
FlashLogging: Exploiting Flash Devices for
Synchronous Logging Performance

Shimin Chen

I nt el Res earc h Pit t s burgh
4720 Forbes Avenue, Suit e 410

Pit t s burgh, PA 15213, USA
shimin.chen@intel.com

ABSTRACT

Synchronous transactional logging is the central mechanism
for ensuring data persistency and recoverability in database
systems. Unfortunately, magnetic disks are ill-suited for
the small sequential write pattern of synchronous logging.
Alternative solutions (e.g., backup servers or sophisticated
battery-backed write caches in high-end disk arrays) are ei-
ther expensive or complicated.

In this paper, we exploit flash devices for synchronous
logging based on the observation that flash devices sup-
port small sequential writes well. Comparing a wide va-
riety of flash devices, we find that USB flash drives are a
good match for this task because of its unique characteris-
tics: widely available USB ports, hot-plug capability useful
for coping with flash wear, and low price so that multiple
drives are affordable. We propose F lashLogging, a logging
solution that exploits multiple (USB) flash drives for syn-
chronous logging. We identify and address four challenges:
(i) efficiently exploiting multiple flash drives for logging; (ii)
coping with the large variance of write latencies because of
device erasure operations; (iii) efficient recovery processing;
and (iv) combining flash drives and disks for better logging
and recovery performance. We implemented our solution
within MySQL-InnoDB. Our real machine experiments run-
ning online transaction processing workloads (TPCC) show
that F lashLogging achieves up to 5.7X improvements over
magnetic-disk-based logging, and obtains up to 98.6% of
the ideal performance. We further compare our design with
one that uses Solid-State Drives (SSDs), and find that al-
though SSDs improve logging performance, multiple USB
flash drives can achieve comparable or better performance
with much lower price.

Categories and Subject Descriptors

H.2.2 [DATABASE MANAGEMENT]: Physical Design;
H.2.4 [DATABASE MANAGEMENT]: Systems—Trans-

action processing ; H.2.7 [DATABASE MANAGEMENT]:
Database Administration—Logging and recovery

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

General Terms

Algorithms, Design, Performance, Reliability

Keywords

FlashLogging, Online Transaction Processing, Synchronous
Logging, Flash Devices, Unconventional Array Organiza-
tion, Outlier Detection and Hiding, Near-Zero-Delay Archival
Disk, Recovery Processing

1. INTRODUCTION
Synchronous logging, in which log records are forced to

stable media, is one of the most important techniques for
achieving fault-tolerant computation. It is used extensively
in a wide variety of computer systems. In relational database
systems, synchronous logging is the central mechanism to
ensure transaction durability [12, 17, 22, 27]. Before a trans-
action commits, the redo log records associated with the
transaction must be flushed to the synchronous redo log.
If later the database system fails and restarts, these redo
log records guarantee that any data changes in the transac-
tion persist across the failure. Similarly, synchronous logging
(a.k.a. synchronous journal) can be used to guarantee the
durability of file I/O operations in file systems [26], and it
can be employed in distributed systems (e.g., multi-tier sys-
tems providing web services) to restore server states upon
crash recovery [2, 8, 36]. This paper investigates efficient
solutions for synchronous logging.

As DRAM capacity doubles every two years [14], an OLTP
database that was considered “large” ten years ago can now
fit into main memory. For example, in the TPCC bench-
mark [34], a warehouse, which represents 30 thousand users,
occupies less than 100MB1 space. Note that a low-end server
machine today is often equipped with 4–32GB of memory.
Therefore, a database for 30 million users, which requires
less than 100GB space, can easily fit into the aggregate main
memory of a small cluster of low-end server machines. Re-
cent database studies have explored this trend to redesign
database architecture for better transaction processing per-
formance [13, 33]. In contrast, synchronous logging always
requires to write to stable media. Therefore, the perfor-
mance of synchronous logging is becoming increasingly im-
portant to the overall performance of transaction processing.
However, efficient solutions for synchronous logging are not
straightforward.

1KB=103B, MB=106B, GB=109B; KiB=210B, MiB=220B,
GiB=230B.

73

5466

31762

0

5000

10000

15000

20000

25000

30000

35000

40000

N
O

T
P

M

disabled(required) enabled(ideal)

logging disk write cache

Figure 1: TPCC transaction rates while a magnetic
disk is used as the logging device for synchronous
transactional logging. (NOTPM: New Order Trans-
actions Per Minute)

1.1 Magnetic Disks Suffer from Small Sequen-
tial Writes of Synchronous Logging

The first solution that comes to mind is to use magnetic
disks as the stable media for synchronous logging. Figure 1
shows the TPCC transaction rates with disk-based logging.
Two Dell PowerEdge 1955 blade servers are used in the ex-
periments: one is running a MySQL server with the InnoDB
backend storage engine supporting a 20-warehouse TPCC
database, the other is running a client driver that repeatedly
issues TPCC transaction requests and measures the trans-
action rates. Each blade server is equipped with two 10k
rpm SAS disk drives. The database server uses one disk for
storing TPCC tables and indices, while the other is devoted
to synchronous redo logging. We make sure that the entire
TPCC database and its indices can fit into the main mem-
ory buffer pool on the server. In each experiment, the client
driver runs 32 driver threads for an hour, modeling 32 inde-
pendent clients without thinking time. (More experimental
details and more results varying from 1 to 128 clients are
described in Section 5.)

In Figure 1, the left bar corresponds to the required con-
figuration: The write cache in the logging disk is disabled
so that log flushes are guaranteed to be on stable media.
In contrast, for the right bar, we enable the write cache in
the logging disk. While an invalid configuration, the latter
is interesting because it models a logging device with ideal
performance (modeling the cost of operating system calls,
device driver scheduling, and device interface delays). As
shown in Figure 1, compared to the ideal configuration, the
transaction rate of the required configuration is a factor of
5.8 times lower, indicating that magnetic-disk-based logging
is a major performance bottleneck. But why is this the case?

By instrumenting the source code of MySQL-InnoDB, we
obtain the cumulative distribution of log flush sizes, as shown
in Figure 2. While log writes are often accumulated in an
in-memory log buffer, log flushes send actual I/O writes to
the logging device. As shown in Figure 2, the distribution
is dominated by small I/O write sizes: 82.9% of the write
sizes are less than 10KB large, 90.5% of the write sizes are
less than 15KB large, and 99.0% of the write sizes are less
than 36KB. Compared to the track size of a typical disk
(e.g., 8MB), the write size is very small. Since synchronous
logging mainly sequentially appends to the log, the ma-
jor access pattern is small sequential writes. It is common
knowledge that magnetic disks (without write caching) are
ill-suited for handling small sequential writes. Because the

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60
log flush size (KB)

C
D

F

Figure 2: The cumulative distribution of MySQL-
InnoDB log flush sizes when running a TPCC test
with the logging disk write cache disabled (corre-
sponding to the left bar in Figure 1).

platters in a disk are constantly spinning, a small write to a
subsequent (sequential) location often incurs a full rotational
delay. Even the highest-performing 15k rpm disks experi-
ence 4ms rotational delays. Fundamentally, this penalty is
determined by the mechanical capabilities of magnetic disks,
which is difficult to reduce.

1.2 Alternatives are Expensive or Complicated
In light of the above problem, high-end disk arrays often

provide battery-backed write caches that are controlled by
the caching mechanisms to prevent data loss [22]. Upon a
power failure, data is required to be maintained for up to
several days until power is properly restored. Note that a
UPS (Uninterruptible Power Supply) is insufficient for this
purpose. This solution achieves good logging performance
by using caches but incurs the cost of purchasing expensive
disk array systems.

Another alternative approach is to replicate the state of
a database server across one or more backup servers (a.k.a.
replicas) for fault tolerance. If the states of all the replicas
are kept consistent, then database requests can be served
as long as at least one of the replicas does not fail. How-
ever, it is challenging to implement a working and scalable
replication solution for transaction processing [1, 4, 7, 11,
21]. Eagerly updating replicas as part of a transaction may
incur significant overhead, while lazily updating replicas af-
ter transactions commit may result in loss of transactions,
stale data versions, and/or complicated conflict resolution
problems. Even if a replication scheme could replace trans-
actional logging, purchasing backup servers multiplies the
cost of ownership.

1.3 Our Approach: Exploiting Flash Devices
We would like to find a synchronous logging solution that

is efficient, inexpensive, and simple. In this paper, we study
flash devices as a promising candidate for such a solution
based on the following observations:

• Efficiency: There are no moving components in flash
devices. Therefore, flash devices do not suffer from the
limitation of magnetic disks. We observe that for small
sequential writes, flash devices are up to 9X faster than
magnetic disks.

• Low Price: Flash memory capacity has been increas-
ing and its price per GB decreasing exponentially [23]
thanks to the demand in the mobile and embedded
markets. Note that although the capacity of flash de-

74

vices (e.g., 1—32GB) is often smaller than that of mag-
netic disks, it is typically sufficient for synchronous log-
ging (whose requirements are detailed in Section 3.1).

• Simplicity: Unlike replication schemes discussed in the
above, the design impact of employing flash devices
for logging can be constrained to the logging subsys-
tem, thereby avoiding significant changes to the entire
database system.

Traditionally, flash devices have been favored in the mobile
and embedded markets because of their energy efficiency,
shock resistance, small form factors, and good performance.
Recently, flash memory has been regarded as an alternative
(replacement or addition) to magnetic disk technology, with
new products, such as Solid State Drives (SSDs), targeting
the mainstream computing market. Recent research studies
have investigated the use of flash devices in various aspects
of data management systems [3, 5, 10, 18, 19, 20, 24, 25,
29, 30, 32, 35]. We focus on exploiting flash devices for
synchronous logging in this paper.

Comparing a wide variety of flash devices, we find that
USB flash drives are particularly suitable for synchronous
logging because of its unique characteristics: (i) widely avail-
able USB ports on almost all modern computers, (ii) hot-
plug capability useful for coping with flash wear, and (iii)
low prices so that multiple drives can be used for better per-
formance. Previous study [20] shows that SSDs can signif-
icantly improve transactional logging performance. In Sec-
tion 5, we compare our solution with designs using a state-
of-the-art SSD and find that although SSDs improve logging
performance, multiple USB flash drives can achieve compa-
rable or better performance with much lower price.

We propose F lashLogging, a logging solution that ex-
ploits multiple (USB) flash drives and addresses the follow-
ing four key challenges:

• Efficiently exploiting an array of flash drives.
We find that the conventional array organization (in
disk arrays), which stripes data across all the drives
in a round-robin manner, results in sub-optimal be-
haviors (such as request splitting or skipping) for syn-
chronous logging. In fact, the goal of this round-robin
organization is to support random access pattern well.
However, synchronous logging mainly performs sequen-
tial writes during normal operations and sequential
reads during recovery, while random accesses for given
Log Sequence Numbers (LSNs) are rare. Therefore,
we can employ an unconventional array organization,
which only enforces that the LSNs written to each indi-
vidual device are non-decreasing, thus enabling request
scheduling to maximize logging performance.

• Coping with large variance of write latencies.
We observe that most writes to flash devices are fast
but occasionally some outlier writes incur delays that
are much longer—possibly orders of magnitudes longer
for some devices. The behavior can be explained by
the sophisticated flash block erasure and management
operations in flash devices [9]. To reduce its negative
impact, we leverage multiple flash drives to hide the
outlier latency. Because of the difficulty in predicting
outliers, we instead propose a solution that performs
outlier detection. We find that an adaptive outlier
detection and hiding scheme is desirable.

• Efficient recovery processing. Recovery processing
consists of two steps: (i) locating the log record corre-

sponding to a given checkpoint LSN; and (ii) scanning
the log sequentially until the crash point. (i) is a rare
random access to the log. Since we maintain the invari-
ant of non-decreasing LSNs for all devices, we can per-
form binary searches for random accesses. For further
narrowing the search range, we construct a low-cost
index structure on each device during normal logging
operations. For (ii), multiple flash drives are scanned
concurrently, providing larger read bandwidth.

• Combining USB flash drives with disks for bet-
ter logging and recovery performance. Although
magnetic disks have poor performance for small se-
quential writes, they are competitive to or better than
USB flash drives for writes that are 32KiB or larger.
Disks also support larger sequential read bandwidth,
which is important for recovery processing. We pro-
pose to include a disk drive in F lashLogging as a near-
zero-delay archival log device. During normal process-
ing, the disk performs log flushes as soon as log data is
more than a predefined size S (e.g., 32KiB). Logging
performance is improved because the disk can serve re-
quests when all the flash drives are busy. Moreover, a
large portion of the log can be read from the archival
log disk, achieving good recovery scan performance.

1.4 Contributions
This paper makes the following main contributions. First,

we identify USB flash drives as a good match for synchronous
logging (Section 2). To our knowledge, this is the first study
to exploit USB flash drives for synchronous logging. Sec-
ond, we propose F lashLogging, a logging system design
that addresses four key challenges and exploits multiple flash
drives for good performance (Section 3). Third, we imple-
mented F lashLogging as the logging subsystem in MySQL-
InnoDB (Section 4) and performed extensive real-machine
experimental evaluations using TPCC workloads (Section 5).
Experimental results show that F lashLogging achieves up
to 5.7 times improvements over magnetic-disk-based logging,
obtaining up to 98.6% of the ideal performance, while recov-
ery times are similar. Finally, we compare F lashLogging
with designs employing SSDs. Experimental results show
that naively employing SSDs already significantly improves
logging performance, that F lashLogging can further im-
prove the performance of a SSD by dividing it into mul-
tiple partitions and treating the partitions as virtual flash
devices, and that compared to a single SSD, multiple USB
flash drives can achieve comparable or better performance
with much lower price.

2.THECASEFOREXPLOITINGUSB FLASH

DRIVES FOR SYNCHRONOUSLOGGING
In this section, we make the case for exploiting USB flash

drives for synchronous logging. Section 2.1 compares the
performance characteristics of flash devices and magnetic
disks. Then Section 2.2 compares a wide variety of flash
devices to show that USB flash drives are a good match for
the task of synchronous logging.

2.1 Flash Devices vs. Magnetic Disks
Both magnetic disks and flash devices are non-volatile.

There are two types of flash memory: NAND and NOR.
NAND is targeted at mass storage devices and is the focus of

75

sequential read

0.01

0.10

1.00

10.00

100.00

1000.00

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

read request size (bytes)

a
v

e
ra

g
e

 t
im

e
 (

m
s

)

sequential write

0.01

0.10

1.00

10.00

100.00

1000.00

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

write request size (bytes)

a
v

e
ra

g
e

 t
im

e
 (

m
s

)

(a) Sequential read performance (b) Sequential write performance
random read

0.01

0.10

1.00

10.00

100.00

1000.00

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

read request size (bytes)

a
v

e
ra

g
e

 t
im

e
 (

m
s

)

random write

0.01

0.10

1.00

10.00

100.00

1000.00

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

write request size (bytes)
a

v
e

ra
g

e
 t

im
e

 (
m

s
)

(c) Random read performance (d) Random write performance

disk

flash-A

flash-B

flash-C

ssd

disk-wce

Figure 3: Comparing the performance of four flash devices and a 10k rpm magnetic disk drive. (Flash A, B,
and C: three USB flash drives from three different vendors. SSD: a state-of-the-art SSD with 250MB/s peak
read bandwidth and 70MB/s peak write bandwidth. disk-wce: write cache enabled.)

this paper. NAND flash devices support the logical block ad-
dressing interface similar to magnetic disks; read/write I/Os
can be performed on 512-byte sized logical blocks. However,
unlike magnetic disks, flash memory does not contain mov-
ing components.

A NAND flash memory chip is composed of flash blocks
(e.g., 128KiB–512KiB large). Every flash block consists of
flash pages (e.g., 512B–4KiB large). Only clean pages can
be directly written (a.k.a. programmed). Before overwrit-
ing a page that contains data, a flash device has to erase the
entire flash block. Such an erase operation is often an order
of magnitude slower than a write operation. To avoid con-
fusions with the 512-byte sized logical blocks at the device
interface, we refer to a flash block as a flash erase unit in the
rest of the paper. Moreover, flash memory has a finite num-
ber of erase-write cycles. A flash erase unit can typically
endure 100,000 erase-write cycles [31].

A flash device contains a controller and one or more flash
memory chips. For example, SSDs often contain tens of
flash memory chips [15]. To cope with the erase-write con-
straints, flash controllers employ erase unit mapping and
wear-leveling algorithms in order to reduce the number of
erase operations and evenly distribute them to physical flash
erase units [9]. As a result, flash devices often have very dif-
ferent performance characteristics from flash memory chips.

Figure 3 compares the sequential/random read/write per-
formance of four flash devices and a 10k rpm disk. The
three USB flash drives in the experiment represent low-end
flash devices, while the SSD2 represents high-end flash de-
vices. The write caches of the disk and the SSD are dis-
abled unless otherwise noted. All the experiments are per-

2The SSD was released in Fall, 2008. It has been shown by third
party to perform significantly better than several previous SSD
products [15].

formed on a PowerEdge 1955 blade server using the block
device interface on Linux. The devices are opened with the
O_DIRECT|O_SYNC flag in order to avoid operating system
cache effects as much as possible. Elapsed times are mea-
sured with the rdtsc (Read Time Stamp Counter) x86 in-
struction in cycles, then converted to wall-clock times by
dividing the CPU frequency. We vary the I/O request size
from 512B to 2MiB. The requests are all aligned on request-
size boundaries. A data point shown represents the average
of 10,000 requests of the same type for 512B–32KiB sizes,
and 1,000 requests for 64KiB–2MiB sizes.

As shown in Figure 3, the low-end flash devices have better
small sequential write performance and better random read
performance compared to the disk. This is expected because
flash devices do not suffer from the mechanical limitations
of magnetic disks. However, the low-end flash devices suf-
fer from worse random write performance because random
writes often incur expensive erase and erase unit manage-
ment operations. Moreover, the sequential read performance
of low-end flash devices is much lower than the disk. This
is partly limited by the target use model and price range of
the devices. In contrast, the SSD has better or comparable
performance than the disk in all aspects. An explanation is
that these high-end flash devices can exploit the parallelism
of many flash memory chips. Studying the characteristics
more closely, we make the following observations related to
synchronous logging.

First, sequential write performance is the most important
characteristics for synchronous logging. As shown in Fig-
ure 3(b), the 10k rpm magnetic disk suffers from a full 6ms
rotational delay for every small write. Compared to the
disk, the flash devices are 1.2–9.4 times faster when write
sizes are 16KiB or smaller. Moreover, compared to the SSD
with write cache disabled, the low-end devices have compa-

76

Table 1: Comparing properties of flash devices.

Interface Interface Easily Price/
availability bandwidth replaceable capacity†

USB flash drive good good yes $15/8GB
PCMCIA card laptops good yes $80/1GB
CompactFlash digital good yes $20/8GB
MicroSD etc. cameras
Solid state drive good excellent possible $350/80GB
†Data were obtained from shopping web sites in April 2009.

rable sequential write performance, suggesting the potential
of using low-end flash devices for synchronous logging.

Second, sequential read performance is important for re-
covery processing. As shown in Figure 3(a), the low-end
flash devices are 2.6–11.4 times slower compared to the disk,
posing a challenge for achieving good recovery performance.
We will address this challenge in Section 3.6.

Finally, flash devices have faster random read performance
than disks, which we leverage in our solution (in Section 3.6).

2.2 USB Flash Drives are a Good Match for
Synchronous Logging

There are many different types of NAND flash based stor-
age devices: e.g., USB flash drives, PCMCIA cards, Com-
pactFlash, MicroSD, and Solid State Disks (SSDs)3. Table 1
compares the properties of these flash devices. We find that
USB flash drives are a good match for synchronous logging
for the following reasons:

• USB ports are widely available. In contrast to
interfaces of PCMCIA cards, CompactFlash, and Mi-
croSD, USB ports are widely available in all kinds of
computer systems. This is true even for blade servers
with very compact designs. The PowerEdge 1955 blade
servers in our experiments support two USB ports with
an extension cable shipped with the machine. There-
fore, solutions based on USB flash drives can be readily
employed in almost all modern computers.

• USB bus bandwidth is good for logging. From
our experiences with running MySQL on blade servers,
the USB 2.0 bus bandwidth (60MB/s) is sufficient for
synchronous logging purpose. Moreover, the upcoming
USB 3.0 specification [6] targets 600MB/s (or 4.8Gbit/s)
bandwidth, which is greater than the logging band-
width required by even the highest rated TPCC per-
formance results [34].

• The hot-plug capability allows easy replacement
of drives. Even with wear-leveling support, a flash
drive may wear out more quickly than magnetic disks
due to the frequent log writes. For example, the peak
write bandwidth of a USB flash drive is typically 10–
20MB/s. Therefore, it takes at least 400 seconds to
write an entire 8GB drive once. Given the 100,000
erase-write cycles, an 8GB drive can last at least 462
days in the worst case. Note that this worst-case life-
time increases proportionally with device capacity.

• The price of an individual drive is low. Com-
pared to SSDs, the price of an individual USB flash
drive is much lower. In April 2009, an 8GB USB flash
drive costs about $15. The drive capacity is good for
logging purpose. our experiences with MySQL show

3For synchronous logging purpose, SSDs represent the perfor-
mance and prices for all devices targeting the mainstream mass
storage market (e.g., including hybrid drives).

that the active online log size is consciously kept small
(e.g., a few hundred MBs) in order to reduce recovery
time. Log capacity can be easily provided by mag-
netic disks that archive the log. Because of the low
prices, a logging solution can exploit multiple drives to
achieve better performance. Our experimental results
in Section 5.4 show that multiple USB flash drives can
achieve comparable or better performance with lower
price than a state-of-the-art SSD.

3. FLASHLOGGING DESIGN
We propose F lashLogging, a synchronous logging solu-

tion that exploits multiple (USB) flash drives. In this sec-
tion, we first summarize the requirements of synchronous
logging that we learned from MySQL-InnoDB in Section 3.1.
We present the overall architecture of F lashLogging in Sec-
tion 3.2. Then we describe our techniques and algorithms
for addressing the four challenges in Section 3.3–3.7.

3.1 Synchronous Logging Requirements
We study MySQL with InnoDB as the backend storage

engine. MySQL provides a database frontend with SQL
query parser, optimizer, and query processing algorithms,
while InnoDB supports the in-memory buffer pool, trans-
action processing, and write-ahead logging. The following
summarizes the requirements of synchronous logging that
we learned from the MySQL-InnoDB implementation:

• The online log is circular. Its size is kept small (e.g., a
few hundred MBs) to reduce recovery time. Note that
log capacity can be easily provided by archiving the
online log with large-sized writes (to disks).

• During normal processing, sequential log writes are the
frequent operation. A 64-bit Log Sequence Number
(LSN) is assigned to each write, which uniquely iden-
tifies the log record. The LSN is monotonically in-
creasing and represents the log offset if the log size
were infinite.

• During normal processing, checkpoints are periodically
written to well-known fixed locations in the log. Com-
pared to the normal log writes, checkpoint frequency
is very low. A checkpoint contains a checkpoint LSN
and a checkpoint number. This LSN corresponds to
the oldest modified data page in the database buffer
pool; all data changes before this LSN are already
on disks. InnoDB guarantees that all committed log
records since the last checkpoint LSN are in the online
log by (i) flushing log records when transactions com-
mit, and (ii) monitoring log wrap-around margins and
flushing old dirty buffer pool pages accordingly so that
log wrap-arounds are correct.

• During recovery processing, InnoDB first locates the
log record corresponding to the LSN recorded in the
last checkpoint. Then the log is sequentially scanned
until the crash point (i.e. log blocks containing in-
consistent checksums or LSNs). After the log scan,
necessary redo operations are carried out.

3.2 FlashLogging Architecture
Figure 4 depicts the overall architecture of a F lashLogging

system. We employ a simple producer-consumer design. A
set of interface routines accept logging requests. Log records
are cached in an in-memory log buffer (e.g., 16MiB in our

77

Interface: write, flush,
checkpoint; recovery

Request queue

In-memory log buffer

Archival

Worker

Worker

Worker

Figure 4: FlashLogging architecture.

experiments). Upon a flush call, the system creates request
node(s) for all the log data since the last flush call, and
appends it to the request queue. A request node contains
begin and end pointers to the actual log data in the log
buffer. Each logging device is serviced by a dedicated worker
thread. The worker thread obtains new requests from the
request queue and performs the requested I/O operations.
Optionally, a disk is employed for both archival purpose and
for better logging and recovery performance (as will be de-
scribed in Section 3.7).

The architecture for recovery processing is similar except
that the data flow is reverse: The workers read data from
the devices into the log buffer, while the interface routines
deliver log data from the log buffer to upper-level callers. As
will be shown in Section 5, this simple design achieves good
logging performance.

3.3 Exploiting an Array of Flash Drives

What’s wrong with the conventional array organiza-
tion? In a conventional array design, data are striped across
the array of devices in a round robin manner. If there are
N devices and the stripe unit size is S, then data at address
A are found on the k-th device, where k = ⌊A/S⌋ mod N .
In this way, the physical location of data can be computed
easily, enabling fast random accesses. However, the ma-
jor access pattern in synchronous logging is small sequential
writes during normal processing and sequential reads dur-
ing recovery. Random data access is rare. On the other
hand, round robin addressing may result in behaviors such
as request splitting and/or request skipping, incurring un-
necessary overhead for our purpose.

First, request splitting occurs if the log data to flush is
larger than the stripe unit size S. Under conventional ar-
ray organization, the log data has to be split into multiple
request nodes to be serviced by multiple devices. This may
occur frequently if S is small. Request splitting can be sub-
optimal because for small sequential writes, the latency TR

of a request size R satisfies T2R < 2TR, as evidenced in
Figure 3(b). In other words, if there are two homogeneous
devices and two outstanding requests of size 2R, processing
two 2R-sized requests are faster than splitting the requests
and processing four R-sized requests.

To confirm this observation, we perform a set of micro
benchmark experiments, as shown in Figure 5. The experi-
mental setting is similar to that described in Section 2.1. In
each experiment, two USB flash drives serve 2–32 concurrent
requesters, who repeatedly sends 4KiB-sized flush requests.
The X-axis varies the number of requesters. The Y-axis
shows the aggregate writing bandwidth of the two drives.
From Figure 5, we see that compared to request splitting,
no splitting achieves 1.41–1.51X higher bandwidth for flash-
A, 1.79–1.83X for flash-B, and 1.13–1.85X for flash-C.

0

2

4

6

8

10

2 4 8 16 32
num requesters

b
a

n
d

w
id

th
 (

M
B

/s
)

0

2

4

6

8

10

2 4 8 16 32
num requesters

b
a

n
d

w
id

th
 (

M
B

/s
)

no-split

split

(b) flash-B (c) flash-C

0

2

4

6

8

10

2 4 8 16 32
num requesters

b
a

n
d

w
id

th
 (

M
B

/s
)

(a) flash-A

Figure 5: Micro-benchmark results comparing two
cases: (left bars) processing 4KiB requests, and
(right bars) splitting each 4KiB requests into two
then processing the split requests. Two drives of
each device are used in the experiments.

Second, if the stripe unit size S is large, request split-
ting is less frequent, while request skipping occurs more fre-
quently. Imagine that the request queue contains a number
of small requests R1, R2, ..., Rm. Because of the large stripe
unit size, several consecutive requests may fall into a single
stripe unit. For example, a worker starts working on R1 be-
fore the other requests arrive. R1 + ... +Ri ≤ S, while Ri+1

starts a new stripe unit. As a result, a second worker may
be constrained to skip many early requests in the queue be-
cause the requests do not belong to the corresponding device.
There could be two consequences: (i) response times for the
skipped requests are longer than necessary, which may in
turn impact throughput in a closed-loop system, such as
TPCC; (ii) the request queue may not be long enough (e.g.,
Ri+1 does not exist yet), and the device may be forced to
be idle since no requests belong to the device.

To avoid these sub-optimal behaviors, we would like to
exploit the special access pattern of synchronous logging to
organize the array in an unconventional way.

Unconventional Array Design. Because the major ac-
cess patterns are sequential for logging and recovery, the
conventional array organization is unnecessary. Instead, we
propose an unconventional array organization: Log data can

be appended to a device as long as the LSNs on the device

are non-decreasing.
Here, we sacrifice the ability to quickly compute the lo-

cations for random accesses. In return, the log data since
the last flush can always be formed to a single request node,
and be processed by a single device, thereby avoiding the
request splitting and skipping problems. The invariant of
non-decreasing LSNs is naturally satisfied because of the
property of logging4. This invariant enables the system to
support rare random accesses through binary searches on
the flash drives.

3.4 Coping with Outlier Writes

Sequential writes have large variance. Figure 6 shows
the individual request latencies of 5000 back-to-back sequen-
tial writes of fixed request size for the three USB flash drives
in our study. Figure 6(a) and (b) show the results for 512B
and 4KiB requests, respectively. The experimental setting
is similar to that described in Section 2.1.5

4The rare event that a 64-bit LSN wraps around can be easily
detected and specially handled.
5We use a pair of rdtsc’s to measure latencies. The measurement
overhead is less than 1/10000 of the lowest reported latencies.

78

(a) (b)

Figure 6: Large variance of elapsed times for 5000 back-to-back sequential writes. (Note the different Y
scales for different devices.)

As shown in Figure 6, we see that the elapsed times dis-
play a bimodal distribution: Most writes are fast while a
number of long latency writes take possibly orders of mag-
nitude longer time to complete. We call these long latency
writes outliers. An explanation for outlier writes is that
these writes somehow trigger the device to perform man-
agement tasks such as wear-leveling and erase unit manage-
ment [9]. Since outlier writes may have a negative impact
on the response time and throughput of the logging system,
we investigate how to minimize such impacts.

Outlier prediction is difficult. The first idea that comes
to our mind is to accurately predict the outliers and pro-
actively avoid them by sending dummy write requests to
devices that are predicted to experience outliers at the next
writes. However, as shown in Figure 6, we find that accu-
rate outlier prediction is difficult. First, outlier patterns are
different across different devices. Second, outlier patterns
may be different for different request sizes, which cannot be
predicted by combining simple statistics, such as the num-
ber of requests and the aggregate request size since the last
outlier. Third, the number of requests between outliers may
change even if both the request size and the device are fixed,
as evidenced with flash-A and flash-B in Figure 6. Finally,
when back-to-back requests of different sizes are measured
(not shown in the figure), we see that outlier pattern is much
less obvious from what are shown in Figure 6. We believe
these complications are caused by the large variety of so-
phisticated erase unit mapping and wear-leveling algorithms
implemented in different devices [9].

Outlier Detection and Hiding. The good news is that
outliers can be easily detected because of the bi-model distri-
bution. Therefore, instead of outlier prediction, we propose
to perform outlier detection. To do this, we measure the
average sequential write latencies for different request sizes
for a device, and list the latencies in a table as part of the
device description. In this way, a worker can estimate the
average latency of a request by interpolation using the table.
A request that takes longer than twice the average latency is
considered an outlier. Upon detecting an outlier, we would
like to re-issue the same request to a different ready device
in hope that the re-issued request completes faster than the
outlier, thus hiding the outlier latency.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

flash-A flash-B flash-C

a
v
e
ra

g
e
 l

a
te

n
c
y
 (

m
s
)

normal

stream1

stream2

Figure 7: Writing two separate sequential streams
to a single USB flash drive.

However, a problem arises: At the time of detection, an
outlier request must have existed for quite some time, and
its LSN may be smaller than the LSNs of all ready devices.
In such situations, the request cannot be re-issued because
of the invariant of non-decreasing LSNs. Unfortunately, this
frequently happens as will be shown in Section 5.2.

Our solution to this problem is to take advantage of an
observation of flash devices: they often support a limited
number of (separate) sequential write streams well. This
property is called semi-randomness [24]. Micro-benchmark
experiments in Figure 7 confirm this observation. In the
experiments, we generate two sequential write streams of
4KiB sized writes: 99% of the writes are in “stream1”, which
models the main logging use of the device, while the rest
1% of the writes go to “stream2”, which models the area
for re-issuing outlier requests. “normal” latency of a single
streams of 4KiB writes is provided for comparison purpose.
As shown in Figure 7, the latencies of stream2 are compa-
rable or moderately worse than stream1.

In summary, we reserve an area on each device for outlier
hiding. Upon outlier detection, we re-issue the outlier re-
quest to the outlier hiding area on a different ready device.
Note that we also maintain the invariant of non-decreasing
LSNs for the outlier hiding areas. In this way, during recov-
ery, we can simply treat these areas as “pseudo” devices and
perform the same processing as a normal device.

3.5 Logging Algorithm
Figure 8 shows the logging algorithm. The algorithm

uses an in-memory log buffer, and three queues for new

79

requests (new_queue), busy requests (busy_queue), and com-
pleted but not released requests (done_queue), respectively.
Several LSN (Log Sequence Number) variables record the
last known LSN on stable media (LSN_done), the end LSN
of all flush requests (LSN_flushreq), and the end LSN of the
in-memory log buffer (LSN_write).

Frontend Functions. A transaction calls frontend_write

to append log records to the in-memory log buffer (L.3).
When the transaction commits, it calls frontend_flush with
the largest LSN of all its log records. frontend_flush deter-
mines whether the request is already serviced (L.6) or being
serviced (L.7). If not, it composes a new request, including
all new log data (L.8).6 Then it enqueues and waits for the
request to complete (L.10–12).

Worker Algorithm. A worker is dedicated to serving re-
quests for a device. In an infinite loop, a worker checks and
calls process_req for new requests (L.9–12). process_req sets
the owner of the request (L.15) and enqueues the request
into busy_queue (L.18). The worker records the last LSN for
the device (L.21) and performs blocking I/O for the request
(L.22). When completed, it checks to see if it still owns
the request (both outlier hiding and archival disk worker in
Section 3.7 may change the ownership). If yes, then the
worker moves the request to done_queue (L.24). Note that
the worker notifies a frontend transaction that is blocking on
a request r only if request r and all previous requests have
completed (L.25–28).

Unconventional Array Organization. Our algorithm
avoids request splitting because frontend_flush composes a
request from all the new log data (L.8). Request skipping
is avoided because a worker can process any new request
(L.10–12). The invariant of non-decreasing LSNs is natu-
rally achieved. New requests are generated with increasing
LSNs in frontend_flush. Therefore, the first-in-first-out na-
ture of a queue guarantees that at any worker, the LSNs of
de-queued requests (L.10) are non-decreasing.

Adaptive Outlier Detection and Hiding. Before per-
forming I/O for a request, a worker Wi computes an es-
timated maximum end time of the request (L.17). Later,
another worker Wj may find that the maximum end time
has passed (L.5), thus detecting an outlier. Upon outlier
detection, worker Wj re-issues the request to its outlier hid-
ing area (L.7) if the invariant of non-decreasing LSNs of this
area holds (L.6). For simplicity, we do not check if a re-
issued request is again an outlier by setting the end time of
the re-issued request to infinity (L.20).

Note that an outlier request eventually takes at least three
times of the average latency (for detection and re-issuing).
Moreover, outlier hiding incurs additional I/Os. Therefore,
the significance of outlier hiding is device dependent: The
larger the latency difference between outliers and normal re-
quests, the more significant impact outlier hiding can have,
as will be shown in Section 5.2. Therefore, we propose to
use an adaptive algorithm. In Figure 8, the global variable
is_outlier_hiding enables/disables outlier detection and hid-
ing in the worker algorithm (L.2–8). The adaptive algorithm
can initially enable outlier hiding, then measure the number
of outliers successfully hidden to determine whether to con-
tinue or disable outlier hiding.

6Requests must be multiple of 512B blocks. Details are omitted
for clarity and will be discussed in Section 4.

Global variables:

CircularBuffer log_buf;

UInt64 LSN_write, LSN_flushreq, LSN_done;

ReqQueue new_queue, busy_queue, done_queue;

Bool is_outlier_hiding;

UInt64 LSN_archived;

Worker private variable:

LogDevice stream1;

LogDevice stream2;

frontend_write(logdata, size)

1. while (log_buf.avail < size)

2. waiting for log buffer space;

3. append logdata to log_buf;

4. LSN_write += size;

5. return LSN_write;

frontend_flush(LSN)

6. if (LSN <= LSN_done) return;

7. if (LSN <= LSN_flushreq) goto Wait_done;

8. compose a request r from all log data since

LSN_flushreq till LSN_write;

9. LSN_flushreq = LSN_write;

10.enqueue (new_queue, r);

11.wake up workers for handling new requests;

12.Wait_done:

block waiting till r and all earlier

requests are done;

worker()

1. Infinite_worker_loop:

2. if (is_outlier_hiding)

3. curtime = get_current_time();

4. foreach r in busy_queue

5. if ((curtime > r.end_threshold)&&

6. (r.start_lsn>=stream2.last_lsn))

7. process_req(r, stream2);

8. goto Infinite_worker_loop;

9. if (new_queue is not empty)

10. r= dequeue(new_queue);

11. process_req(r, stream1);

12. goto Infinite_worker_loop;

13. block waiting for notification;

14. goto Infinite_worker_loop;

process_req(r, stream)

15. r.owner= this_worker;

16. if (stream == stream1) // new request

17. r.end_threshold= get_current_time()

+ 2*avg_latency(r.size);

18. enqueue(busy_queue, r);

19. else // re-issue outlier request

20. r.end_threshold= infinity;

21. stream.last_lsn= r.end_lsn;

22. perform blocking device I/O for r;

23. if (r.owner == this_worker)

24. move r from busy_queue to done_queue;

25. if (r.start_lsn == LSN_done+1)

26. release contiguous done requests

and wake up frontend_flush;

27. release log buffer space,

and wake up frontend_write;

28. update LSN_done;

Figure 8: Logging algorithm. (Details of synchro-
nization between the frontend and the workers, and
512B log block alignment are omitted for clarity.)

80

Section 1

header 2

header

Section 0 Section 1

common blockstart_lsn

prev_section_lsn[]

Section k

Section 0

header 1

Section k

header 0

(a) A log device is divided into sections, each with a header block.

(b) Header blocks are non-leaf nodes in the index structure.

Figure 9: A simple index structure on a log device.

3.6 Efficient Recovery Processing
From the perspective of the logging subsystem, recovery

processing consists of two main steps: (i) locating the log
record corresponding to the LSN in the last checkpoint; (ii)
scanning the log sequentially until the crash point.

Essentially, step (i) performs a random read operation. As
discussed in Section 3.3, we can support random accesses by
performing binary searches on the flash drives because of the
invariant of non-decreasing LSNs. We can further improve
the performance by constructing a simple index structure to
narrow the search scope, as shown in Figure 9. The space
of a log device is divided into equal-sized sections with well-
known starting offsets. As shown in Figure 9(a), the first
block (called header) in a section records meta-information:
(i) the starting LSN of the current section; and (ii) a small
array mapping equally strided logical blocks to LSNs for the
previous section. During normal processing, when a worker
is working on section i-1, it generates the content for the
header of section i. After section i-1 is filled, the worker
moves onto section i. At this point, it can write out the
header of section i while maintaining the sequential write
pattern. As shown in Figure 9(b), the header blocks form a
simple index structure. To locate the block for an random
LSN, the system searches the section headers to narrow the
search range before performing binary searches for the block.

For step (ii), the F lashLogging architecture allows scan-
ning multiple devices in parallel for good scan bandwidth.
During recovery, workers pro-actively read data in chunks
(e.g., 64KiB) into the in-memory log buffer. The log blocks
in the chunks are then merged according to the ascending
LSN order and delivered to the upper-level recovery process-
ing requesters. A global variable, delivered_lsn, is main-
tained. The workers compare delivered_lsn with the LSNs
of the last read chunks, and check the availability of in-
memory buffer in order to determine whether or not to per-
form new chunk read I/Os

3.7 Combining USB Flash Drives and Disks
for Better Performance

We propose to optionally include a disk in F lashLogging.
Our goal is three-fold. First, the disk can serve as a large
capacity archival device to complement our online logging
design. Second, recovery scan described in Section 3.6 is lim-
ited by the maximum USB bus bandwidth (60MB/s), while
a magnetic disk may provide larger recovery scan band-
width. Third, as shown previously in Figure 3(b), magnetic
disks are competitive to USB flash drives for writes that are

archival_worker()

1. Infinite_archival_worker_loop:

2. while(LSN_write – LSN_archived < 32KiB)

3. waiting for more frontend writes;

4. perform blocking I/O for up to LSN_write;

5. update LSN_archived;

6. if (LSN_done < LSN_archived)

7. process all queues, release requests,

wake up frontend_flush, free buffer

space, wake up frontend_write;

8. LSN_done = LSN_archived;

9. goto Infinite_archival_worker_loop;

Figure 10: Archival worker algorithm.

32KiB or larger. Therefore, we may improve the logging
performance by including a disk in the design.

For achieving the goal, we propose to flush log data to
the disk as soon as log data is more than a predefined size S
(e.g., 32KiB in our experiments). We call such a disk a near-

zero-delay archival disk because the disk eagerly archives
data larger than S. Figure 10 shows the archival worker
algorithm. Whenever the unarchived log data (including
log data in memory) is at least 32KiB, the archival worker
flushes the data to the archival disk (L.4). If log data is
archived before the associated normal flush requests com-
plete (L.6), the archival worker will consider these requests
as completed, set ownership of the requests, and wake up
frontend transactions that are blocking on the requests (L.7),
thereby potentially improving logging performance.

During recovery processing, the starting LSN is mostly
likely found on the archival disk. Therefore, the system first
performs the log scan on the archival disk, followed by scan-
ning (a small portion of) the flash drives. The starting points
of the latter can be found similarly using binary search as
described in Section 3.6.

4. IMPLEMENTATION
We implemented F lashLogging as the logging subsystem

in MySQL version 5.0.24a with InnoDB as the backend stor-
age engine. We modified MySQL to recognize a configura-
tion variable in MySQL’s my.cnf configuration file to de-
cide whether to use the original logging subsystem or the
F lashLogging subsystem.

The configuration file also specifies the devices to be used
in F lashLogging. F lashLogging supports an array of K
(K ≥ 1) homogeneous devices and an optional archival de-
vice. The device paths, capacities, and starting offsets are
specified in the configuration file. F lashLogging uses the
Linux open system call to open the devices. In a typical set-
ting, we will specify K flash devices and zero or one archival
magnetic disk device. In this way, raw devices are used.

In contrast, MySQL-InnoDB does not support raw devices
as the logging media. The log is configured as a set of normal
file system files. This may pose disadvantages for MySQL-
InnoDB. To compensate for this, we run two sets of exper-
iments for disk-based logging. The first sets use MySQL-
InnoDB with log files. The second sets use F lashLogging
and specify the disk device as a single logging device. The
former may have better code quality, while the latter enjoys
the raw device interface. In our experiments, we report the
better of the two cases.

Overwriting data at the same logical address is an expen-
sive operation for USB flash drives, which often triggers an

81

erasure of an entire (128–512KiB) flash erase unit, incurring
performance overhead and reducing devices’ life time. We
observe in micro-benchmark experiments (not shown due to
space limitation) that if subsequent writes overlap even a
small part (512B) of the previous ones, the write perfor-
mance can degrade drastically (up to 60.8X worse) for some
USB flash drives. In the original MySQL logging implemen-
tation, overlapping writes are common. A flush request r
may end in the middle of a 512B block x. Because of the
block device interface, the entire x is flushed. A subsequent
request s will continue to use the unused portion in x. When
s is to be flushed, x has to be re-sent to the device, resulting
in an overlapping write. In F lashLogging, a worker always
appends a flush request to its device and avoids any overlap-
ping writes. This entails that multiple log blocks (possibly
partially full) with the same LSNs may exist. During recov-
ery processing, F lashLogging merges multiple log streams
in the LSN order. When it sees two 512B blocks with the
same LSN in the header, it chooses the full block or the
block with more data.

For outlier hiding purpose, the configuration file can op-
tionally contain a path to a characteristics file with the
device’s average sequential write latencies for different re-
quest sizes. If such a file is configured, F lashLogging will
read the file content to build a latency table and use it
to implement avg_latency in Figure 8 (L.17). Otherwise,
is_outlier_hiding is set to false to disable outlier hiding and
avg_latency always returns infinity.

5. PERFORMANCE EVALUATIONS
In this section, we present real-machine experimental eval-

uations for F lashLogging using TPCC workloads. We first
describe the experimental setups in Section 5.1. Then we
present experimental results for the logging and recovery
experiments in Section 5.2 and Section 5.3, respectively. Fi-
nally, we compare F lashLogging with designs that employ
SSDs in Section 5.4.

5.1 Experimental Setup

Machine Configuration. Two Dell PowerEdge 1955 blade
servers are used in the experiments. Each machine is equipped
with a 3.0GHz Intel 5160 Woodcrest CPU (dual core, two
hardware threads per core), 4MB L2 cache, 4GB DRAM,
and two 73GB 10K RPM SAS (Serial-Attached SCSI) disks,
running Linux 2.6.17-10. The two machines are connected
through 1Gbps Ethernet.

Logging Devices. We use the same devices as in the char-
acteristics study in Section 2.1. An extension cable supports
up to two USB ports. Therefore, we use up to two USB flash
drives for flash-A, flash-B, and flash-C. In every configura-
tion, the devices in a flash array are homogeneous. The
capacity of the USB flash drives range from 1 to 4GB. For
experiments in Section 5.4, we replace one of the disks in a
blade server with the SSD. The write caches of the logging
devices are disabled unless otherwise noted. The devices are
opened with the O_DIRECT|O_SYNC flag to avoid operating
system cache effects as much as possible.

We report experimental results for the following logging
device configurations: disk, ideal (i.e. disk with write cache
enabled), three configurations for each flash device (1f: one
drive, 2f: two drives, 2f-1d: two drives with an archival disk),
and multiple designs that employ SSDs.

TPCC Workload. We configure an MySQL 5.0.24a data-
base server to run on one blade server and store data on
one of its disks, while storing the circular transactional log
on the other disk, or on flash drives. Transaction isolation
level is set to be serializable. We configure the database in-
memory buffer pool to use 2GB of the main memory. The
number of warehouses in the TPCC benchmark is chosen to
be 20. As reported by the “show table status” statement,
the resulting database size, including database tables and
indices, is 1803.6 MB. Therefore, the entire database and
its indices are memory resident. The circular log size is
set to be 900 MB. Note that as discussed in Section 3.1,
MySQL-InnoDB performs background writes for dirty buffer
pool pages to guarantee the correctness of the wrap-rounds
of the circular log. We enhanced MySQL-InnoDB with (i)
implementation of F lashLogging and (ii) instrumentation
for statistics.

The other blade server runs an open source TPCC driver,
based on OSDL DBT2 version 0.39 [28]. Originally, the
driver has a two-level thread architecture: The first level
threads generate TPCC requests, send the requests to the
second level threads through Unix sockets, which connect
and forward the requests to the database server through
TCP connections. We simplified the driver by combining
the two levels: Each thread maintains a persistent TCP con-
nection to the database server, and repeatedly generates and
sends transaction requests to the server. TPCC think time is
set to be zero to maximize the load at the database server.
The number of client threads is an adjustable parameter,
which we vary from 1 to 128 in our experiments.

5.2 Logging Performance
For every logging experimental result, we run TPCC test

for the configuration for 60 minutes and report the aver-
age transaction rate, NOTPM (New Order Transactions Per
Minute), as was output from OSDL DBT2. Before every test
run, we perform three preparation steps to ensure that the
size of the TPCC database is roughly the same, and the
MySQL-InnoDB buffer pool is warmed up. First, we re-
build the TPCC database by dropping the entire database,
creating the database, creating tables and indices, loading
the table data, and loading stored procedures for TPCC
transactions. Second, we perform a“select count(*) from ta-
ble” for every TPCC table. Third, we run 10 minute TPCC
test with 20 clients.

Overall performance. Figure 11 compares the transaction
performance of disk-based logging, F lashLogging, and the
ideal case. From Figure 11, we can see the following points.

First, disk-based logging is a major bottleneck. As shown in
Figure 11(a), disk-based logging obtains only 11.2%–29.9%
of the ideal case performance. As the number of concur-
rent clients increases from 1 to 128, the transaction rates
first increase then decrease, with the peak being around 32
clients.7 (Figure 1 in Section 1 shows the 32-client points.)

Second, employing USB flash drives naively in MySQL-
InnoDB achieves marginal gains at best, as shown in Fig-
ure 11(a). This is mainly because the original InnoDB log-
ging system performs overlapping writes, which incurs poor
performance for USB flash drives.

7In our experiments, the number of clients is a power of 2. There-
fore, the best transaction rates should be achieved in the range
of (16, 64).

82

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128
number of clients

N
O

T
P

M

disk ideal flashA
flashB flashC

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128
number of clients

N
O

T
P

M

disk ideal 2f-1d
2f 1f

(a) Employing USB flash drives naively (b) F lashLogging with USB flash drive A

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128
number of clients

N
O

T
P

M

disk ideal 2f-1d
2f 1f

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128
number of clients

N
O

T
P

M

disk ideal 2f-1d
2f 1f

(c) F lashLogging with USB flash drive B (d) F lashLogging with USB flash drive C

Figure 11: Logging performance (disk: magnetic disk; ideal: disk with write cache enabled; 1f: 1 flash drive;
2f: 2 flash drives; 2f-1d: 2 flash drives and an archival disk). The same disk and ideal curves are included in
all figures for ease of comparisons.

0

1

2

3

4

5

6

1
f

2
f

2
f-

1
d 1
f

2
f

2
f-

1
d 1
f

2
f

2
f-

1
d

flashA flashB flashC

im
p

ro
v
e
m

e
n

t
o

v
e
r

d
is

k

0%

20%

40%

60%

80%

100%

1
f

2
f

2
f-

1
d 1
f

2
f

2
f-

1
d 1
f

2
f

2
f-

1
d

flashA flashB flashC

c
o

m
p

a
re

d
 t

o
 i

d
e
a
l

(a) Normalized to disk (b) Normalized to ideal

Figure 12: Normalized throughputs for the 32-client
cases in Figure 11(b)–(d).

Third, almost all F lashLogging configurations achieve
significant improvements over disk-based logging. Using one
flash drive achieves significant improvements for flash-A and
flash-B. Using two flash drives as an array leads to better
performance for all three kinds of USB flash drives. The
best performance is achieved with two flash drives and an
archival disk.

As shown in Figure 12, we see that F lashLogging with
flash-A, flash-B, and flash-C achieves up to 5.7X, 5.7X, and
4.7X improvements over disk-based logging, respectively, thus
obtaining up to 98.6% of the ideal performance.

Array Organization. Figure 13 shows the performance
of the conventional striping array organization that employs
round robin addressing, normalized to that of F lashLogging
(2f) for each device. We vary the stripe unit size from 512B
to 256KiB. Note that less than 100% means that the con-
ventional scheme suffers performance loss. From Figure 13,

0%

20%

40%

60%

80%

100%
5
1
2
B

1
K

iB

2
K

iB

4
K

iB

8
K

iB

1
6
K

iB

3
2
K

iB

6
4
K

iB

1
2
8
K

iB

2
5
6
K

iB

stripe unit size

n
o

rm
a
li
z
e
d

 p
e
rf

o
rm

a
n

c
e

flash-A

flash-B

flash-C

Figure 13: TPCC performance with conventional ar-
ray organization normalized to that of F lashLogging.
(2f is used)

we see that small stripe unit sizes (512B–8KiB) and large
unit size (256KiB) both result in sub-optimal performance
across all devices. As discussed in Section 3.3, this is because
of request splitting and request skipping, respectively. The
best performance of conventional scheme is achieved with
64KiB–128KiB stripe units. However, even in these cases,
conventional scheme can incur significant performance loss
compared to F lashLogging— up to 26.6% performance loss
for flash-C and up to 9.8% loss for flash-A. This is because of
remaining request splitting and skipping behaviors, e.g., due
to log requests not aligned on stripe unit boundaries. In con-
trast, F lashLogging’s unconventional array design avoids
request splitting and skipping, thereby achieving good per-
formance without parameter tuning for the stripe unit sizes.

Outlier Detection and Hiding. Figure 14 and Fig-
ure 15 study the effects of outlier detection and hiding. As

83

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
K

iB

2
K

iB

4
K

iB

8
K

iB

1
6
K

iB

request size

b
a

n
d

w
id

th
 (

M
B

/s
)

0

2

4

6

8

10

1
K

iB

2
K

iB

4
K

iB

8
K

iB

1
6
K

iB

request size

b
a

n
d

w
id

th
 (

M
B

/s
)

0

5

10

15

20

1
K

iB

2
K

iB

4
K

iB

8
K

iB

1
6
K

iB

request size

b
a

n
d

w
id

th
 (

M
B

/s
)

no-hiding
naive-hiding
2streams

(a) flash-A 2f (b) flash-B 2f (c) flash-C 2f

Figure 14: Potential study of outlier hiding with micro-benchmarks. (naive-hiding: outlier requests are
re-issued to the main logging area. 2streams: outlier requests are re-issued to the separate outlier area.)

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 32 64 128
number of clients

N
O

T
P

M

2f-no-hide 2f
2f-1d-no-hide 2f-1d

Figure 15: Effects of outlier detection and hiding on
overall TPCC performance for flash-C.

described in Section 3.4, the efficacy of the outlier hiding
scheme depends on the latency difference between outliers
and normal requests. Therefore, we first perform a set of
micro-benchmarks in Figure 14 to understand the potentials
of outlier hiding. Here, we build a stand-alone program on
F lashLogging, where four threads repeatedly issue log re-
quests of a given size via F lashLogging to logging devices.
We report the aggregate logging bandwidth.

As shown in Figure 14, we see that outlier hiding achieves
up to 1.37X improvements with fixed sized requests for flash-
C, while it has almost no effect for flash-A and flash-B. Note
that flash-C has the largest latency difference between out-
liers and normal writes (Figure 6). Therefore, it is reason-
able to expect outlier hiding to have the most significant
impact on flash-C.

Moreover, from Figure 14(c), we see that the choice of
where to re-issue outlier requests is important. Upon detec-
tion, naive hiding is hardly able to re-issue outlier requests,
because of the invariant of non-decreasing LSNs, while 2-
streams hiding works well with the invariant. As a result,
2-streams hiding re-issues up to 18.6 times more outlier re-
quests than naive hiding.

Furthermore, Figure 15 shows the impact of outlier hiding
on the overall TPCC performance for flash-C. Outlier hiding
achieves up to 1.66X improvements over the no hiding cases.

Given the above results, we believe that for addressing
the large variance across USB flash drive types, a logging
system should employ an adaptive scheme that detects the
efficacy of outlier hiding, and dynamically enable/disable it,
as described in Section 3.5.8 In our TPCC experiments,

8It happens that flash-C has the largest latency difference be-
tween outliers and normal requests and it is also the lowest per-
forming flash drive. In general, this may not be true. We prefer a

we choose no hiding for flash-A and flash-B, and 2-streams
hiding for flash-C.

Archival Disk. As shown in Figure 11, adding a near-
zero-delay archival disk to 2f significantly improves logging
performance. As described in Section 3.7, we flush log data
to the disk as soon as un-archived log data in memory is more
than 32KiB. Logging performance can be improved because
an archival disk flush may cover pending requests while both
flash drives are busy serving earlier requests. For example,
the two flash drives are serving requests R1 and R2 when R3

arrives. It is possible that an archival flush including data
up to R3 is initiated. Later, flash drive 1 may complete R1

and start serving R3. If the time to serve R1 then R3 on the
flash drive is longer than the time to serve the archival flush,
the archival flush may return before flash drive 1 completes
R3, thus improving the logging performance for R3. Such
situations are possible mainly because (i) disk performance
is competitive for writes of 32KiB or larger; (ii) a single
write of large size can be faster than multiple writes of small
sizes; and (iii) the flash drive may encounter an outlier. As a
result, the archival disk approach is more effective for lower
performing flash drives, as shown in Figure 11(b)–(d).

5.3 Recovery Performance
Recovery experiments are performed as follows. First, we

carry out the same preparation steps as in a logging exper-
iment. Second, we run 30-minute TPCC workloads with 32
clients. Third, we kill the MySQL server process. Finally,
we restart the MySQL server and collect statistics for recov-
ery processing. For each configuration, we report the results
of five recovery experiments.

Figure 16 shows the recovery scan performance of disk-
based logging and F lashLogging. Figure 16(a) is a scatter
plot, where each point represents a single recovery run. The
X-axis is the log data size scanned during recovery. The
Y-axis reports the elapsed time for the recovery scan. Fig-
ure 16(b) compares the average recovery scan bandwidth of
all the configurations. The error bars show the standard de-
viation of the five runs of each scheme. From the figures, we
can see the following points.

First, all F lashLogging schemes achieve comparable or
better recovery scan times compared to disk-based logging.

Second, it is effective to scan multiple flash drives in paral-
lel. Scanning two flash drives in parallel achieves 1.19–1.81X
higher bandwidth than using a single flash drive.

self-contained algorithmic solution to a solution that requires all
DBAs to use certain types of USB flash drives for avoiding large
outliers.

84

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700

data scanned during recovery (MB)

e
la

p
s
e
d

 t
im

e
 o

f
d

a
ta

 s
c
a
n

 (
s
)

flashA-1f
flashA-2f
flashA-2f1d
flashB-1f
flashB-2f
flashB-2f1d
flashC-1f
flashC-2f
flashC-2f1d
disk

0

5

10

15

20

25

1
f

2
f

2
f-

1
d 1
f

2
f

2
f-

1
d 1
f

2
f

2
f-

1
d

disk flash-A flash-B flash-Cre
c
o

v
e
ry

 s
c
a
n

 b
a
n

d
w

id
th

 (
M

B
/s

)

(a) Scatter plot of data scanned and elapsed times (b) Scan bandwidth with standard deviations as error bars

Figure 16: Recovery scan performance of F lashLogging. (Every recovery experiment is repeated five times.)

Third, the archival disk can bring significant improve-
ments when the disk bandwidth is much higher than the
combined bandwidth in the flash array, which is the case of
flash-A. On the other hand, two flash drives of flash-B or
flash-C already achieve similar recovery scan bandwidth as
the disk, leaving little room for improvements.

5.4 Performance Comparison with Designs
Using Solid State Drives

Figure 17 studies the performance of logging designs using
a state-of-the-art SSD [16]. For comparison purpose, we
include TPCC results for disk, ideal, and three USB drives
from Figure 11.

For the first configuration (“ssd naive”), we replace the log-
ging disk with the SSD and run the original MySQL-InnoDB
without changes. Unlike USB flash drives, this configuration
immediately achieves 2.98X higher TPCC transaction rates
over disk-based logging. This finding is consistent with pre-
vious work [20]. An explanation is that compared to the
inexpensive USB flash drives, SSDs have more sophisticated
controllers that handle overlapping writes well.

Next, we exploit F lashLogging for further improving the
logging performance of SSDs. The idea is to divide the SSD
into K partitions and treat each partition as a (virtual) flash
device for F lashLogging. We vary K from 1 to 10 because
there are 10 internal parallel channels in the SSD [16]. From
Figure 17, we indeed see significant improvements by using
this technique: 1.33X better performance from 1p to 2p,
and 1.12X better performance from 2p to 4p, thus achieving
4.12X better performance over disk-based logging. However,
the improvements soon diminish. Since the SSD only sup-
ports standard SATA interface, it is difficult to figure out
the internal flash page layout and the way that the paral-
lel channels are used. Therefore, it is possible that writes
to different partitions may actually compete for the same
channel, limiting the gains.

Finally, comparing configurations using USB flash drives
and configurations using SSDs in Figure 17, we see that con-
figurations with USB flash drives can achieve comparable or
better performance than configurations using a single SSD
while incurring much lower prices. Note that the SSD cho-
sen in this study has been reported by third party to have
better performance than several other types of SSDs [15].
Therefore, we believe our results are representative (at least
for a subset of existing SSDs). In summary, F lashLogging
with inexpensive USB flash drives provide a viable solution
for efficiently supporting transactional logging.

0

5000

10000

15000

20000

25000

30000

35000

d
is

k

id
e
a
l

2
f

2
f-

1
d 2
f

2
f-

1
d 2
f

2
f-

1
d

n
a
ïv

e

1
p

2
p

4
p

8
p

1
0
p

flash-A flash-B flash-C ssd ssd+flashlogging

N
O

T
P

M

Figure 17: Comparing TPCC performance of
F lashLogging using USB flash drives with designs us-
ing SSDs (32 clients).

6. CONCLUSION
Synchronous logging is one of the most important tech-

niques for achieving fault tolerance in computer systems. It
is the central mechanism to ensure transaction durability in
database systems. However, previous magnetic-disk-based
solutions are ill-suited for the small sequential write patterns
of synchronous logging, while existing alternative solutions
are either complicated or expensive.

In this paper, we study flash devices as a solution that is
efficient, inexpensive, and simple. In particular, we identify
USB flash drives as a good match for the task of synchronous
logging because of its unique characteristics compared to
other types of flash devices. We proposed F lashLogging, a
logging solution that exploits multiple (USB) flash drives for
good logging performance. We address four key challenges
by proposing unconventional array organization, adaptively
performing outlier detection and hiding, performing parallel
device scans for efficient recovery processing, and combining
a near-zero-delay archival disk in the design. Experimental
results show that our solution achieves dramatically better
performance over disk-based logging. Combining multiple
USB flash drives also achieve comparable or better perfor-
mance with much lower prices compared to designs employ-
ing a single SSD.

While we focus on transaction processing as a case study
for designing and evaluating F lashLogging, we believe that
similar considerations are applicable to other computer sys-
tems that employ synchronous logging, such as synchronous
file system journals and checkpointing/recovery systems for
distributed web services.

85

Moreover, our experimental results show that we can ap-
ply F lashLogging to a single SSD by dividing it into multi-
ple partitions and treating each partition as a virtual flash
device. We believe that flash devices such as SSDs can be
specialized for the access pattern of synchronous logging by
taking into account the design considerations discussed in
this paper.

ACKNOWLEDGMENTS

We would like to thank Anastasia Ailamaki, Phil Gibbons,
and Steve Schlosser for discussions on an early draft of the
paper. We thank the anonymous reviewers for their helpful
comments.

7. REFERENCES

[1] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.
Replication, consistency, and practicality: are these
mutually exclusive? In SIGMOD, pages 484–495, 1998.

[2] R. S. Barga, S. Chen, and D. B. Lomet. Improving
logging and recovery performance in phoenix/app. In
ICDE, pages 486–497, 2004.

[3] L. Bouganim, B. T. Jónsson, and P. Bonnet. uFLIP:
Understanding flash io patterns. In CIDR, 2009.

[4] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols for
replicated databates. In SIGMOD, pages 97–108, 1999.

[5] A. M. Caulfield, L. M. Grupp, and S. Swanson.
Gordon: using flash memory to build fast,
power-efficient clusters for data-intensive applications.
In ASPLOS, pages 217–228, 2009.

[6] Chris Mellor. Faster usb 3.0 is coming.
http://www.pcworld.com/article/137551/.

[7] K. Daudjee and K. Salem. Lazy database replication
with snapshot isolation. In VLDB, pages 715–726,
2006.

[8] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[9] E. Gal and S. Toledo. Algorithms and data structures
for flash memories. ACM Comput. Surv.,
37(2):138–163, 2005.

[10] G. Graefe. The five-minute rule twenty years later. In
DaMoN Workshop, 2007.

[11] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In SIGMOD,
pages 173–182, 1996.

[12] J. Gray and A. Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann, 1993.

[13] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and
what we found there. In SIGMOD, pages 981–992,
2008.

[14] J. L. Hennessy and D. A. Patterson. Computer

Architecture, Fourth Edition: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., 2006.

[15] Intel X25-M 80GB SATA Solid State Drive, Intel Ups
The Ante.
http://hothardware.com/Articles/Intel-X25M-80GB-
SATA-Solid-State-Drive-Intel-Ups-The-Ante/?page=2.

[16] Intel X25-M and X18-M Mainsteam SATA Solid State
Drives. http://download.intel.com/design/flash/nand
/mainstream/mainstream-sata-ssd-product-brief.pdf.

[17] D. Kline and N. Pilaka. An overview of transactional
logging in db2 universal database.
http://www.ibm.com/developer
works/db2/library/techarticle/0301kline/0301kline.html.

[18] I. Koltsidas and S. Viglas. Flashing up the storage
layer. In VLDB, 2008.

[19] S.-W. Lee and B. Moon. Design of flash-based dbms:
an in-page logging approach. In SIGMOD, pages
55–66, 2007.

[20] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A case for flash memory ssd in enterprise
database applications. In SIGMOD, pages 1075–1086,
2008.

[21] Y. Lin, B. Kemme, n.-M. Marta Pati and
R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In SIGMOD, pages
419–430, 2005.

[22] Microsoft Corp. Sql server 7.0, sql server 2000, and sql
server 2005 logging and data storage algorithms.
http://support.microsoft.com/kb/230785.

[23] S. L. Min and E. H. Nam. Current trends in flash
memory technology: invited paper. In ASP-DAC,
pages 332–333, 2006.

[24] S. Nath and P. Gibbons. Online maintenance of very
large random samples on flash storage. In VLDB,
2008.

[25] S. Nath and A. Kansal. Flashdb: dynamic self-tuning
database for nand flash. In IPSN, pages 410–419, 2007.

[26] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and
J. Flinn. Rethink the sync. In OSDI, 2006.

[27] Oracle Corp. Oracle database administrator’s guide
10g release 1 (chapter 6. managing the redo log). Part
Number B10739-01.

[28] OSDL DBT2.
http://sourceforge.net/projects/osdldbt.

[29] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou.
Transactional flash. In OSDI, 2008.

[30] K. Ross. Modeling the performance of algorithms on
flash memory devices. In DaMoN Workshop, 2008.

[31] Samsung Electronics. Onenand specification.
http://www.samsung.com.

[32] M. A. Shah, S. Harizopoulos, J. L. Wiener, and
G. Graefe. Fast scans and joins using flash drives. In
DaMoN Workshop, 2008.

[33] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[34] Transaction Processing Performance Council. TPC-C
benchmark. http://www.tpc.org/tpcc/.

[35] V. Vasudevan, J. Franklin, D. Andersen,
A. Phanishayee, L. Tan, M. Kaminsky, and I. Moraru.
Fawndamentally power-efficient clusters. In HotOS,
2009.

[36] R. Wang, B. Salzberg, and D. B. Lomet. Log-based
recovery for middleware servers. In SIGMOD, pages
425–436, 2007.

86

