
PSP : A Persistent Streaming Protocol for Transactional Communications∗
Kien A. Hua, Ning Jiang, Rui Peng, Mounir A. Tantaoui

School of Computer Science
University of Central Florida
Orlando, Florida 32816-2362

{kienhua, njiang, rpeng, tantaoui}@cs.ucf.edu

∗ This research is partially funded by ImageSoft Technologies, a subsidiary of Fiserv Inc.

Abstract In a distributed environement, many applications
require reliable and fault-tolerant communications. While
most transactional techniques rely on either a 2-phase
commit protocol or checkpointing, neither of these solutions
is suitable for large batch processing applications. In this
paper, we describe the Persistent Streaming Protocol (PSP)
that guarantees fault-tolerant communications between a
sender and one or multiple receivers. An application that
uses the PSP protocol sends data only once, and they will
eventually reach the destinations regardless of system or
network failures. We first describe the PSP protocol and
then the prototype implementation.
Keywords: Fault-tolerant, communication protocol

I. INTRODUCTION
Centralized systems are becoming an "antique

curiosity." Most of today's applications are running on a
distributed system. Many of these applications have a need
to send a large amount of data from a source to multiple
destinations in a transactional way. That is, all receivers
must eventually receive all of their data in order to commit
the transactional transmission. Such applications can be
grouped into two major categories: the distributed
notification style and the asynchronous notification style [3].
In the former style data sources are synchronized, whereas
they are not in the latter. In both cases, data are distributed
and strong recovery is needed. Many such applications
would involve an initial gathering of the data; and then a
batch delivery at some precise time. One example is the
distributed payment atomicity in e-commerce discussed in
[5]. It is highly desirable that the orders are guaranteed to be
successfully delivered to the target e-commerce system even
in the case of a system or network failure. Another example
is the banking industry where many banks scan large number
of financial documents (e.g. cheques and deposit slips) and
store the images of those documents to a distributed archive
consisting of multiple branches/data centers in a
transactional way. We note that in the above examples the
input of the system is large number of streamed data items
that are generated on-the-fly. In many other applications, the
purpose can be to transmit files that already exist in the
persistent storage to multiple destinations in a fail-safe way.
Currently, no communication protocol has been developed
to support all these critical data processing
environments. We cannot simply rely on TCP since TCP

cannot handle situations where system crashes or problems
arise in the network.

The traditional solution to the above problem is to
implement the 2-phase commit protocol. That is, the sender
streams all the data items to their appropriate receivers and
waits for acknowledgement from each of the receivers in
Phase 1. In Phase 2, if all the acknowledgements
are positive, the sender informs all the receivers to write the
data to their permanent records, and reply to the sender with
a commit message in Phase 2. The sender can now commit
the transactional transmission. This approach, designed for
short-live transactions, is not suitable for many batch
processing applications that involves transmitting a large
amount of data to multiple destinations. If any one of the
machines crashes or problems occur in the network, the
transaction would have to be aborted and redone. This
recovery strategy is unacceptably expensive. One way to
reduce this cost is to apply check pointing. In this case, we
can rollback to the previous check point if problems arise
instead of having to abort the entire transaction. Check
pointing, however, incurs overhead. In any case, all of
these solutions have one undesirable effect - system
instability at one location would affect the normal operation
of all other destinations.

In this paper, we consider a Persistent Streaming
Protocol (PSP) on top of TCP, at the application level, to
address the aforementioned issues. With PSP, data that are
successfully submitted to the system are guaranteed to
eventually reach their destinations regardless of the system
condition. If a receiver crashes at the middle of a
transmission session, it does not affect the normal operations
at other locations. When the failed location is up again, it
will continue to receive its data items from where it left
off. Thus, rollback and redo are no longer needed in the PSP
environment. To the best of our knowledge, this is the first
communication protocol designed to address the
transactional issues.

PSP differs from the Transaction Transmission Control
Protocol or T/TCP [4] in the sense that the latter is a
transaction-oriented protocol based on a minimum transfer
of segments. Another similar work proposed in [2] modifies
HTTP to transport multiple requests over each TCP
connection. The persistent-connection HTTP or (P-HTTP)
[2] avoids the excessive round trips in the current HTTP

protocol. However, none of these works address the
problem of fault-tolerance.

PSP is also different from the File Transfer Protocol
(FTP) in several aspects, firstly FTP is not a streaming
protocol and data using FTP should have already been
stored. Secondly, and as we shall discuss in section III, FTP
do not provide fault-tolerant issues as PSP. PSP can
therefore be used as a middleware layer for integrating
software subsystems to build transactional systems.

An application using PSP can send data to one or many
destinations. When sending to many destinations, PSP
follows the multi-unicast model as opposed to multicast.
The reason for such choice is primarily due to limited
deployment of multicast hardware on the Internet due to
several fundamental concerns [1] [6].

The remainder of this paper is organized as
follows. We introduce the PSP in Section 2. In Section 3,
we present a prototype and our experimental study. We give
our concluding remarks in Section 4.

II. PSP DESCRIPTION
PSP is responsible for application registration and

session management. It also provides the application
programming interfaces (APIs) for applications to submit
and receive data as well as retrieving session status. Finally,
PSP guarantees the reliable delivery of data under the
presence of failure at multiple points of transmission. We
describe these operations in this section. In the description,
we refer to the sender-side PSP layer as PSPS, and the
receiver-side PSP as PSPR.
1. Application Management

A PSPR allows more than one receiver application to
receive packets simultaneously while each receiver
application may receive data from multiple sources
concurrently. This calls for an application management
scheme in each PSPR.

A receiver application should register with a local PSPR
before it can use PSP protocol to receive data. A PSPR
keeps the information of all the registered applications in a
volatile table AppInfo which contains the following three
columns: receiver ID, receiver Port, and status. The last
parameter has either a Registered or a Listening, value.
When an application calls the Register API, corresponding
PSPR assigns a local ID for the registering application and
inserts the application information into the table.

Table AppInfo does not need to be persistent. In fact, if
a PSPR fails, all the attached applications will get
disconnected and wait for the PSPR to be up to register again.
A registered application can start listening for incoming
connections on a specific port by calling the Listen API.
Upon receiving the listening request from the receiver
application, PSPR updates the AppInfo table by recording the
listening port and setting the Status to Listening. The
application will block until a new sender connection comes
in. The application should spawn a thread for each
connection before it goes back to listening state. In this
manner, one receiver application can receive data from
multiple senders concurrently.

2. Session Establishment
Before a sender application can start transmitting data to

multiple destinations, it should first establish a connection
with each of the destination receivers. Hereafter, we refer to
the whole data transmission process as a data transmission
session (or session in short) and each individual connection
between the sender and a destination a sub-session. The
Connect API is designed to perform session establishment
operations.

The sender application passes information of each
destination receiver to the local PSPS through the API. PSPS
utilizes this information to contact each destination PSPR.
Connection with each receiver is established through a two-
way handshake process. Consider a particular pair of PSPS
and PSPR. First, PSPS transmits information of both the
sender and the intended receiver application to PSPR, which
verifies whether the intended receiver application has
already registered or not. If the receiver application has
registered and is in Listening state, PSPR will reply a
connection success packet to PSPS and the handshake ends
successfully. Otherwise, a connection failure packet is sent
to PSPS. If all the PSPR’s reply with connection success
packets, PSPS allocates resources for the session and returns
the session ID to the sender. The session ID will be used by
the sender application during data submission and is unique
within each location. PSPS can start accepting data from the
sender application only if connections are successfully
established with all the destination receivers. If, however,
any of the connection attempts fails, the API notifies the
sender application, which has to wait until all the receivers
are ready to accept data.

On the receiving end, PSPR does not allocate resources
for a session until it receives the first data packet of a
session. We note that the fact that a data packet is received
by a PSPR indicates that the sender has successfully
established connections with all the receivers. Only at this
time is it safe for the PSPR to allocate resources for the
session locally. Upon receiving the first data packet from
PSPS, PSPR invokes a session setup procedure if the status of
the requested receiver is Listening .
• PSPR stores the information of this session in a

persistent table ConnInfo, which contains a session ID,
PSPS IP address and receiver ID. The [session ID, PSPS
IP] pair uniquely identifies a sender application. Session
ID or PSPS IP alone may be insufficient because one
PSPR may have sessions from different PSPS with the
same session ID and multiple sender applications
running on the same PSPS have the same IP. If we
suppose that PSPR fails before sending an
acknowledgement (which is stored persistently) to some
PSPS, PSPR needs to know where to send the
acknowledgement after it restarts, therefore ConnInfo
table has to be persistent.

• PSPR creates a memory buffer for this session to hold
the incoming data.

• PSPR allocates a persistent block for the receiver
application to store the latest acknowledgements and
return the address to the receiver application along with

the session information (session ID and PSPS IP
address).
If any of the above steps fails, PSPR will send a session

error packet to PSPS, which will refrain from sending data to
the corresponding receiver application and attempt to
recover the sub-session later on. Figure 1 gives an example
of a typical connection using PSP.

Sender

Application PSP-S PSP-R
Receiver

Application

Connect

Transmit
ConnectPacket

ConnectReply
(Success/Failure to

register)

Register

Ack (ID)

Generate and Store ID for the Receiving Application
Figure 1. Typical connection with PSP

Sender

Application PSP-S PSP-R
Receiver

Application

Close

Send latest Ack

Wait for last Ack

Store dummy data

Ack

Send ClosePacket

Purge All

Ack
Wait for Ack

from all
receivers then

purge all

Figure 2. Closing a session in PSP
3. Session Close

When a sender successfully submits all its data to PSPS,
it invokes the Close API to inform PSPS that there is no
more data to be transmitted. PSPS will then mark the session
as closed internally. However, PSPS and various PSPR
corresponding to the receivers cannot purge the resources of
the particular session until all the data are successfully
received and processed by all the receiver applications. This
is achieved by retrieving the acknowledgement information
received from each individual PSPR. If PSPS finds that all
the data have been successfully acknowledged, it sends a
session close packet to each individual PSPR, which clears
the resources corresponding to the session and acknowledges
PSPS. PSPS cannot purge resources for a particular session
unless it has received confirmation packets from all the
destinations of that session. In case some destination fails to
reply, PSPS will periodically retransmits session close
packets to all the un-acknowledged PSPR’s until it receives

all confirmations. Figure 2 gives an example of closing a
session in PSP.
4. Data Submission and Delivery

The SendData API is designed for the sender
application to submit data to its corresponding PSPS. In all
cases, the size of a submitted data item must be less than a
system parameter F. Otherwise PSPS will report an error and
quit. Information of the submitted data is maintained in a
persistent data table (PDT). The format of a PDT entry is
<DataID, data, pFlag, fInfo, offset>. There are two cases we
need to consider. First, the input data items are from a data
stream generated on-the-fly. In this case, data items must be
made persistent to facilitate the recovery process. In the
SendData API, user explicitly specifies that the particular
data item should be pooled. When PSPS receives such a data
item for a particular session, it creates an entry in PDT, fills
in the DataID field with a newly generated data ID and
stores the data item in the data field. Moreover, it sets the
pFlag field to TRUE and leaves the fInfo and offset field to
0. In most cases, PSPS is able to allocate enough resources to
store the submitted data. Otherwise, SendData fails and the
sender application has to call the Reconnect API to recover
the session after problems are resolved. Details of such
recovery are further discussed in Section 6. In the second
case, the input are existing files. The application is in charge
of splitting files into pieces less than or equal to F and
submit them to PSPS. PSPS creates an entry for each item in
PDT and generates a dataID for each piece. The pFlag field
is set to FALSE. The application must also provide the path
information and the offset of the item in the original file for
each item. These information is stored in the fInfo field and
the offset field respectively. In both cases, the data item is
also pushed into a memory buffer allocated by PSPS after
session establishment. A data transmission thread is created
for the session and it constantly checks the memory buffer
and transmits the data items and their IDs to the destinations.
As a result, the overall performance is greatly improved
since disk I/O is saved for each data item. By keeping data
on persistent storage, even if failure occurs during data
delivery, we are able to retransmit the data later on when the
system recovers. Once PSPR receives a data packet from
PSPS, it extracts the data and puts the tuple <data ID, data>
into the memory buffer allocated to the destined receiver
application.
5. Data Reception and Acknowledgment

Once a connection is established in PSPR, the receiver
application receives the acknowledgment address along with
the session ID and PSPS IP address. The receiver can then
call the Receive API to retrieve data from the corresponding
data buffer maintained by PSPR. The Receive API retrieves
data block (<data ID, data>) one at a time and will block
the application if the buffer is empty.

Receiver application acknowledges the sender by
calling the Acknowledge API. Usually a receiver application
will acknowledge the receipt of data only after fully
processing the data. In our sample application, it
acknowledges only after it successfully stores the data into
local disk.

Receiver
Application

te
xt

Sender
Application PSP-S PSP-R

D ata

Transm it
D ataPacket +

ID Packet

Send latest Ack

R eceive

Ack (ID)

te
xt Receive and put in durable storage

D ataPacket

te
xt

te
xt Receive and put in m em ory

Upo

applicati
storage.
back to
to perfo
items th
immedia
data. W
subsectio
reception
6. Aut

Dur
sender, n
an autom
failure o
scenario
copes w
and/or r
side failu
on sub-
recovery

Firs
receiver
transmis
whether
time int
recovery
checks t
SessionI
two para
and is
destinati
acknowl
wheneve
each par
previous
acknowl
SentID a
initiated,
to –1. E
checks t
them is

prevSentID (prevAckID), respectively, and goes back to
sleep. Otherwise, it verifies the following condition :

(prevSentID==SentID) AND (prevAckID==AckID)
If the condition is satisfied, it means that no data is
transmitted and no acknowledgement is received during the
recovery interval. Thus, the sub-session is “silent”. A sub-
session becomes silent due to the following two possiblities.
First, PSPS has finished transmitting all the submitted data
items for that sub-session and is waiting for more data.
Recovery is not necessary in this case. Second, the particular
sub-sessions is encountering failure in any of the sender,
network and receiver sides. The recovery manager first tries
to establish a connection with the corresponding PSPR. If it
succeeds the PSPR will reply with the failure point
information (i.e. latest acknowledged data item) for that sub-
session and the recovery manager will transmit the pending
Figure 3. Transmission and reception
n receiving the acknowledgement from an
on, PSPR saves it in the pre-allocated persistent
Acknowledgements are periodically transferred

the appropriate PSPS, which utilizes the information
rm disk space reclaim and session recovery. Data
at have been acknowledged by all the receivers are
tely purged from the PDT to allow space for more
e discuss session recovery in the following
n. Figure 3 illustrates the transmission and
 in PSP.
omatic Recovery
ing data transmission, failure can occur at the
etwork and/or the receiver side. PSP incooperates
atic recovery manager to deal with situations when
ccurs during data transmission. We consider two
s where recovery is performed. The first scenario
ith situations where failure occurs at the network
eceiver side. The latter one happens when sender
re occurs. In both scenarios, recovery is performed
session basis. In the current implementation,
 is always started by PSPS.
t, it is possible that some receivers (PSPR and/or

application) or the network fails during data
sion. The recovery manager periodically verifies
a sub-session needs to be recovered. We refer to the
erval that the recovery thread is invoked as the
 interval. In both cases, the recovery manager
he session specific information maintained in the
nfo table on persistent storage. The table consists of
meters: (1) SentID that describes the data to be sent
updated whenever a data item is sent to the
on. Similarly, (2) an AckID that describes the
edgement received for a specific data and is updated
r an acknowledgement is received. Moreover, for
ameter, there exists a parameter that describes a
 state of sending or receiving data and
edgments respectively, namely previousSentID for
nd previousAckID for AckID. When a session is
 prevSentID, SentID, prevAckID, AckID are all set
ach time the background recovery thread starts, it
he aforementioned fields of each session. If any of
–1, it simply copies the value of SentID (AckID) to

data to the receiver.
In the second scenario, a sender application invokes the

Reconnect API after a failure occurred at the sender side.
The sender application does not need to maintain any
information of the failure point. PSP will automatically
figure out the necessary recovery information for the
particular session based on the SessionInfo table. At this
point, the application should submit data starting from the
latest allocated data ID to PSPS. However, it is possible that
data submitted before the last system failure are still pending
to be transmitted to various PSPR’s. The recovery manager is
thus invoked to recover those data. If it successfully
transmits all the remaining data for at least one of these sub-
sessions, it informs the sender application and enables the
memory buffer. In this case, higher performance can be
achieved since PSPS can transmit the newly submitted data
directly from memory. Sub-sessions that cannot be
recovered have to wait for the next background recovery
session and extra disk reads will be performed for the
submitted data items.

To further improve recovery performance, a cache is
introduced to store data items that have been transmitted by
the recovery manager. This can significantly improve
performance in the situation where a sub-session is
experiencing continuous failure and needs to be recovered
for multiple times or for sessions that have multiple sub-
sessions to be recovered.

III. EXPERIMENTAL STUDY
Our prototype is being tested for a distributed archive

product at ImageSoft Technologies. The distributed archive
is commonly used in the banking industry to archive large
number of images of finance documents (e.g. cheques,
deposit slips) in multiple branches/data centers. In the test
environment, a stream of approximately 2000 finance
document images are captured on-the-fly and transmitted
from a Sun Enterprise 250 server with two 400-MHz

UltraSPARC-II CPUs running Solaris 8.0 to one or more
receivers running on PCs of Intel Pentium II 400MHz CPUs
with Red Hat Linux 8.0 installed. The size of images range
from several Kilobytes to several Megabytes. At each
receiving end, a receiving application stores the received
images into a specified directory.

We tested PSP with the following scenarios. The first
test case confirmed that a sender could establish multiple
communication sessions simultaneously. Each could involve
more than one receiver. The second test demonstrated that a
receiver could be in session with more than one sender.
These two cases were designed to test the different multi-
unicast scenarios under PSP. We then tested the fault
tolerance capability of PSP. In all the experiments, the
recovery interval was set to two minutes. We physically
removed the line from a computer (i.e., communication
failure) or from a power source (i.e.., power failure) and
made the following observations in this study: (1) A
disconnection of the communication link to Receiver 1 did
not affect the data delivery to Receiver 2. Furthermore,
Receiver 1 could resume the transmission when the broken
link was physically reconnected. (2) The same behavior
was observed when we unplugged the power line of
Receiver 2. (3) When we disconnected the sender from the
power source, the whole transmission paused. However, the
session recovered and resumed the data transmission after
we replugged the sender to the power source. In all cases,
every image arrived orderlly and correctly at the intended
destinations.

Recovery time in seconds

0

10

20

30

40

50

60

70

10 20 30 40 50 60
Recovery interval in seconds

Re
co

ve
ry

 ti
m

e (
se

co
nd

s)

Recovery time in
seconds

Figure 4. System recovery time

We depict the relationship between the time that takes
the system to recover from a failure and the recovery
interval in Figure 4. In the experiment, we had one sender
application sending images to a remote receiver application.
We crashed the PSPR in the middle of transmission and
restarted it sometime later. We recorded the time when the
receiver application was restarted and the time when its data
reception was resumed, and the recovery time was calculated
as the difference between the two. We varied the recovery
interval from 10 seconds to 60 seconds and recorded the
results in Figure 4. In the figure, the X-axis represents the
recovery interval and the Y-axis represents the recovery
time. We observe that the recovery time is approximately
proportional to the recovery interval. In the current
distributed archive environment, we set the recovery interval
to be 2 minutes.

To test the time it takes to recover a session, we
performed another test. In the test, the sender transmitted
200 images to two receiver applications. We unplugged the
network link after 50 images were successfully transmitted
to receiver applications. As a result, the data were
continually pooled in the PDT whereas the receiver
applications were unable to receive any data. After all the

images were stored in the PDT, we plugged the network link
back and measured the time it took to recover both sub-
sessions. The recovery time for a particular sub-session was
measured as the difference between the time when the
recovery thread attempted to reconnect to the receiver
application and the time the last data item was successfully
acknowledged by the receiver application. Table 1
demostrates the recovery time of both sub-sessions. From
Table 1 we observe that the recovery time for the second
sub-session was much less than the first one. This is due to
the employment of the recovery cache. During the recovery
of the first sub-session, data items were stored in the cache.
Consequently, the recovery of the second sub-session did not
involve any disk operation and achieved a 69%
improvement in terms of recovery time.

Table 1. Recovery time of sub-sessions
Sub-

session ID
Recovery time
(in seconds)

1 143
2 45

IV. CONCLUSION
A transactional communication session is an atomic

communication operation that must deliver the dataset to
its destination in its entirety, otherwise any partial data
transmission must be undone as if the communication
session has never occurred. Transmission protocols in the
transactional framework can result in a session abort, and
therefore require retransmission of the data.

In this paper, we proposed a new protocol that deals
with fault-tolerance issues. The Persistent Streaming
Protocol (PSP) session never aborts; automatically recovers
failed sessions efficiently and retransmissions are never
needed. It is therefore suitable for a wide range of
applications including long-live communication sessions
(e.g., ftp, batch processing, etc.)

References
[1] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang, “A case for

end System Multicast,” in ACM SIGMETRICS, 2000, pp. 1-
12.

[2] Jeffrey C. Mogul. The Case for Persistent-Connection HTTP.
SIGCOMM ’95 Cambridge, MA USA pp. 299- 313.

[3] Yoshitomi Morisawa, Koji Torii. An Architectural Style of
Product Lines for Distributed Systems, and Practical Selection
Method. 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Sep 2001. Vienna,
Austria.

[4] http://rfc-1644.rfclist.org
[5] Heiko Schuldt, Andrei Popovici, Hans-Jorg Schek. Automatic

Generation of Reliable E-Commerce Payment Processes.
Proceedings of the 1st International Conference on Web
Information Systems Engineering (WISE’2000) pages: 434-
441, Hong Kong, China, June 2000.

[6] Duc Tran, Kien A. Hua, and Tai Do, “ZIGZAG: An Efficient
P2P Scheme for Media Streaming,” IEEE Infocom 2003.

http://rfc-1644.rfclist.org/

	I. Introduction
	II. PSP Description
	Application Management
	Session Establishment
	Session Close
	Data Submission and Delivery
	Data Reception and Acknowledgment
	Automatic Recovery

	III. Experimental Study
	IV. Conclusion
	References

