction’s commit log
entry). When correctness requires that a log entry be written, it is referred to
as a forced log write, otherwise as a non-forced log write.

During recovery after a failure, log entries are sequentially read from the
stable log file. In a redo pass, all updates that are not reflected in database
pages on the disk are redone by replaying log operations. Then an undo pass
considers all log entries that belong to incomplete transactions and removes
their effects. These procedures are complicated by the fact that, when reading
a log entry, the recovery method does not know whether this update is already
contained in the stable database. This uncertainty is a problem because updates
and the corresponding redo/undo steps are not necessarily idempotent; redoing
an update that is already in the database or redoing a lost update twice may
lead to incorrect data. To handle these situations, the recovery method implants
log sequence numbers (LSNs) in both the log entries and the data objects to
be recovered. The LSN of an object (e.g., in the header of a disk page) tracks
the state of the object and provides testable state to the recovery method: a
simple comparison of the LSNs in a log entry and the corresponding data object
tells us whether the log entry’s operation should be executed or not.

For fast restart (and hence high availability) the recovery system limits
the number of log entries to be read from the stable log file and the number
of data objects to be fetched from disk during recovery. Database systems pe-
riodically truncate the log based on bookkeeping that identifies which pages
may require recovery (as opposed to those that are known to be up-to-date
in the disk-resident database). Some of this bookkeeping information is peri-
odically written asynchronously to the log in a checkpoint. This does not
require writing any cached data pages onto disk, rather it is combined with a
background process that writes back modified pages in an asynchronous and
I/O-optimized manner. This method allows continuous log truncation, a partic-
ularly effective way of garbage collecting unneeded log entries.

Figure 2 depicts the key components that underlie an efficient data recovery
method as discussed above. In the figure b, q, and z denote database pages, t17,
t19, and t20 are transactions, and the other numbers are LSNs.

2.2 Application Recovery

The database recovery approaches outlined above provide an efficient,
industrial-strength solution for many systems requiring data recovery: file
systems, mail servers, and so on. However, they do not immediately carry
over to recovering applications after failures. In an Internet-based three-tier

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 295

Fig. 2. State-of-the-art data recovery.

(or a simpler client-server) application, with an Internet browser as a client,
an HTTP server and a servlet engine at the middle tier, and a database sys-
tem as backend, database recovery only ensures the consistency of the data at
the backend. It is then up to the application programs running at client and
middle-tier server to test and handle return codes that may signal a transient
failure (e.g., a code like ”unknown transaction” from the database system), to re-
initiate requests, and, most critically, to ensure idempotence by implementing
some form of testable state. To simplify the implementation of robust applica-
tions requires that failures be masked from application programs (and also from
end users). This requires a more comprehensive approach to overall application
recovery.

The most successful technique for application recovery in mission-critical
situations uses queued transactions, invented for OLTP (online transaction
processing) [Bernstein et al. B. 1990, Gray and Reuter 1993, Bernstein and
Newcomer 1996, Weikum and Vossen 2001] and supported by most TP mon-
itors (e.g., IBM MQ Series, BEA Tuxedo, Microsoft MTS) and associated web
application servers (e.g., IBM WebSphere, BEA WebLogic, Microsoft IIS). Mes-
sages between clients, the TP monitor acting as an application server, and the
database server are held in transactional message queues whose operations,
enqueuing or dequeuing messages, are embedded in an atomic transaction with
its all-or-nothing guarantee. The queue manager usually is a separate resource
manager with its own log and needs to support the two-phase commit protocol
for distributed transactions that access both messages in queues and perma-
nent databases. An application program can then read an input message from
a queue, process the message by querying and updating one or more databases,
and finally place a reply message into a queue—all in one atomic transaction.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

296 • R. Barga et al.

Fig. 3. State-of-the-art message and process recovery based on transactional queues.

Should the database transaction abort, the message that was originally de-
queued from the input queue is automatically placed back into the queue (based
on log entries that undo the transaction), so that the input message will even-
tually be processed even after an arbitrary number of failures. Further, the
message will be processed exactly once (for the commit of the transaction also
commits the dequeueing of the input message and the enqueuing of the output
message). This principle is illustrated in Figure 3.

While queued transactions have the desired exactly-once execution guaran-
tee, they also have severe disadvantages that make them unattractive as a
general-purpose solution. The queue-based message interaction between client
and e-service involves three transactions per user request: to enqueue the re-
quest on the queue; to dequeue it, process it in the database server, and en-
queue the reply; and to dequeue the reply. This incurs the high overhead of
forced-logging for three commits. Even more importantly, queued transac-
tions require “stateless” applications where the only application state between
transactions is in a database or queue. For a multi-step application “session”,
all information that needs to be kept across session steps is either kept in the
database or encoded in the messages that are sent back and forth between client
and application. Both options are expensive in terms of disk I/O. The second op-
tion resembles the web programming technique of maintaining session-related
information in cookies, except that cookies are a much less reliable intermediate
store than transactional queues.

The queued transaction approach, with its shortcomings, may be acceptable
for some e-commerce services but it can pose substantial difficulties. It requires
significant programming effort and thus high costs to cast rich stateful appli-
cations into this stateless paradigm.

There is some prior work on masking failures and providing recovery for
stateful applications, but only in limited contexts. The papers Freytag et al.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 297

[1987], Lomet and Weikum [1998], Barga et al. [2000] are focused only on client-
server systems, and do not consider multi-tier Internet applications. Other work
is restricted to applications embedded in the database server, like stored pro-
cedures [Lomet 1998]. It is not obvious how these protocols can be generalized
to apply to multi-tier systems. The notion of interaction contracts, developed in
the current paper, is the key for this generalization.

Recovery for general systems of communicating processes has been exten-
sively studied in the fault-tolerance community (e.g., Johnson and Zwaenepoel
[1987], Cristian [1991], Alvisi and Marzullo [1995], Elnozahy et al. [2002]),
where the main focus has been to avoid losing too much work in a long-running
computations (e.g., scientific applications), usually using distributed check-
pointing. Most of this work does not mask failures. Methods that do mask
failures exploit “pessimistic logging” (see, e.g., Huang and Wang [1995]), with
forced log I/Os at both sender and receiver on every message exchange. More
expensive techniques, such as process checkpointing (i.e., writing process state
to disk) upon every interaction, were used in the fault-tolerant systems of the
early eighties [Bartlett 1981, Borg et al. 1989, Kim 1984]. So failure masking
has been considered a luxury affordable only by mission-critical applications
(e.g., stock exchanges).

Fault tolerance is also being discussed for component middleware like
CORBA [OMG: CORBA 2000] and EJB [SUN 2001], but the focus is on service
availability for stateless interactions (i.e., restarting re-initialized application
server processes). Products (e.g., VisiBroker, Orbix, BEA WebLogic, or Sun’s
J2EE suite) at best support simple failover techniques that do not relieve the
application programmer from having to either write failure handling logic or
structure his application as “stateless,” and are not geared for masking process
or message failures to users. More recently, failover techniques for web servers
have been presented in Luo and Yang [2001], based on application-transparent
replication and redirection of HTTP requests.

The need for execution guarantees for e-services, raised in Tygar [1998];
Pedregal-Martin and Ramamritham [1999, 2001]; Dutta et al. [2001]; Fu et al.
[2001]; Popovici et al. [2000]; Schuldt et al. [2000]), has been concerned with
specific applications such as payment protocols or mobile data exchange and
does not specifically address failure masking in general multi-tier architec-
tures. Closest to our approach in terms of objectives is the work in Frølund and
Guerraoui [2000] that presents a multi-tier protocol for exactly-once transac-
tion execution based on asynchronous message replication and a distributed
consensus protocol. However, this work focuses on stateless application servers
and does not address the autonomy requirements of components, the optimiza-
tion of logging, and the need for effective log truncation.

The recovery framework and protocols we introduce improve the state of the
art in a number of ways. Compared to traditional techniques based on pes-
simistic logging or frequent process state saving, our protocols reduce logging
and state saving costs while providing very fast recovery. In contrast to solutions
provided by TP monitors and CORBA- or EJB-oriented application servers, our
approach handles stateful applications, removing the application programmer
burden of making his application stateless. In addition, our method is unique in

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

298 • R. Barga et al.

Fig. 4. Multi-tier system architecture and component interactions.

providing an end-to-end solution for masking failures across an entire multi-tier
federation of application and data servers while, to a large extent, preserving
the autonomy of these servers.

3. SYSTEM ARCHITECTURE AND KEY CONCEPTS

3.1 Components

We consider a group of interacting components: clients, application servers,
data servers, and users (viewed as components). In a typical scenario a client
(e.g., an Internet browser) submits a request on behalf of a user to a mid-tier
application server (e.g., HTTP server, workflow server, or web service broker)
that processes the request and generates further requests to other application
servers or backend data servers. When the mid-tier server has received all nec-
essary information from its subsidiary servers (including return messages for
data updates that it may have initiated), it sends a reply message to the client,
which in turn displays the result to the user. This either concludes the entire
round-trip of a stateless interaction or is continued with another client request
in a stateful conversational session (e.g., an extended workflow). The system
architecture and the message exchange between the various components are
illustrated in Figure 4 (for the time being ignore all events with non-integral
numbers, they will be explained later). In the figure, application servers 1 and 2
are assumed to belong to the same domain and thus consider each other as trust-
worthy, whereas server 3 merely belongs to the same loosely coupled federation.

We require that components be piecewise deterministic (PWD). A PWD
component is deterministic between successive messages from other compo-
nents. Thus it can be deterministically replayed from an earlier state by
resending it the original messages, producing the same component end state.
Replay starts from a previous component state on disk, perhaps the initial state.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 299

We call saved states “installation points” (IPs), not checkpoints, as they are
often called in the fault-tolerant computing field, to avoid confusion with the
different notion of checkpoint used in database recovery (see Section 2.1). What
constitutes component state varies greatly; sometimes a compact abstract state
is sufficient rather than the full image of a component’s address space. Usually,
server state includes persistent data (e.g., files or a database), message buffers,
and information about active sessions. After a failure, to replay a component
from a previous installation point, the component may need access to a stable
log with log entries that contain sufficient information to recreate all incoming
messages.

Components are mapped to processes or threads of the underlying run-
time system (e.g., operating system or Java VM). Thus we can model a multi-
threaded server as a set of single-threaded components interacting with each
other via shared data or messages. Alternatively, a server might be treated as
a single component, but then we need to pay specific attention to the potential
nondeterminism that may arise from thread interference on shared data.

3.2 Interactions, Contracts, and Logging

We assume that component failures are 1) soft, that is, no damage to stable
storage so that logged records are available after a failure; 2) fail-stop so that
only correct information is logged and erroneous output does not reach users or
persistent databases; and 3) the result of “Heisenbugs” [Gray and Reuter 1993]
such as timing-related race conditions or overload conditions so that replay does
not reproduce the failure deterministically. We make no assumptions about
multiple failures; more than one component may fail at any time.

Consider the scenario in Figure 4, with message-based interactions among
user, client, and three application servers. We want the message flow and re-
sulting states of the involved components to persist in any possible failures.
When a component fails and is restarted, we want recovery to recreate exactly
the state that it was in before the failure, including all received messages. We
call a component with this ability a persistent component (Pcom). We will
introduce two additional kinds of components in Section 4. The current discus-
sion concentrates on Pcoms. A baseline algorithm to ensure persistence and
thus failure masking might employ pessimistic logging (see Section 2.2). This
requires that Pcoms log all incoming and outgoing messages and immediately
force them to their stable logs before taking any subsequent actions. For exam-
ple, in Figure 4, application server 1 dealing with messages 2, 3, 4, 5, 6, and 7,
force-writes log entries numbered 2.1, 2.9, 4.1, 4.9, 6.1, and 6.9 for them. The
numbering reflects the ordering between messages and log writes, that is, 2,
2.1, 2.9, 3, 4, 4.1, 4.9, 5, 6, 6.1, 6.9, and 7. Should the server fail, it can completely
replay its prior execution starting from its initial state or some intermediate
installation point (e.g., 4.5.1 after having received message 4). When replay
reaches a point where the original execution received a message, the logged
message is fed to the component’s message buffer, and replay is resumed. In
this way, the replayed process will generate exactly the same outgoing messages
as in its prior incarnation.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

300 • R. Barga et al.

Pessimistic logging can be inefficient, leading to unnecessarily many forced-
log-writes. Overhead is at least as high with communication based on reliable
message queues. This inefficiency is illustrated by considering the logging for
a single message, as shown in Figure 4. For a sender-receiver pair, it suffices
for the sender to force-log the message. Consider message 4. Suppose server
1 failed after receiving message 4; replay simply asks server 2 to provide the
missing log entry. This shows the I/O saving potential.

There is a substantial advantage to considering what is needed for successful
exactly-once execution in the abstract, without assuming any specific technique
for implementing the requirements. We use the following observations to guide
us in defining interaction contracts (ICs) between pairs of components.

Committed state: When a component sends a message, it externalizes, and
thus commits its state. The message serves to reveal what state the sender is
in. This is akin to committing a transaction, and requires that the sender state
become persistent (durable). Since the sender must make its state durable,
there is low cost of also taking responsibility for ensuring that the message
is likewise persistent, as both message and state persistence can be recovered
with the same deterministic replay.

Deterministic replay: Replaying components requires that all non-
deterministic events be captured so that these events can be replayed during
recovery. We have already indicated that messages between components are
logged. We need to ensure that all sources of nondeterminism are removed.
Such nondeterministic events as system interrupts, and nonidempotent inter-
actions with the system environment, need to be captured so that they can be
replayed deterministically. For example, in Figure 4 the event 4.5.1 could in-
dicate reading the system clock or a sensor’s real-time data stream. It is not
necessary to make these events stable until we “commit” component state as
described in (1) above.

Duplicate detection: During replay, we may not know whether a message
generated immediately preceding a system crash was sent or not. Even if we
knew the message had been sent, we may not be sure that it arrived successfully.
To guarantee that a message will eventually be received, we may need to send it
multiple times. To ensure exactly-once semantics, we thus need to detect dupli-
cate messages and respond appropriately, either by ignoring them or by replying
to them with the same reply message as was generated originally. In all cases,
we must avoid multiple executions of any nonidempotent receiving component.

Autonomous recovery: If components are managed in an autonomous
fashion, we cannot necessarily depend on (trust) other components to resend
previously sent messages. In this case, we need to more promptly make stable
the events (messages) that we receive from these undependable components.

With these observations, it is possible to define what we call a committed
interaction contract (CIC). This contract is sufficiently abstract to enable
its satisfaction with techniques that exploit the optimization illustrated in the
previous section: where server 1 asks server 2 to resend the message rather than
forcing the message to its log immediately. Details will be given in Section 4. In
particular, we will discuss when the obligations that the contract parties agree
upon can be safely released, thus enabling garbage collection on log files.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 301

When autonomous recovery is an issue, we will incur higher logging costs.
Returning to our example, when server 1 does not trust that server 2 will resend
the original message, it will need to force log message 4. We refer to a contract
covering this situation as an immediately committed interaction contract
(ICIC), for it allows both interacting parties to recover independently and to
perform garbage collection independently right after the message exchange.

For the scenario of Figure 4, this suggests using CICs between the client and
server 1 and also between server 1 and server 2, the latter two being mutually
considered trustworthy. On the other hand, an ICIC would be in order between
server 1 and the external server 3. Furthermore, if application server 1 did not
want to become in any way dependent on the client, then an ICIC would also
be used between client and server 1. Between user and client a special kind of
contract is needed to be discussed in Section 4. This overall setup of interaction
contracts translates into a specific choice of which log entries need to be forced
to disk and which ones can be written to log buffers and lazily flushed to disk
in the background. In Figure 4, the log-writes that require forcing are denoted
by thick arrows.

3.3 Piece-Wise Deterministic Behavior

Ensuring that a component is indeed PWD, is subtle. Application servers
with multiple threads serving multiple clients that communicate with it and
that asynchronously access shared data clearly have multiple sources of non-
determinism. But even simple single-threaded, synchronous components, for
exapmle clients, can have “hidden” sources of nondeterminism that need to be
expunged. We identify three sources of nondeterminism and indicate how the
nondeterminism can be removed.

� A component, for exapmle database or application server, may execute on
multiple concurrent threads, accessing shared data such that access inter-
leaving order is essential for successful replay (e.g., SAP-style ERP systems
or eBay-style web sites). We assume there is no shared state among differ-
ent components. Multiple components accessing common data require that
data be in a component, for exapmle, a database server. Nondeterminism is
removed by logging the interleaved accesses to the data. For a transactional
database, the order of interleaving is the order in which transactions are
serialized.

� Component execution may depend on asynchronous events, for exapmle,
received messages or interrupts that prompt component execution at arbi-
trary points. These events are not reproducible during replay. The order of
asynchronous events needs to be logged to guarantee deterministic replay.
Often short logical log entries are sufficient, for exapmle message receive or-
der, if message contents can be recreated by other means (for example, from
the sender). However sometimes, physical logging is inevitable, for example,
when reading the real-time clock.

� Component re-creation after a crash does not usually exploit the same sys-
tem elements as the original execution, a form of nondeterminism. Ids for

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

302 • R. Barga et al.

messages sent before a failure may differ from ids of replayed messages. Ids
for processes, threads, or users may also change. To remove system resource
mapping nondeterminism, we “virtualize” these resources, introducing log-
ical ids for messages, component instances, and so on. These logical ids are
mapped to different physical entities after a crash, but at the abstract level,
the “logically identified” component becomes PWD. We log these mappings.

4. INTERACTION CONTRACTS

4.1 Components and Interactions

4.1.1 Component Guarantees. Guarantees specify the behavior of individ-
ual components upon failure and are the basis for interaction contracts between
components. Mostly we are concerned about persistent components (Pcoms),
for which we guarantee persistent state. To guarantee state persistence will
also require persistence guarantees for messages. However, a multi-tier appli-
cation is rarely composed solely of persistent components. We need to treat other
components and their interactions with Pcoms. Some components are transac-
tional (Tcoms), where state and messages are only guaranteed to persist when
transactions commit. A transaction abort resets the Tcom state to the begin-
ning of the transaction, losing intratransaction updates and messages. Finally,
external (user) components (Xcoms) cannot usually provide any of the above
guarantees. For example, when prompted to provide a previous input, a user
does not necessarily deliver identical input.

To implement persistence guarantees, we exploit a log and arecovery man-
ager in the run-time environment to capture the order of all nondeterministic
events and record the ones that cannot be replayed. During normal operation
log entries are created in a log buffer for received messages, sent messages, and
other nondeterministic events. The log buffer is written to the stable log on disk
at appropriate points (forced) or when full. In addition, component state may
be periodically “installed” (saved) to disk in an installation point to facilitate
log truncation, frequently making log records preceding the installation point
unnecessary. A data server that needs a stable log for the recoverability of per-
sistent data can also use the log to hold message-related and other log entries.

During restart after a failure, the recovery system scans the relevant parts
of the stable log. A component is re-incarnated from its last installation point
and replayed from there. The recovery system intercepts all messages and
nondeterministic events; relevant information is reconstructed from the cor-
responding log entry and fed to the component in place of the original event.
When log entries do not contain message contents, communication with the
sender is required to obtain the contents. For this, a recovery contract with the
sender ensures that the message can indeed be provided again. Outgoing mes-
sages which the replaying component knows, either directly or via inference,
have been successfully and stably received (or more precisely, if the component
knows that the receiver’s state as of message receipt is stable) prior to a failure,
may be suppressed. However, if the component cannot determine this, then the
message needs to be resent, and the receiver must test for duplicates.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 303

At this point we can establish an important property that relates the
persistence guarantees of a component to the underlying implementation mech-
anisms.

THEOREM 1. A component can guarantee a) persistent state as of the time of
the last sent message or more recent and b) persistent sent messages from the
last installation point up to and including the last sent message if it:

� logs all nondeterministic events, such that these events can be replayed,
� forces the log upon each message send (before actually sending it) if there are

nondeterministic events that are not yet on the stable log, and
� can recreate, possibly with the help of other components, the contents of all

messages received since its last installation point.

PROOF. By ensuring that all prior nondeterministic events are stable on the
log upon each message send, the component can be replayed at least up to and
including the point of its last send. This replay can be done for all nondeter-
ministic events because the last installation point can be reconstructed from
the log, and received messages can be accessed, perhaps locally, perhaps by re-
quest to their senders. Note that the latter implies that the component has not
necessarily logged the contents of its received messages. Finally, all outgoing
messages can be recreated during the component replay. Note that this does
not require that the message send is itself logged; rather outgoing messages
can be deterministically reconstructed provided all preceding nondeterministic
events are on the log or already installed in the component state.

4.1.2 Interaction Contracts. An interaction contract specifies the joint be-
havior of two interacting components. It requires each of them to make certain
guarantees, depending on the nature of the contract and components. Perhaps
only one component can provide strong guarantees, whereas the other com-
ponent cannot. Different contracts provide flexibility in the design space. An
interaction contract specifies guarantees about a state transition. The guar-
antees are permanent, but log records needed to provide the guarantee can be
garbage collected when both components agree they are no longer needed. Such
agreements can be set up a priori, for example, by limiting the logging to the
last state transition common to the two involved components, or dynamically
negotiated.

We consider three types of components as contract partners: persistent
components whose state should persist across failures, transactional com-
ponents, usually data servers, that provide all-or-nothing guarantees for
atomic transactions, and external components, which can be used, for ex-
ample, to capture human users, where there is usually no recovery guarantee.

4.2 Persistent-Persistent Component Interactions

Persistent components, when they interact with other persistent components,
must ensure the persistence of both state and message at each interaction.
Committed interaction contracts are used for this purpose.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

304 • R. Barga et al.

4.2.1 Committed Interaction Contract. A committed state transition in-
volves a pair of persistent components, whose states persist across system
failures. One Pcom sends a message and another receives it. A committed
interaction contract (CIC) is the fundamental building block for making
entire applications persistent and masking failures to users.

Definition 1. A committed interaction contract consists of the follow-
ing obligations:

Sender:

S1: Persistent State. Sender promises that its state at the time of the
message send or later is persistent.
S2: Persistent Message.

S2a: Sender promises to send the message repeatedly (driven by time-
outs) until receiver releases it (perhaps implicitly) from this obligation.
S2b: Sender promises to resend the message upon explicit receiver re-
quest until the receiver releases it from this obligation. This is distinct
from S2a, typically longer lasting and usually more explicit.
S3: Unique Messages. Sender promises that its messages have unique
contents (including all header information such as timestamps, HTTP
cookies, etc.).

Sender obligations ensure that an interaction is recoverable, it is guar-
anteed to occur, though not with the receiver guaranteed to be in exactly the
same state. Note that message uniqueness is required so that the receiver has
a chance to detect duplicates (i.e., resent messages) and does not confuse them
with another message with exactly the same content as a previous one (e.g., the
same shopping cart contents with the same timestamp and the same cookies
etc.).

Receiver:

R1: Duplicate Message Elimination. Receiver promises to eliminate
duplicate messages (which sender may send to satisfy S2a).
R2: Persistent State.

R2a: Receiver promises that before releasing sender obligation S2a, its
state at the time of message receive or later is persistent without the
sender periodically resending. After S2a release, receiver must explic-
itly request the message from sender should it be needed. The interac-
tion is stable, it persists (via recovery if needed) with the same state
transition as originally.
R2b: Receiver promises that before releasing the sender from obligation
S2b, its state at the time of the message receive or later is persistent
without the need to request the message from the sender. After S2b re-
lease, the interaction is installed, replay of the interaction is no longer
needed.

Note the contract asymmetry: The sender makes a strong immediate promise
whereas the receiver merely promises to obey rules in releasing the contract.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 305

Fig. 5. Statechart for committed interaction contract.

The sender exposes its current state and “commits” to that state and the re-
sulting message. It doesn’t know the implications on other components or, ulti-
mately, external users, that could (transitively) result from subsequent receiver
execution. Therefore, the sender must be prepared to resend the identical mes-
sage if needed by later recovery and also to recreate its exact same state during
replay after a failure.

Each CIC pertains to one message. However, to fully discharge the CIC may
require several messages. The receiver need not immediately expose to any
other component that it received the message. Only when the receiver itself
later becomes a sender does it commit itself to the effects of the received mes-
sage and to the newly sent one, but this involves a new CIC, perhaps with
another component, perhaps with the original sender. Before this, receiver-
forced-logging is not required.

Eventual CIC release is essential to free the sender from its obligations.
The sender wants to garbage-collect data retained to provide persistence for
previously sent messages, not only in-memory data structures, but also stable
log, periodically truncating it to shorten restart time and reclaim disk space.
Once a CIC is released, the sender can discard the interaction data; however,
the sender still guarantees the persistence of its own state at least as recent
as the interaction. This persistent state guarantee falls out naturally from our
implementation techniques.

Sender and receiver CIC behavior is depicted as a statechart [Harel and
Gery 1997, OMG: UML 1999] in Figure 5. Ovals show sender and receiver
states; transitions are labeled with “event [condition] / action” rules where
each element is optional and omitted when not needed. A transition fires if
the specified event occurs and its condition is true, then the state transition
executes the specified action. For example, the label “/ stability notification”
of the receiver’s transition from “interaction stable” state into “running” state
specifies that this transition fires unconditionally (i.e., its condition is “[true]”)
and its action is sending a stability notification. The sender transition labeled

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

306 • R. Barga et al.

“stability notification” makes the corresponding state change when it receives
the stability notification (i.e., when the event “stability notification” is raised).
Sender and receiver return to their running states before making further steps
towards a stable interaction. Unlike two-phase commit, a CIC allows interme-
diate states for the two components to exist for an extended period, enabling
logging optimizations. Note that, for simplicity, we have omitted all transi-
tions for periodic resends (e.g., sender’s periodic resend of the message until it
receives the stability notification).

While each message has its own contract, the nature of the interactions
between two components can enable further optimizations. Request/reply in-
teractions, as in the client-server setting, are an important situation because
real protocols are frequently of that form, whether the reply contains applica-
tion related information or is only an acknowledgement. Consider requestor Q
and replier P. The precondition for the reply is that Q’s state is persistent and
that Q will resend the request until P announces the commit of its state that
includes the reply. Hence the reply message need not be sent periodically as
Q has already committed to receiving the reply (i.e., is synchronously waiting
for the reply). P need only resend the reply on request, which in this case is in
response to resends of Q.

4.2.2 Immediately Committed Interaction Contract. In some situations, it
is desirable to release a sender from its obligations all at once. This can be
useful not only to the sender, but also the receiver, as it enables the receiver
to recover independently of the sender. This is achieved by strengthening the
interaction contract into an immediately committed interaction contract
(ICIC).

Definition 2. An immediately committed interaction is a committed
interaction where sender is released from both message persistence require-
ments, S2a and S2b when receiver notifies sender (usually via another mes-
sage) that the message-received state has been installed, without previously
notifying sender that its state is stable. Receiver’s announcement thus makes
the interaction both stable and installed simultaneously.

An ICIC can be seen as a package of two CICs, the first one for the original
message and the second one for a combined stability-and-install notification
sent by the receiver component. The first CIC requires the sender to make its
state persistent, and the second CIC, for the notification sent by the original
receiver, requires the receiver to make its state persistent as well. With an ICIC
for the entire interaction, the sender waits synchronously for this notification
(rather than resuming other work in its “running” state), and the receiver’s
part of the committed interaction is no longer deferrable. This is similar to
an optimized form of two-phase commit between the components: it involves
only two participants with the sender being the coordinator, and making its
commitment right away, a form of “first agent optimization” (i.e. a “dual” version
of the well known last agent optimization [Gray and Reuter 1993; Bernstein
and Newcomer 1996; Weikum and Vossen 2001]). This a priori commitment is
feasible here because the sender guarantees that it will resend the message

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 307

Fig. 6. Statechart for immediately committed interaction contract.

until it eventually gets the receiver to also commit the interaction. Figure 6
depicts the ICIC behavior as a statechart.

With a committed interaction, whether either party requires logging depends
on whether there are nondeterministic events that need to be made repeatable.
If not, then no logging is required, as the interaction, including the message
contents, is made persistent via replay. With an immediately committed inter-
action, the receiver is required to make stable the message contents so that its
state, which includes the receipt of the message, is persistent without needing
the sender to resend the message. Thus, an immediately committed interaction
can be more expensive than a committed interaction both in log-forces (when
logging is used for message persistence) and in how much is logged (both mes-
sage arrival and contents).

Because ICICs always require forced logging by the receiver to immediately
install the interaction, they are not always appropriate. It is the avoidance of
this cost and its adverse impact on system throughput that makes the simple
committed interaction useful. In traditional OLTP, expensive ICICs have been
the method of choice. CICs substantially reduce the overhead of a recovery con-
tract. ICICs do, however, ensure independent recovery of the receiver; otherwise
the receiver must rely on the sender for recreating the message contents. We
discuss such recovery dependencies in more detail in Section 5.3.

4.3 Persistent-External Component Interactions

Sender and receiver must be Pcoms to engage in committed interactions. Exter-
nal components (Xcoms) may not be persistent, hence cannot have committed
interactions. Importantly, one form of Xcom is a human user. Our intent is to
come as close as possible to providing an immediately committed interaction
with Xcoms, including users. This leads us to introduce external interaction
contracts (XICs).

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

308 • R. Barga et al.

Definition 3. An external interaction contract is a contract between
a persistent component that subscribes to the rules for an immediately com-
mitted interaction, and an external component, that does not. The impacts
on external sender or receiver (or users) of Pcom interactions with it are de-
scribed below. Note that these are impacts on, not obligations of, the external
component.

X1: Output Message Send. A Pcom (usually a client machine) sends
(displays) a message to an Xcom (e.g., external user), after having logged
the message send. The sender Pcom crashes before knowing whether
the message was seen. Hence it must resend the message. Because
an Xcom might not eliminate duplicates, a user may see a duplicate
message.
X2: Input Message Receive. An external user (Xcom) sends a message,
via keyboard, mouse, or other input device, to a (client) Pcom. The Pcom
crashes before logging the message. On restart, the user must resend the
message. But the user (an Xcom) has not promised to resend the message
automatically; rather if makes only a “best effort” at this. Moreover, the
failure is not masked.

The property of interest here is that in the absence of a failure during the XIC
interaction, the result of an XIC is an immediately committed interaction that
masks internal failures from the external components. Importantly, a Pcom
failure between the logging of the input message and the output message is
known to be masked from the external component.

4.4 Persistent-Transactional Component Interactions

Another form of contract covers interactions between a Pcom and a transac-
tional component (Tcom), usually a data server. These are request/reply in-
teractions, where either a) a Pcom request message initiates the execution
of a transaction (e.g., invoking a stored procedure) against the server’s state
and produces a reply reporting the transaction outcome, or b) a sequence of
Pcom request/reply interactions (e.g., SQL commands) occurs, the first initi-
ating a transaction and the last being the server’s final reply to a commit-
transaction or rollback-transaction request. The Tcom’s state is transactional.
During transaction execution, the changes made by the transaction are iso-
lated, visible only to transaction participants. The Tcom’s state transition is
atomic, all-or-nothing, based on whether the transaction commits (all) or aborts
(nothing).

Persistence makes no requirements on interactions between Pcom and Tcom
during a transaction. And transaction isolation keeps intratransaction state
changes from propagating elsewhere in the system. The critical interaction is
when the Pcom sends a transaction-commit request message to the Tcom, and
the Tcom sends a reply to this message. To provide persistence and exactly-once
semantics for interactions between Pcoms and Tcoms, we place requirements
on both Pcom and Tcom, as described below in the transactional interaction
contract (TIC):

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 309

Definition 4. A transactional interaction contract between a Pcom and
a Tcom consists of the following obligations.

Pcom:

PS1: Persistent reply-expected state. The Pcom’s state as of the time at
which the reply to the commit request is expected, or later, must persist
without its having to contact the Tcom to repeat its earlier sent messages.
The persistent state guarantee thus includes the installation of all earlier
Tcom replies within the same transaction, for example SQL results, and
return codes.
Persistence by the Pcom of its reply-expected state means that the Tcom,
rather than repeatedly sending its reply (under TS1), need send it only
once. The Pcom explicitly requests the reply message should it not receive
it by resending its commit request message.
PS2: Persistent commit request message. The Pcom’s commit request
message must persist and be resent, driven by timeouts, until the Pcom
receives the Tcom’s reply message.
PS3: Unique message. The Pcom promises that its commit request
message has unique contents (including all header information such as
timestamps, etc.).
PR1: Duplicate message elimination. The Pcom promises to eliminate
duplicate reply messages to its commit request message (which the Tcom
may send as a result of Tcom receiving multiple duplicate commit request
messages sent by Pcom because of PS2).
PR2: Persistent reply installed state. The Pcom promises that, before
releasing Tcom from its obligation under TS1, its state at the time of the
Tcom commit reply message receive or later, is persistent without the need
to again request the reply message from the Tcom.

Tcom:

TR1: Duplicate elimination. Tcom promises to eliminate duplicate com-
mit request messages (which Pcom may send to satisfy PS2). It treats du-
plicate copies of the message as requests to resend the reply message.
TR2: Atomic, isolated, and persistent state transition. The Tcom
promises that before releasing Pcom from its obligations under PS2 by
sending a reply message, it has proceeded to one of two possible states,
either committing or aborting the transaction (or not executing it at all—
equivalent to aborting), and that the resulting state is persistent.
TS1: Persistent (faithful) reply message. Once the transaction termi-
nates, the Tcom replies, acknowledging the commit request, and guarantees
persistence of this reply until released from this guarantee by the Pcom.
The Tcom promises to resend the message upon explicit Pcom request, as
indicated in TR1 above. The Tcom reply message identifies the transaction
named in the commit request message and faithfully reports whether it has
committed or aborted.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

310 • R. Barga et al.

TS2: Unique message. The Tcom promises that its commit reply message
has unique contents (including all header information such as timestamps,
etc.).

In current practice, for example with current database systems, the most dif-
ficult requirement is to ensure the delivery of the transaction outcome message.
The reply to a commit request message might not be delivered even though the
transaction successfully commits, as a crash may occur between transaction
commit and message send. We require a stronger guarantee for Tcoms, as ex-
pressed in TS1, namely that the reply must persist and be resent upon request
from the Pcom. Furthermore, when the transaction aborts, a database may for-
get the transaction, which could pose difficulties for making the transaction
outcome message persistent.

When a transaction commits, as directed by a commit request message, the
Tcom must ensure that the commit message is stable until it is released from
this requirement by the Pcom. It is this stable reply message (reporting that the
transaction committed) that provides the testable state preventing the trans-
action from multiple executions. We do not need the faithful reply guarantee,
in which the Tcom is obligated to correctly report on the commit/abort outcome
of the transaction, to ensure that Pcom state is persistent. This guarantee is
necessary, however, to ensure exactly-once execution semantics, including the
updates to databases.

Note that PS1 applies only for commits, not aborts. PS1 removes the need
for a Tcom to retain earlier messages of the transaction. TS1, in conjunction
with PS1 means that the Tcom need only capture the transaction’s effects on its
database and its reply to the commit request message, since earlier messages in
the transaction are not needed for Pcom state persistence. Thus the Tcom sup-
ports testable transaction status so that the Pcom can inquire whether a given
transaction was indeed committed. This is important as persistent committed
state and persistent commit reply are what are usually guaranteed by queued
transactions TP monitors and by Phoenix/ODBC [Barga et al. 2000; Barga and
Lomet 2001]. Thus, our recovery contracts work with existing infrastructure.

When a transaction aborts, there are no guarantees except that the transac-
tion’s effect on Tcom state is erased. If the Tcom aborts the transaction or the
Pcom requests a transaction rollback, neither messages nor the Pcom’s intra-
transaction state need persist. There are two cases:

1. The Tcom fails or autonomously aborts the transaction for other reasons. If a
transaction aborts following a sequence of request/reply interactions within
the transaction, abort is signaled to the Pcom in reply to the next request
(e.g., through a return error code). Abort can also result from a commit or
a rollback request message. When the Tcom has no record of a transaction,
this means that the transaction has been aborted. So persistence of an abort
reply message is trivially achieved. The Pcom may choose to re-initiate the
transaction, but the Tcom treats this as a completely new transaction, a
standard practice in transaction processing. If the abort response is lost, a
repeated commit request message either returns the abort response, or, if

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 311

the entire transaction is defined by the commit request message (e.g., when
invoking a stored procedure with a single SQL call), causes the re-execution
of the transaction, with a new outcome that is reported to the Pcom.

2. When the Pcom fails in the middle of the transaction, the Tcom will abort
(e.g., driven by timeouts for the connection) and forget the transaction. When
the Pcom later attempts to resume the transaction (on a new connection), the
Tcom will respond with, for example, a “transaction/connection unknown”
return code, and the Pcom proceeds as in the first case.

In addition to commit and abort, a third scenario arises when the transaction
is still active at the Tcom and the Pcom repeats the sending of the commit re-
quest message, its way of asking about the transaction status. This can happen
if the Pcom times out waiting for a reply to its commit request, or fails after
having sent a commit request but before receiving the commit reply. Should the
Pcom require restart, it would be able to recreate the commit request (by PS1).
In any event, the Tcom must detect a duplicate message and, if the activity of
the original commit request is not finished, the Tcom must await the comple-
tion of this work and then report back the outcome as if it had received only a
single message.

4.5 System-Wide Composition of Contracts

Our aim is to transform from black art to engineering the method for guar-
anteeing system-wide recoverability for multi-tier systems. Our approach is
to combine bilateral interaction contracts between pairs of components into a
system-wide agreement that provides the desired guarantees to external users.
The key to such a recovery constitution is the observation that the behavior
of a multi-tier system is based on these different kinds of interactions: inter-
nal ones that do not involve user or data server, external ones between a user
and a (client) component, and transactional ones between components and data
server. Interaction contracts provide the following general solution:

� Each internal interaction between a pair of Pcoms has a committed interac-
tion contract (CIC or ICIC).

� Each external interaction between Pcom and Xcom (user) has an external
interaction contract (XIC).

� Each request/reply interaction from Pcom to Tcom has a transactional inter-
action contract (TIC).

Note: Tcoms are not allowed to call Pcoms (violating isolation and breaching
the transactional all-or-nothing paradigm) or Xcoms.

Our recovery constitution allows arbitrary interaction patterns between
Pcoms, including, for example, asynchronous message exchanges, callbacks
from a server to a client or among servers (e.g., to signal exceptions), or conver-
sational message exchanges with either one of two components being a possible
initiator (e.g., in collaborative work applications). The only restriction is that
Tcoms not call Pcoms or Xcoms but only reply to requests from Pcoms. Then
the following very general theorem holds:

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

312 • R. Barga et al.

THEOREM 2. Consider an arbitrary (possibly cyclic) graph of message ex-
change relationships among a set of components with an arc from component
A to component B if A sends a message that B receives. The graph must have
no edges between Tcoms and Xcoms, and the only edges from Tcoms to Pcoms
are Tcom replies to Pcom transactional requests. Then the following holds: If
there is a CIC (or ICIC) for each pair of Pcoms that interact directly, an XIC
for each message sent or received by an Xcom, and a TIC for each message sent
or received from a Tcom, then all failures can be masked with the exception of
failures during external interactions.

PROOF. We first derive a total ordering of all messages in the entire sys-
tem’s history from what is known as causal order in the distributed computing
literature:

1. If a component receives message A and later sends message B, then A is
before B;
if a component sends message A and later sends message B, then A is before B;
if A is before B and B is before C, then A is before C (i.e., we consider the
transitive closure of the orderings according to (i) and (ii)).
All messages that are unordered according to (i) through (iii) are arbitrar-
ily ordered by some topological sorting of the partial order obtained from (i)
through (iii).

This yields a total message order that preserves message send order in each
component. In addition, we assume that at each component, any nondetermin-
istic events (including message receives) are totally ordered among each other
and with message sends. This total message order does not guarantee that mes-
sages are delivered to the receiving components in causal order. We make no
assumptions about the underlying communication system. This send message
order merely serves as a basis for the following induction: we prove our claim
by induction on the number of message exchanges in the system history, up to
the last failure.

Basis: The first sent message in the system history must be an input mes-
sage as all other messages are causally dependent on input. This message is
subject to an XIC. Thus, it is guaranteed to be recreatable once the contract is
completed. However, since failures can occur at any time and repeatedly, there
is no guarantee that this input might not need to be entered repeatedly, as
permitted by our claim.

Induction: Assume that the entire system history consists of n+1 sent mes-
sages and that our claim holds for the first n messages, where we ignore and
discard any messages sent on behalf of uncommitted or aborted transactions be-
tween a persistent component (Pcom) and a transactional component (Tcom).
(These transactional messages become relevant only upon the commit of the
transaction.) We further assume that external interactions up to this point
also satisfy our induction hypothesis. Thus all n messages have been received
and processed with exactly-once semantics. Further assume that it is either the
sender or the receiver of the n+1st message that fails after the completion of the
n+1st committed interaction. Note that this does not rule out multiple failures

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 313

of one or both of these components, or other components, but we can assume
that the recovery is performed for each failure separately and sequentially. All
guarantees up to and including the nth message are satisfied by the induction
assumption; so it is indeed only a failure by the n+1st sender or receiver that
needs closer inspection.

We can verify our claim by a case analysis with regard to the type of the n+1st

message (i.e., internal versus external and persistent versus transactional com-
ponent) and the component that fails (i.e., sender versus receiver):

1. Internal interaction among persistent components: If the n+1st message is
between two persistent components then the following holds. The failed com-
ponent is reincarnated from its last installation point and replayed from
there. During replay all nondeterministic events that precede the last sent
message are reconstructed from a local log. This is guaranteed because of
the component’s state recreatability guarantee that is part of the last send’s
committed interaction contract. All received messages, that precede the com-
ponent’s own last send in the causal order, can be recreated by the induction
assumption.
a. Failed component is sender of n+1st message: The CIC for the send en-

sures that we can recreate and repeat the send. Since all receivers in
a CIC can test for duplicate messages, this restart behavior preserves
exactly-once semantics.

b. Failed component is receiver of n+1st message: We know that, in its prior
incarnation, it has not sent any messages after receiving the n+1st one, for
then the n+1st message would then not be the last in the global order. So
the receiver has not committed its state to any other component after its
own last message send, which is recreatable by the induction assumption.
Thus the fact that the received message was sent again and received
(perhaps multiple times) in a state that possibly differs from that of the
prior incarnation but has not been exposed to other components, does not
unmask the failure.

2. External Interaction: The n+1st message is an external input or output mes-
sage. Then the failed component must be either the internal receiver of
external input or internal sender of external output. These interactions are
subject to an XIC. Hence, once the interaction completes, the message is sta-
bly delivered (in either direction). Hence, no subsequent failure can affect
the system’s ability to mask a failure in this XIC. For failures within the ex-
ternal interaction, arbitrary repeating of the message send or receive may
be required. This is inevitable in any recovery scheme, and is permitted in
the behavior for our claim.

3. Internal interaction between a persistent and a transactional component:
The n+1st message is a transactional request from a Pcom to a Tcom or a
transactional reply from a Tcom to the requesting Pcom. If this message is
neither the Pcom’s commit request nor the Tcom’s commit reply then this
n+1st message does not require any guarantee as the transaction is not
(yet) committed. If it is the Pcom’s commit request, then the Pcom guaran-
tees its state to be persistent as of the point when the commit request is

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

314 • R. Barga et al.

sent; so the commit request message can be repeated if necessary. Recall,
however, that the Tcom may still abort the transaction; then it is up to the
Pcom to handle this outcome and the Pcom is able to do so because of its
state being persistent. The final case to consider is when the n+1st message
is the Tcom’s commit reply. At this point the Tcom promises that both its
state and the reply message are persistent. So the guarantee in our claim is
extended to the n+1st message and covers also, implicitly through the persis-
tent state of the Pcom, all reply messages that may have been sent within the
transaction boundaries (in the case that the transaction comprises multiple
request/reply steps).

Theorem 2 is the basis for building multi-tier systems with message, compo-
nent state, and data recovery with failure masking. However, it does not capture
important pragmatic issues. It says nothing about when CIC or ICIC contracts
are released, and garbage collection and log truncation can be performed at the
components. Before we describe these, we must discuss our underlying imple-
mentation techniques. We will return to this issue in Section 5.

Inability to mask send or receive failures can occur only with a failure dur-
ing an external interaction. This is possible with any conceivable recovery al-
gorithm without special hardware support. An example of possible hardware
support (providing testable state) for output messages is an ATM for dispensing
cash in which a mechanical counter records when money is dispensed. Output
messages (e.g., cash) are guaranteed to be delivered exactly once, that is only
when the counter is in the correct state.

5. IMPLEMENTING RECOVERY CONTRACTS

Interaction contracts and implementation measures are separate layers in our
framework. A system can provide strong contracts, in the sense of Theorem 2,
for all bilateral interactions while implementing some of them with little or no
overhead. Indeed, there are many potential ways for a collection of components
to support CICs. Here we outline one such way to do this; more details can be
found in Barga et al. [2002].

5.1 Log Management

Data servers have the hardest logging requirements because they are usually
heavily utilized, support many concurrent “users,” maintain valuable enter-
prise data, and are carefully managed for high availability. In addition to the
usual logging for persistent data (see Section 2.1), the data component, a Tcom,
needs to log only the final reply message for a caller’s commit request, with
enough information so that it can recognize duplicate commit request mes-
sages, and the server log needs to be forced before sending this final reply.
Aborted transactions require no log forcing. Because SQL session states such as
cursors or temporary tables can span transaction boundaries, we also provide
persistent state for session components. The server maintains this informa-
tion as state that is covered by interaction contracts. Phoenix/ODBC [Barga
et al. 2000; Barga and Lomet 2001] retain this state to provide persistent
sessions.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 315

Asynchronous message receives require logging (but no log-forcing), logical
logging being sufficient for CIC interactions. Logical log entries capture the
nondeterministic interleaving and uniquely identify sender and message, but do
not contain message contents. Logging for sent messages can be either physical,
including message contents, or logical. CICs require that the server force its log
to include the (chronologically ordered) log records that ensure the persistence
of a sent message before actually sending the message, when received messages
have arrived in nondeterministic order.

The advantage of CICs versus ICICs in reducing recovery overhead shows
up with application servers and clients. For these components, often (but not
necessarily) the only nondeterminism is the result of user input or data server
interactions. Further, these components usually have little reason for using
ICICs. What such components need to do for a CIC is to guarantee that replay
will recreate their state and sent messages. In the absence of nondetermin-
ism, this is frequently possible without forcing the log at interactions between
system components. Only user interactions need to be force-logged as external
interactions.

For interactions with data servers (i.e., Tcoms), Pcoms (application servers
or clients) need to ensure their state persistence as of the time of the commit-
transaction request. If the transaction consists of a sequence of request/reply
interactions, the Pcom needs to create log entries for the earlier Tcom replies
and force the log before sending the commit request. Otherwise (i.e., for trans-
actions with a single invocation request, e.g., to execute a stored procedure, and
single reply) no forced logging is needed, unless the commit request is preceded
by nondeterministic events that have to be tracked. If the Pcom issues a roll-
back request, no force logging is needed. The Pcom needs application logic for
aborted transactions in any event.

5.2 Component Restart after Failure

After a failure, each Pcom performs local recovery that reincarnates the com-
ponent at its most recent installation point and replays the component log from
there. The log is scanned in order, interpreting log entries to recreate persistent
data and component state. To recreate component state, data reads, and other
nondeterministic events are replayed from the log and the appropriate infor-
mation, reconstructed via recovery, is fed to the component. This information
can be from the local log, or requested of other components. The component is
re-executed between message receives and other events. All Pcoms (data and
application servers and clients) use this procedure to recover both component
state and sent messages.

Once a Pcom is recovered, it resumes normal operation. Part of this is to
periodically resend committed-interaction messages that a receiver has not
yet made stable. For a stable interaction, the message is only resent when
the receiver explicitly asks for it, so it still must be persist. For an installed
interaction (an ICIC is promptly installed), no action is needed, as the message
contents are stable at the receiver.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

316 • R. Barga et al.

5.3 Recovery Independence and Garbage Collection

We want to avoid one component’s recovery forcing a second component to per-
form an expensive recovery when the second has not failed. We want “isolated”
component recovery, that is, no cascading restarts typical of many “optimistic”
fault-tolerance algorithms [Alvisi and Marzullo 1995]. Interoperating compo-
nents providing cross-organizational e-services are frequently autonomous, and
cascading restarts are absolutely unacceptable. Nonetheless, an isolated compo-
nent must resend messages as long as its contracts are not released. A solution
is the volatile message lookup table (MLT) [Lomet and Weikum 1998] that
records in main memory all uninstalled sent messages. These messages can be
resent without component replay or reading the log. The MLT is rebuilt dur-
ing recovery if the component fails; so it can always be present during normal
execution.

With complex multi-tier systems spanning autonomous organizations, com-
ponents must be able to recover without reliance on other potentially less re-
liable or less trusted components. This autonomous recovery [Lomet and
Weikum 1998] for the server in a client-server setting can be generalized to
component ensembles. A component of an ensemble may rely on trusted en-
semble components, but wants to be autonomous of components outside the
ensemble. One example ensemble is a data server and application server at
an e-commerce site, clients being outside the ensemble. An immediately com-
mitted interaction contract with immediate forced logging, similar to the Pcom
side of an external interaction contract, produces this autonomy.

Garbage collection is important for all components because they need to
discard information from the MLT to reclaim memory and truncate the log to
reclaim log space. It is critical for server components to ensure fast restart and
thus high availability. Contracts with other components can hamper garbage
collection. Therefore, another facet of component autonomy is to ensure that
log and MLT entries kept on behalf of other components can be dropped in a
reasonable time.

5.4 Performance Impact

In this section we illustrate the potential performance of interaction con-
tracts using the advanced multi-tier e-services scenario illustrated in Figure 1
(Subsection 1.3). In this example, client, Expedia web server and application
server, and Amadeus and Sabre application servers, support sessions that are
Pcoms, while all database servers support sessions that are Tcoms. Amadeus
and Sabre interactions are handled via ICIC forced logging. But messages lead-
ing to a purchase that are directed to the lower-tier Expedia application server
are treated as CICs, and are not forced. Interactions with database servers are
treated as TICs. The bilateral interaction contracts for our e-service are set up
as follows:

[user ⇔ client] The client handles user input and output with XICs via
prompt forced logging. Current Internet browsers do not provide native
support for logging, but can be enhanced with a plug-in or applet.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 317

[client ⇔ database server] Interactions between the client and the
database server are handled with TICs. The database server commits mod-
ifications to the permanent and shared database when sending its final
reply to the client, and must force log this final reply message to ensure its
persistence.
[client ⇔ Expedia web server] Between client and upper tier web server,
client request and server reply are handled with CICs. Forced logging is not
required as client XIC logging captures all nondeterminism.
[Expedia web server ⇔ Expedia application server] Between Expe-
dia web server and application server, requests and replies are handled
with CICs. No forced logging is required as, again, client XIC logging has
captured all nondeterminism.
[Expedia web server ⇔ external application server] Between the up-
per tier application web server and lower tier external application servers,
ICICs that require forced logging by both the Expedia web server and exter-
nal application servers are used to capture the potential nondeterminism
as these application servers belong to other organizations and are thus
autonomous.
[application server → database server] Requests from application
server to database server are transactional, and require a TIC. Because
the application server is without nondeterminism, forced logging of indi-
vidual requests is not required. A commit request exposes the effects of
application server execution via changes to database server state, hence
this state must persist. However, since prior ICICs with Expedia server
or client have already captured all nondeterminism, forced logging is not
required.
[database server → application server] Finally, a database server com-
mits modifications to a shared database when sending its final reply to the
application server, exposing changes to other application servers. Thus the
TIC requires a persistent reply message. Hence, this final reply (i.e., the
return value for the SQL “commit work”) must be force logged, which can
also capture the database server’s committed transaction updates.

The contracts identified above are necessary for system-wide recoverabil-
ity. The database server may also require effective garbage collection and
independent recovery. Specifically, the database server can treat its trans-
action ending reply to the application server as an immediately committed
interaction so that it can discard messages once it knows that the applica-
tion server has received them, and therefore subsequently freely truncate its
log.

The number of forced log writes dominates the cost of our protocols in the
above scenario. Let the user session consist of u input messages and u output
messages, and let the client generate one request to its database server and x
requests to the Expedia server for each user’s input message. In turn, Expedia
will create y requests per incoming request to each of the three application
servers, and let each of the external application servers create z requests per

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

318 • R. Barga et al.

incoming request to its database server. Under these assumptions:

� Pessimistic message logging requires a total of 2u + 4u + 4ux + 12uxy +
12uxyz forced log writes, a forced log write for each message by both sender
and receiver.

� Our protocol with the system configured as above, permits a potential reduc-
tion in the number of forced log writes to only u + u + 0 + 12uxy + 3uxyz, a
saving of 4u + 4ux + 9uxyz disk I/Os.

6. IMPLEMENTATION OF INTERACTION CONTRACTS FOR INTERNET
E-BUSINESS SESSIONS

This section describes a prototype system coined EOS (for Exactly-Once
E-Service) [Shegalov et al. 2002] that implements the interaction contract pro-
tocols for a three-tier web service architecture: an Internet browser as client,
an HTTP server with a servlet engine as middle-tier application server, and a
database system as backend data server. Specifically, we have built the proto-
type using IE5 as browser, Apache as HTTP server, and PHP as servlet engine;
the data server can be any ODBC-compliant database system (e.g., SQL Server,
Oracle, or DB2/UDB). The prototype currently supports an XIC between the
user and the browser, a CIC between the browser and the mid-tier application
server, and a TIC between the application server and the data server (where
the implementation of the last part is not yet completed). Building the pro-
totype required extensions to the IE5 environment in the form of JavaScript
code in dynamic HTML pages (DHTML), modifications of the source code of the
PHP session management in the Zend engine [PHP; ZEND], and modifications
of the ODBC-related PHP functions as well as additional stored procedures in
the underlying database. The main emphasis of the following description is on
implementing (i) the XIC behavior at the IE browser, and (ii) the CIC behavior
in the middle-tier Internet application server, which are the most innovative
aspects of our work.

6.1 Browser Extensions

To implement an XIC between the user (an Xcom) and her Internet browser
session (a Pcom), one needs to extend or modify browser behavior so that certain
types of user interactions (and also HTTP get or post requests to application
servers and their replies) can be logged to stable storage. This raises issues of
how to intercept the relevant events and how to embed the extra XIC code in
the run-time environment of the browser. The solution that we came up with
embeds special JavaScript code in a normal HTML page, and this DHTML
(dynamic HTML) code realizes the XIC behavior. Our usage protocol requires
that the user start interacting with an e-service by first visiting an initialization
web page of that service, for example, a greetings page. The reply from this
HTTP request contains our JavaScript code. The code is inserted into the HTML
page returned by the server transparently to the application PHP program that

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 319

constructed the HTML page; this is done by our modifications to the Zend engine
(see Subsection 6.2).

The inserted JavaScript code exploits extensible event handling of IE5
[MSDN LIBRARY: PERSISTENCE]. It registers for various kinds of events, most
importantly, the filling in of form entries, clicking on buttons, and positioning
of scrollbars (and, optionally, the opening or closing of additional windows); IE5
automatically invokes the associated event-handling code upon these events.
Note that our code is invoked only after the events have been processed by the
browser itself and any other JavaScript code that may be already present in
the application’s original HTML page. Figure 7 shows fragments of our browser
extension code.

The main function of our event-handling code stubs is to log the updates to
the browser state (e.g., the user having clicked a button or filled in a form en-
try). This logging is done by modifying a so-called XML store, which is an XML
structure managed by IE on the client’s disk in a way similar to a persistent
cookie. This feature is provided by IE with a default persistence behavior called
“userData Behavior.” HTML elements with attached userData behavior provide
the methods for accessing the individual elements of the XML store. The XML
object associated with the XML store can also be accessed and manipulated
using the XML DOM parser, which is natively supported by IE [MSDN LIBRARY:
PERSISTENCE]. To force our log entries in the XML store to stable storage, we sim-
ply call the “pagestate.save” method, which triggers IE to write the XML store to
disk.

For the CIC between browser and web application server, all relevant state
information (i.e., each input field, whose value is passed to the web server,
so that a completely identical HTTP request can be generated or “replayed”
again) and rendering details (the window area viewed or edited by the user)
are logged to an XML store associated with the current session step. Replies to
HTTP requests are also logged, and they will be reflected in the browser state
that is reconstructed upon recovery.

Client state survives failures as follows. When the browser fails and the
user restarts it and revisits the same e-service initialization page, she will be
automatically redirected by the web server to the last visited (i.e., most recent)
page of her interrupted conversation and our JavaScript code will be reloaded.
The JavaScript code is set up to first look for an XML store previously saved on
the client machine. If the XML store exists, its contents are used to recover input
field values and replay all relevant events on windows, buttons, and forms, so
that the user would not see any difference to the state immediately before the
failure.

6.2 Application Server Modifications for CIC

To implement a CIC for the web application server, the main issues to be ad-
dressed were the virtualization of message ids and the logging of HTTP requests
and replies as well as session state information at the server side. We were able
to realize this while modifying only the session management module of the

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

320 • R. Barga et al.

Fig. 7. Fragments of the DHTML code embedded in the reply from the recovery-enabled web
server.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 321

PHP Zend engine, hence avoiding source code modifications to the regular in-
frastructure on the server.

For virtualization, we used our own message sequence numbers (MSNs)
that are unique and consecutive within an application session. An application
session, which is independent of any TCP session, might consist of several steps,
for example adding items to a shopping cart, steps that constitute a “logical (and
stateful) session.” MSNs are added to the HTTP request and reply messages in
the form of additional cookies.

The modified Zend engine force-logs all outgoing HTTP replies, tagging each
of them with the MSN included in its header. This is done by writing this
information as additional session variables to the PHP session state file. Note
that there is no need to force-log the incoming HTTP request, as the client
already promises the persistence of this message as the CIC sender. The session
state file is accessible to all clones of PHP server processes that are controlled
by the Apache web server. If multiple Apache servers run in a computer cluster
for the same IP address, the file must be shared among all nodes in the cluster.
This technique ensures that we do not depend on “sticky” connections between
HTTP clients and PHP server processes.

For a server to proactively recover servlet results after a server crash, as
opposed to having servlet replays only when prompted by resent client requests,
we may optionally log incoming HTTP requests along with the PHP variables
filled by HTTP get or post parameters and all session variables that have been
registered up to this point. The log record for an HTTP request already contains
the name of the invoked PHP program and its input parameters, which are
either form variables or encoded in the URL. This captures the initial state of
the servlet execution. Since the servlet is PWD, no other logging is needed for
correctness.

We can now describe how the modified Zend engine handles the various
exceptions and recovery situations:

� Upon receiving an HTTP get or post request carrying a cookie with an MSN,
we test for a duplicate request by checking the log. If it is a resent request
and the corresponding servlet has already terminated and produced an HTTP
reply, the reply is retrieved from the log and sent to the client. If the servlet
has died and no reply is available, it is restarted. If we had logged the state of
session variables during the prior incarnation of the servlet, its replay would
start from the last completed installation point.

� When an HTTP reply is sent to an unresponsive client (e.g., the client does
not send a TCP ACK), the server simply ignores this but is prepared to re-
ceive a duplicate HTTP request at a later point. When this client-initiated
prompting happens, the server resends the reply. As the reply itself is stably
logged at the server, it is guaranteed to persist across server failures. Once the
client acknowledges the receipt of the HTTP reply by issuing another HTTP
request within the same application session or invokes a servlet with a ses-
sion destroy function call, the server can garbage-collect the previous step’s
log entry. To alleviate the potential danger that the server cannot safely dis-
card log entries for clients with users who have intentionally aborted sessions

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

322 • R. Barga et al.

Fig. 8. Pseudocode for application server logging and recovery.

or simply walked away, we can enhance the JavaScript code that we embed
in the HTTP replies to react to “onAbort” browser events and to timeouts: the
code would simply send an explicit “abort session” message as a final HTTP
request to the web application server.

When a PHP process fails while executing a servlet on behalf of a client’s
HTTP request, recovery is initiated when the client repeats its request (as part
of the CIC behavior) or the user hits the “Refresh” button. The resent request
is handled by the next available PHP process, which first performs a duplicate
elimination test, possibly replays the servlet execution, and finally (re-)sends
the reply. When Apache or the entire computer fails, the same thing happens
after the restart of Apache. So recovery is automatic, but we rely on the client
re-initiating the request rather than on server initiative. This behavior carries
over to a web server farm on a computer cluster; failover to another node in the
cluster is automatic as long as clients resend requests.

The logging and recovery logic of our modified Zend engine are summarized
in pseudocode form in Figure 8.

6.3 Performance

To evaluate the run-time overhead of our failure-masking techniques and
exactly-once guarantees, we performed measurements with Apache/1.3.20 and
the Zend engine (PHP/4.0.6) running on a PC with a 1 GHz Intel Pentium III
and 256 MB memory under Windows2000. The load on this web application
server was generated by a synthetic HTTP request generator (Microsoft Web
Application Stress Tool). The generator simulated conversations with n steps,
each of which simply sent three string parameters as form fields, and a simple
PHP program incremented a counter registered as a session variable and re-
turned its value to the client. For simplicity we did not involve any data server in
this setup. There were no human user interactions or simulated think times in
this experiment. Table I shows the total elapsed time, between the first request

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 323

Table I. Elapsed Time and CPU Time for n-step Conversations With and Without CIC

Original Zend engine Modified Zend engine with CIC
Server CPU Server CPU

N Elapsed time [sec] time [sec] Elapsed time [sec] time [sec]
1 0.01893 0.01412 0.01921 0.01435
5 0.09378 0.07052 0.09507 0.07156

10 0.18183 0.14380 0.18610 0.14363

Table II. Multi-User Response Time and Throughput for n-Step Conversations With and
Without CIC

Original Zend engine Modified Zend engine with CIC
Response time[sec] Server throughput Response time [sec] Server throughput

N for n-step session [sessions/sec] for n-step session [sessions/sec]
1 0.07872 62.35 0.08946 54.96
5 0.39475 12.434 0.44865 10.96

10 0.79597 6.168 0.80234 5.522

and the last reply as seen by the client, and the CPU time on the server side
for n = 1, 5, 10 steps, comparing the original Zend engine to the modified Zend
engine with CIC behavior for exactly-once guarantee. The figures show that the
overhead of our CIC implementation is almost negligible, with respect to both
user-perceived latency and increased CPU time.

We also performed multi-user measurements where the HTTP request driver
was replicated on 5 different client machines, each of which generated requests
to the same web application server without simulating any think times (i.e.,
using a closed system model). Table II shows the measured average response
time and throughput in terms of the simulated n-step user sessions. The figures
show that the performance degradation is less than 10 percent and thus well
within the range of acceptable overhead.

6.4 Further Considerations

The CIC exactly-once guarantee between web browser and application server
is very useful when impatient users click a commit/buy/checkout button mul-
tiple times. This particular difficulty could, to a large extent, also be avoided
by better design of the user interface in the browser. Applications could and,
in our opinion, should be written so that a clicked button is deactivated, pos-
sibly highlighted in a special color, until the corresponding HTTP reply is re-
ceived. With a XIC-enabled browser and a CIC with the application server,
the request would be guaranteed to be executed exactly once, yet the user
would be prevented from creating unnecessary “noise.” For the human user
such a deactivated button that is reactivated upon receiving the reply serves as
“eyeball-testable state.” Note that such a better GUI alone would not eliminate
all kinds of problematic situations caused by browser or application server
failures in the middle of an application session, and surely does not obviate
the need for interaction contracts. Our interaction contract protocols devel-
oped in this paper are orthogonal and complementary to more robust user
interfaces.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

324 • R. Barga et al.

Another dimension that is mostly orthogonal to interaction contracts is se-
curity. When secure communication channels are used, say HTTP over SSL
(known as HTTPS), the underlying encryption is transparent to our protocols.
In particular, as our resource virtualization never refers to any actual TCP
session ids, the message sequence numbers and application session ids used by
our protocol are not at all affected by the physical transport layer underneath.

The situation is not quite that obvious with regard to authentication.
While standard password-based authentication is no problem, authentication
schemes with digital signatures based on keys that must not be used more than
once could possibly interfere with the replay techniques of our recovery meth-
ods. If replaying a lost message involved using the same key a second time, this
could present a security or privacy leak. The solution again lies in a flexible
mapping of virtual to physical resources. Our log records refer only to virtual
message and session ids; when a message is replayed its virtual id is mapped to
a new physical id so that the underlying signature scheme would automatically
use a new key as needed.

Finally, very advanced cryptographic protocols, for example, for anonymous
payments or legally binding electronic contracts (with mathematically provable
tracking of the various parties’ behavior including any attempts of unfair behav-
ior), can again be viewed as part of the Internet application itself, and our inter-
action contracts are orthogonal to the security issues. Overall, we believe that by
layering the interaction contracts on top of whatever security and privacy mea-
sures are used, failure-masking remains unaffected by the security protocols
and, likewise, no security leaks are introduced by the failure-handling protocols.

7. INDUSTRIAL RELEVANCE

7.1 Phoenix/App

We have also implemented the recovery guarantees framework, as part of
the Phoenix project on robust applications [MSR PHOENIX], in a system we
call Phoenix/App [Barga et al. 2003]. In Phoenix/App we integrate interaction
contracts into the Microsoft .Net runtime environment [MSDN LIBRARY: .NET;
Williams 2002], allowing programmers to build persistent component-based
applications without requiring modifications to their applications.

To use Phoenix/App, an application programmer simply registers compo-
nent classes as Pcoms or Tcoms. At runtime, applications are embedded into
the .Net runtime and the .Net interceptor calls Phoenix/App code that captures
all method calls and returns between components. Calls and replies between
Pcoms are treated as CICs, while calls and replies between Pcom and Tcom are
treated as TIC’s, and calls between a Pcom and any other component (an Xcom)
are treated as XICs. Phoenix/App uses a log manager to create log records,
flushing them to disk as necessary, and to handle log truncation. In the event of
a system failure, Phoenix/App masks the error from the application, which can
be written in any language executing on the Microsoft CLR (common language
runtime), and automatically recovers any failed components from log records
using redo recovery. The result is a persistent component-based application

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 325

that can survive system failures, without any special application code or opera-
tor intervention. While our current implementation of the recovery guarantees
framework is .Net specific, the techniques are relevant to other object middle-
ware environments such as CORBA or J2EE.

7.2 Comparison to EJB

Another component framework to which interaction contracts and recovery
guarantees could potentially be added would be J2EE with its concept of
Enterprise Java Beans (EJB). EJB includes the concepts of entity beans, which
allow persistent data from relational databases to be mapped into an object
view and manipulated through this view (i.e., the bean interface), and session
beans, which combine multiple method invocations on encapsulated objects into
a stateful session. These two types of beans would be natural components to
enhance with recovery guarantees in order to simplify the failure handling code
that has to be written by the bean implementer. To a first approximation, ses-
sion beans are candidates for the CIC or ICIC protocol, turning a bean into
a persistent component, and entity beans are candidates for the caller side of
the TIC protocol, turning a bean into a persistent component that interacts
with a transactional component, namely, the underlying database server. An
open issue, however, is to what extent this could be done without changing any
of the EJB interfaces, and how such conceivable extensions compare to other
component models (such as CORBA or .Net).

As of now [SUN 2001], the recovery capabilities stated in the EJB specifica-
tion are very limited and involve significant amounts of explicit programming.
For session beans, EJB includes a method, ejbPassivate, for saving the conver-
sational state of a stateful bean onto persistent storage. However, this is merely
a mechanism: the bean implementer must provide code for it, and it is up to the
surrounding “beans container” when to invoke it. Furthermore, the use of this
method is restricted; for example, it must not be called when program control re-
sides in the bean nor when the bean has an open transaction with a data server
(or, equivalently, when it is called, the bean implementer has to make sure that
all transactions and JDBC sessions are closed). For entity beans, atomicity
and persistence of the underlying database operations are guaranteed through
the corresponding database systems and the Java Transaction Service (JTS)
for the coordination of distributed transactions. However, when a bean imple-
menter caches persistent data and manipulates it in the bean for efficiency, all
updates on cached data are not subject to transactional control and it is the im-
plementer’s responsibility to include explicit code for writing back data to the
underlying databases. So the capabilities currently provided by EJB are still
far from being able to mask failures to application programmers and end users.

8. CONCLUSIONS

In this article we have developed a general framework for recovery guarantees
in multitier Internet applications. The novel notion of committed interaction
contracts, with exactly-once execution and best possible failure masking, is
particularly useful for e-services, which currently may exhibit unexpected and

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

326 • R. Barga et al.

undesirable behavior due to failures, the consequences of which can greatly
inconvenience the human user. Interaction contracts avoid these problems and
can contribute to the construction of more dependable e-services. For practical
viability, it is important that our protocols have been designed to minimize
logging overhead and to provide fast recovery. Our prototype implementation
for a PHP-based web application server is a proof of concept and shows that
the overhead of our protocols is acceptable. The fact that this implementation
required surprisingly few changes to the source code of the PHP Zend engine
(and relatively small special DHTML code on the browser side) indicates that
our conceptual framework provides the “right” abstractions and can be easily
adapted to real software environments.

Our framework applies to a wide spectrum of general multi-tier architec-
tures, whether underlying components are database systems, other forms of
data managers such as mail servers, application servers, message queues
or workflow servers, or any application component. Our implementation of
Phoenix/App shows that interaction contracts can be integrated with existing
middleware architectures. In such a setting, recovery guarantees for persistent
components complement the established notion of transactional components
and provide value-added failure masking. In principle, our framework can be
adapted to other middleware architectures such as J2EE and would provide
additional benefits in these environments.

The key benefit of our contribution lies in masking failures not only to end
users but also, to a large extent, to application programmers, thus largely re-
lieving them of the need to write explicit code to cope with system failures. This
simplifies application development, makes code more easily maintainable, and
generally reduces the cost of application software lifecycles.

Automatic and efficient application recovery as provided by our protocols
also improves the availability of e-services as perceived by end users. With
very fast recovery, all transient failures and temporary outages would ideally
be masked to internet users, but the internet infrastructure exhibits other id-
iosyncrasies and barely understood phenomena, such as load bursts, queueing
delays, and timeouts, that affect the users’ perception of whether a service is
working well or not. Our long-term vision is to provide comprehensive quality-
of-service guarantees for Internet-based e-services that include availability and
responsiveness, as well as “world-wide” failure masking.

REFERENCES

ALVISI, L. AND MARZULLO, K. 1995. Message logging: Pessimistic, optimistic, and causal. In Pro-
ceedings of the 15th International Conference on Distributed Computing Systems, Vancouver,
Canada, May30–June 2, 1995. IEEE Computer Society, Los Alamitos, CA, 229–236.

BARGA, R., LOMET, D., AND WEIKUM, G. 2002. Recovery guarantees for general multi-tier applica-
tions. In Proceedings of the 18th International Conference on Data Engineering, San Jose, CA,
February 26–March 1, 2002. IEEE Computer Society, Los Alamitos, CA, 543–554.

BARGA, R., LOMET, D., AGRAWAL, S. AND BABY, T. 2000. Persistent client-server database ses-
sions. In Proceedings (Lecture Notes in Computer Science, 1777) of the 7th International Con-
ference on Extending Database Technology, Constance, Germany, March 2000, C. Zaniolo, P. C.
Lockemann, M. H. Scholl and T. Grust, Eds. Springer, Berlin and Heidelberg, Germany, 462–
477.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

Recovery Guarantees for Internet Applications • 327

BARGA, R. AND LOMET, D. 2001. Measuring and optimizing a system for persistent database ses-
sions. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg,
Germany, April 2001. IEEE Computer Society, Los Alamitos, CA, 21–30.

BARGA, R., LOMET, D., PAPARIZOS, S., YU, H., AND CHANDRASEKARAN, S. 2003. Persistent applications
via automatic recovery. In Proceedings of the 17th International Database Engineering and Ap-
plications Symposium, Hong Kong, China, July 2003. IEEE Computer Society, Los Alamitos, CA,
258–267.

BARTLETT, J. F. 1981. A NonStop kernel. In Proceedings (Operating System Review 15(5)) of the
8th Symposium on Operation Systems Principles, Asilomar, CA, December 1981. ACM, New York,
22–29.

BERNSTEIN, P. A., HSU, M., AND MANN, B. 1990. Implementing recoverable requests using queues.
In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data,
Atlantic City, NJ, June 1990, H. Garcia-Molina and H. V. Jagadish, Eds. ACM, New York, 112–
122.

BERNSTEIN, P. A. AND NEWCOMER, E. 1996. Principles of Transaction Processing, Morgan Kauf-
mann, 1996.

BORG, A., BLAU, W., GRAETSCH, W., HERRMANN, F., AND OBERLE, W. 1989. Fault tolerance under
UNIX. ACM Transactions on Computer Systems 7, 1, 1–24.

CRISTIAN, F. 1991. Understanding fault-tolerant distributed systems. Comm. ACM 34, 2, 56–78.
DEBULL 2001. IEEE Bulletin of the Technical Committee on Data Engineering 24, 1. Special Issue

on Infrastructure for Advanced E-Services.
DUTTA, K., VANDERMEER, D., DATTA, A., RAMAMRITHAM K. 2001. User action recovery in internet

SAGAs (iSAGAs). In Proceedings (Lecture Notes in Computer Science 2193) of the 2nd Interna-
tional Workshop on Technologies for E-Services (TES), Rome, Italy, September 2001, F. Casati,
D. Georgakopoulos and M.-C. Shan, Eds. Springer, Heidelberg and Berlin, Germany, 132–146.

ELNOZAHY, E. N., ALVISI, L., WANG, Y., AND JOHNSON, D. B. 2002. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv. 34, 3, 375–408.

FREYTAG, J. C., CRISTIAN, F., AND KÄHLER, B. 1987. Masking system crashes in database application
programs. In Proceedings of 13th International Conference on Very Large Data Bases, Brighton,
UK, September 1987, P. M. Stocker, W. Kent, and P. Hammersley, Eds. Morgan Kaufmann, 407–
416.

FRøLUND, S. AND GUERRAOUI R. 2000. Implementing e-transactions with asynchronous replication.
In Proceedings of 2000 International Conference on Dependable Systems and Networks, New York,
NY, June 2000. IEEE Computer Society, Los Alamitos, CA, 449–458.

FU, X., BULTAN, T., HULL, R., SU, J. 2001. Verification of vortex workflows. In Proceedings (Lecture
Notes in Computer Science 2031) of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Genoa, Italy, April 2001, Tiziana Margaria and Wang
Yi, Eds. Springer, Berlin and Heidelberg, 143–157.

GRAY, J. AND REUTER A. 1993. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann.

HAREL, D. AND GERY, E. 1997. Executable object modeling with statecharts. IEEE Comput. 30, 7,
31–42.

HUANG, Y. AND WANG, Y.-M. 1995. Why optimistic message logging has not been used in telecom-
munications systems. In Proceedings of the 25th International Symposium on Fault-Tolerant
Computing Systems, Pasadena, CA, June 1995. IEEE Computer Society, Washington, D.C., 459.

JOHNSON, D. B. AND ZWAENEPOEL, W. 1987. Sender-based message logging. In Proceedings of the
7th International Symposium on Fault-Tolerant Computing, Pittsburgh, PA, July 1987. IEEE
Computer Society, 14–19.

KIM, W. 1984. Highly available systems for database applications. ACM Comput. Surv. 16, 1,
71–98.

LOMET, D. 1998. Persistent applications using generalized redo recovery. In Proceedings of the
14th International Conference on Data Engineering, Sydney, Australia, Orlando, FL, February
1998. IEEE Computer Society, Los Alamitos, CA, 154–163.

LOMET, D. AND WEIKUM, G. 1998. Efficient transparent application recovery in client-server infor-
mation systems. In Proceedings of 1998 ACM SIGMOD International Conference on Management
of Data, Seattle, WA, June 1998, L. M. Haas and A. Tiwary, Eds. ACM, New York, NY, 460–471.

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

328 • R. Barga et al.

LOMET, D. AND TUTTLE, M. 1999. Logical logging to extend recovery to new domains. In Proceedings
of 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, PA, June
1999, A. Delis, C. Faloutsos, S. Ghandeharizadeh, Eds. ACM, New York, NY, 73–84.

LUO, M.-Y. AND YANG, C.-S. 2001. Constructing zero-loss Web services. In Proceedings IEEE
INFOCOM 2001 of the 20th Joint International Conference of the IEEE Computer and Communi-
cation Societies on Computer Communications, Anchorage, AK, April 2001. IEEE, Los Alamitos,
CA, 1781–1790.

MOHAN, C., ET AL. 1992. ARIES: A transaction recovery method supporting fine-granularity lock-
ing and partial rollback using write-ahead logging. ACM Trans. on Database Syst. 17, 1, 94–162.

MSDN LIBRARY: PERSISTENCE. Microsoft Internet Explorer Persistence Overview. http://msdn.
microsoft.com/workshop/author/persistence/overview.asp.

MSDN LIBRARY: .NET. .NET Remoting Overview. http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/cpguide/html/cpconnetremotingoverview.asp.

MSR PHOENIX. Phoenix: Making Applications Robust. http://www.research.microsoft.com/research/
db/phoenix/.

OMG: CORBA 2000. Fault Tolerant CORBA Spec V1.0. http://cgi.omg.org/cgi-bin/doc?ptc/00-04-
04.

OMG: UML 1999. OMG Unified Modeling Language (UML) Version 1.3.http://www.rational.
com/uml.

PEDREGAL-MARTIN, C. AND RAMAMRITHAM, K. 1999. Recovery guarantees in mobile systems. In Pro-
ceedings of the ACM International Workshop on Data Engineering for Wireless and Mobile Access,
Seattle, WA, August 1999. ACM, New York, NY, 22–29.

PEDREGAL-MARTIN, C., RAMAMRITHAM, K. 2001. Guaranteeing recoverability in electronic com-
merce. In Proceedings of the 3rd International Workshop on Advanced Issues of E-Commerce
and Web-based Information Systems, San Juan, CA, June 2001. IEEE Computer Society, Los
Alamitos, CA, 144–155.

PHP. PHP Documentation and Downloads. http://www.php.net.
POPOVICI, A., SCHULDT, H., AND SCHEK, H.-J. 2000. Generation and verification of heterogeneous

purchase processes. In Proceedings of the 1st International Workshop on Technologies for E-
Services, Cairo, Egypt, September 2000, 5–22.

SCHULDT, H., POPOVICI, A., AND SCHEK, H.-J. 2000. Automatic generation of reliable e-commerce
payment processes. In Proceedings of the 1st International Conference on Web Information
Systems Engineering, Hong Kong, China, June 2000, Q. Li, Z. M. Özsoyoglu, R. Wagner, Y.
Kambayashi, and Y. Zhang, Eds. IEEE Computer Society, Los Alamitos, CA, 434–441.

SHEGALOV, G., WEIKUM, G., BARGA, R., AND LOMET, D. 2002. EOS: Exactly-once E-Service
Middleware (Demo Paper). In Proceedings of the 28th International Conference on Very Large
Data Bases, Hong Kong, China, August 2002, P. A. Bernstein, Y. E. Ioaninidis, R. Ramakrish-
nan, D. Papadias, Eds. Morgan Kaufmann, 1043–1046.

SUN 2001. Enterprise Java Beans Specification, Version 2.0, http://java.sun.com/products/
ejb/docs.html.

TYGAR, J. D. 1998. Atomicity versus anonymity—Distributed transactions for electronic com-
merce. In Proceedings of the 24th International Conference on Very Large Data Bases, New York,
NY, August 1998, A. Gupta, O. Shmueli, and J. Widom, Eds. Morgan Kaufmann, 1–12.

WEIKUM, G. AND VOSSEN, G. 2001. Transactional Information Systems—Theory, Algorithms, and
the Practice of Concurrency Control and Recovery. Morgan Kaufmann, San Francisco, CA, 2001.

WILLIAMS, M. 2002. Microsoft Visual C# .NET. Microsoft Press, Redmond, WA.
ZEND. Zend Engine. http://www.zend.com.

Received February 2003; revised April 2003; accepted July 2003

ACM Transactions on Internet Technology, Vol. 4, No. 3, August 2004.

