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Abstract In a distributed environement, many applications 
require reliable and fault-tolerant communications. While 
most transactional techniques rely on either a 2-phase 
commit protocol or checkpointing, neither of these solutions 
is suitable for large batch processing applications.  In this 
paper, we describe the Persistent Streaming Protocol (PSP) 
that guarantees fault-tolerant communications between a 
sender and one or multiple receivers.  An application that 
uses the PSP protocol sends data only once, and they will 
eventually reach the destinations regardless of system or 
network failures.  We first describe the PSP protocol and 
then the prototype  implementation. 
Keywords: Fault-tolerant, communication protocol 

I. INTRODUCTION 
Centralized systems are becoming an "antique 

curiosity."  Most of today's applications are running on a 
distributed system.  Many of these applications have a need 
to send a large amount of data from a source to multiple 
destinations in a transactional way.  That is, all receivers 
must eventually receive all of their data in order to commit 
the transactional transmission.   Such applications can be 
grouped into two major categories: the distributed 
notification style and the asynchronous notification style [3].  
In the former style data sources are synchronized, whereas 
they are not in the latter.  In both cases, data are distributed 
and strong recovery is needed.  Many such applications 
would involve an initial gathering of the data; and then a  
batch delivery at some precise time. One example is the 
distributed payment atomicity in e-commerce discussed in 
[5].  It is highly desirable that the orders are guaranteed to be 
successfully delivered to the target e-commerce system even 
in the case of a system or network failure.  Another example 
is the banking industry where many banks scan large number 
of financial documents (e.g. cheques and deposit slips) and 
store the images of those documents to a distributed archive 
consisting of multiple branches/data centers in a 
transactional way. We note that in the above examples the 
input of the system is large number of streamed data items 
that are generated on-the-fly. In many other applications, the 
purpose can be to transmit files that already exist in the 
persistent storage to multiple destinations in a fail-safe way. 
Currently, no communication protocol has been developed 
to support all these critical data processing 
environments.  We cannot simply rely on TCP since TCP 

cannot handle situations where system crashes or problems 
arise in the network.   

The traditional solution to the above problem is to 
implement the 2-phase commit protocol.   That is, the sender 
streams all the data items to their appropriate receivers and 
waits for acknowledgement from each of the receivers in 
Phase 1.  In Phase 2, if all the acknowledgements 
are positive, the sender informs all the receivers to write the 
data to their permanent records, and reply to the sender with 
a commit message in Phase 2.  The sender can now commit 
the transactional transmission.  This approach, designed for 
short-live transactions, is not suitable for many batch 
processing applications that involves transmitting a large 
amount of data to multiple destinations.  If any one of the 
machines crashes or problems occur in the network, the 
transaction would have to be aborted and redone.  This 
recovery strategy is unacceptably expensive.  One way to 
reduce this cost is to apply check pointing.  In this case, we 
can rollback to the previous check point if problems arise 
instead of having to abort the entire transaction.  Check 
pointing, however, incurs overhead.   In any case, all of 
these solutions have one undesirable effect - system 
instability at one location would affect the normal operation 
of all other destinations.   

In this paper, we consider a  Persistent Streaming 
Protocol (PSP) on top of TCP, at the application level, to 
address the aforementioned issues.  With PSP,  data that are 
successfully submitted to the system are guaranteed to 
eventually reach their destinations regardless of the system 
condition.  If a receiver crashes at the middle of a 
transmission session, it does not affect the normal operations 
at other locations.  When the failed location is up again, it 
will continue to receive its data items from where it left 
off.  Thus, rollback and redo are no longer needed in the PSP 
environment.  To the best of our knowledge, this is the first 
communication protocol designed to address the 
transactional issues. 

PSP differs from the Transaction Transmission Control 
Protocol  or T/TCP [4] in the sense that the latter is a 
transaction-oriented protocol based on a minimum transfer 
of segments.  Another similar work proposed in [2] modifies 
HTTP to transport multiple requests over each TCP 
connection. The persistent-connection HTTP or (P-HTTP) 
[2] avoids the excessive round trips in the current HTTP 



protocol.  However, none of these works address the 
problem of fault-tolerance. 

PSP is also different from the File Transfer Protocol 
(FTP) in several aspects, firstly FTP is not a streaming 
protocol and data using FTP should have already been 
stored. Secondly,  and as we shall discuss in section III, FTP 
do not provide fault-tolerant issues as PSP. PSP can 
therefore be used as a middleware layer for integrating 
software subsystems to build transactional systems. 

An application using PSP can send data to one or many 
destinations. When sending to many destinations, PSP 
follows the multi-unicast model as opposed to multicast.  
The reason for such choice is primarily due to limited 
deployment of multicast hardware on the Internet due to 
several fundamental concerns [1] [6].   

The remainder of this paper is organized as 
follows.  We introduce the PSP in Section 2.   In Section 3, 
we present a prototype and our experimental study.  We give 
our concluding remarks in Section 4.   

II. PSP DESCRIPTION 
PSP is responsible for application registration and 

session management.  It also provides the application 
programming interfaces (APIs) for applications to submit 
and receive data as well as retrieving session status.  Finally, 
PSP guarantees the reliable delivery of data under the 
presence of failure at multiple points of transmission. We 
describe these operations in this section. In the description, 
we refer to the sender-side PSP layer as PSPS, and the 
receiver-side PSP as PSPR.  
1. Application Management 

A PSPR allows more than one receiver application to 
receive packets simultaneously while each receiver 
application may receive data from multiple sources 
concurrently.  This calls for an application management 
scheme in each PSPR. 

A receiver application should register with a local PSPR 
before it can use PSP protocol to receive data.  A PSPR 
keeps the information of all the registered applications in a 
volatile table AppInfo which contains the following three 
columns: receiver ID, receiver Port, and status. The last 
parameter has either a Registered or a Listening, value.  
When an application calls the Register API, corresponding 
PSPR assigns a local ID for the registering application and 
inserts the application information into the table.  

Table AppInfo does not need to be persistent.  In fact, if 
a PSPR fails, all the attached applications will get 
disconnected and wait for the PSPR to be up to register again. 
A registered application can start listening for incoming 
connections on a specific port by calling the Listen API. 
Upon receiving the listening request from the receiver 
application, PSPR updates the AppInfo table by recording the 
listening port and setting the Status to Listening. The 
application will block until a new sender connection comes 
in.  The application should spawn a thread for each 
connection before it goes back to listening state. In this 
manner, one receiver application can receive data from 
multiple senders concurrently. 

2. Session Establishment 
Before a sender application can start transmitting data to 

multiple destinations, it should first establish a connection 
with each of the destination receivers. Hereafter, we refer to 
the whole data transmission process as a data transmission 
session (or session in short) and each individual connection 
between the sender and a destination a sub-session. The 
Connect API is designed to perform session establishment 
operations.  

The sender application passes information of each 
destination receiver to the local PSPS through the API.  PSPS 
utilizes this information to contact each destination PSPR. 
Connection with each receiver is established through a two-
way handshake process. Consider a particular pair of PSPS  
and  PSPR.  First, PSPS transmits information of both the 
sender and the intended receiver application to PSPR, which 
verifies whether the intended receiver application has 
already registered or not. If the receiver application has 
registered and is in Listening state, PSPR will reply a 
connection success packet to PSPS and the handshake ends 
successfully. Otherwise, a connection failure packet is sent 
to PSPS.  If all the PSPR’s reply with connection success 
packets, PSPS  allocates resources for the session and returns 
the session ID to the sender.  The session ID will be used by 
the sender application during data submission and is unique 
within each location. PSPS can start accepting data from the 
sender application only if connections are successfully 
established with all the destination receivers.  If, however, 
any of the connection attempts fails, the API notifies the 
sender application, which has to wait until all the receivers 
are ready to accept data.  

On the receiving end, PSPR does not allocate resources 
for a session until it receives the first data packet of a 
session.  We note that the fact that a data packet is received 
by a PSPR indicates that the sender has successfully 
established connections with all the receivers. Only at this 
time is it safe for the PSPR to allocate resources for the 
session locally. Upon receiving the first data packet from 
PSPS, PSPR invokes a session setup procedure if the status of 
the requested receiver is  Listening .  
• PSPR stores the information of this session in a 

persistent table ConnInfo, which contains a session ID, 
PSPS IP address and receiver ID. The [session ID, PSPS 
IP] pair uniquely identifies a sender application. Session 
ID or PSPS IP alone may be insufficient because one 
PSPR may have sessions from different PSPS with the 
same session ID and multiple sender applications 
running on the same PSPS have the same IP. If we 
suppose that PSPR fails before sending an 
acknowledgement (which is stored persistently) to some 
PSPS, PSPR needs to know where to send the 
acknowledgement after it restarts, therefore ConnInfo 
table has to be persistent.  

• PSPR creates a memory buffer for this session to hold 
the incoming data. 

• PSPR allocates a persistent block for the receiver 
application to store the latest acknowledgements and 
return the address to the receiver application along with 



the session information (session ID and PSPS IP 
address).  
If any of the above steps fails, PSPR will send a session 

error packet to PSPS, which will refrain from sending data to 
the corresponding receiver application and attempt to 
recover the sub-session later on. Figure 1 gives an example 
of a typical connection using PSP. 
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Figure 2. Closing a session in PSP 
3. Session Close 

When a sender successfully submits all its data to PSPS, 
it invokes the Close API to inform PSPS that there is no 
more data to be transmitted. PSPS will then mark the session 
as closed internally. However, PSPS and various PSPR 
corresponding to the receivers cannot purge the resources of 
the particular session until all the data are successfully 
received and processed by all the receiver applications. This 
is achieved by retrieving the acknowledgement information 
received from each individual PSPR.  If PSPS finds that all 
the data have been successfully acknowledged, it sends a 
session close packet to each individual PSPR, which clears 
the resources corresponding to the session and acknowledges 
PSPS. PSPS cannot purge resources for a particular session 
unless it has received confirmation packets from all the 
destinations of that session. In case some destination fails to 
reply, PSPS will periodically retransmits session close 
packets to all the un-acknowledged PSPR’s until it receives 

all confirmations. Figure 2 gives an example of closing a 
session in PSP. 
4. Data Submission and Delivery 

The SendData API is designed for the sender 
application to submit data to its corresponding PSPS. In all 
cases, the size of a submitted data item must be less than a 
system parameter F. Otherwise PSPS  will report an error and 
quit. Information of the submitted data is maintained in a 
persistent data table (PDT). The format of a PDT entry is 
<DataID, data, pFlag, fInfo, offset>. There are two cases we 
need to consider. First, the input data items are from a data 
stream generated on-the-fly. In this case, data items must be 
made persistent to facilitate the recovery process. In the 
SendData API, user explicitly specifies that the particular 
data item should be pooled. When PSPS receives such a data 
item for a particular session, it creates an entry in PDT, fills 
in the DataID field with a newly generated data ID and 
stores the data item in the data field. Moreover, it sets the 
pFlag field to TRUE and leaves the fInfo and offset field to 
0. In most cases, PSPS is able to allocate enough resources to 
store the submitted data. Otherwise, SendData fails and the 
sender application has to call the Reconnect API to recover 
the session after problems are resolved.  Details of such 
recovery are further discussed in Section 6. In the second 
case, the input are existing files. The application is in charge 
of splitting files into pieces less than or equal to F and 
submit them to PSPS.  PSPS  creates an entry for each item in 
PDT and generates a dataID for each piece. The pFlag field 
is set to FALSE. The application must also provide the path 
information and the offset of the item in the original file for 
each item. These information is stored in the fInfo field and 
the offset field respectively. In both cases, the data item is 
also pushed into a memory buffer allocated by PSPS after 
session establishment. A data transmission thread is created 
for the session and it constantly checks the memory buffer 
and transmits the data items and their IDs to the destinations. 
As a result, the overall performance is greatly improved 
since disk I/O is saved for each data item. By keeping data 
on persistent storage, even if failure occurs during data 
delivery, we are able to retransmit the data later on when the 
system recovers. Once PSPR receives a data packet from 
PSPS, it extracts the data and puts the tuple <data ID, data> 
into the memory buffer allocated to the destined receiver 
application. 
5. Data Reception and Acknowledgment 

Once a connection is established in PSPR, the receiver 
application receives the acknowledgment address along with 
the session ID and PSPS IP address. The receiver can then 
call the Receive API to retrieve data from the corresponding 
data buffer maintained by PSPR. The Receive API retrieves 
data block (<data ID, data>) one at a time and will block 
the application if the buffer is empty.  

Receiver application acknowledges the sender by 
calling the Acknowledge API. Usually a receiver application 
will acknowledge the receipt of data only after fully 
processing the data. In our sample application, it 
acknowledges only after it successfully stores the data into 
local disk.  
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prevSentID (prevAckID), respectively, and goes back to 
sleep. Otherwise, it verifies the following condition : 

(prevSentID==SentID) AND (prevAckID==AckID) 
If the condition is satisfied, it means that no data is 
transmitted and no acknowledgement is received during the 
recovery interval. Thus, the sub-session is “silent”.  A sub-
session becomes silent due to the following two possiblities. 
First, PSPS has finished transmitting all the submitted data 
items for that sub-session and is waiting for more data. 
Recovery is not necessary in this case. Second, the particular 
sub-sessions is encountering failure in any of the sender, 
network and receiver sides.  The recovery manager first tries 
to establish a connection with the corresponding PSPR. If it 
succeeds the PSPR will reply with the failure point 
information (i.e. latest acknowledged data item) for that sub-
session and the recovery manager will transmit the pending 
Figure 3. Transmission and reception
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data to the receiver.  
In the second scenario, a sender application invokes the 

Reconnect API after a failure occurred at the sender side.  
The sender application does not need to maintain any 
information of the failure point. PSP will automatically 
figure out the necessary recovery information for the 
particular session based on the SessionInfo table. At this 
point, the application should submit data starting from the 
latest allocated data ID to PSPS. However, it is possible that 
data submitted before the last system failure are still pending 
to be transmitted to various PSPR’s. The recovery manager is 
thus invoked to recover those data. If it successfully 
transmits all the remaining data for at least one of these sub-
sessions, it informs the sender application and enables the 
memory buffer. In this case, higher performance can be 
achieved since PSPS can transmit the newly submitted data 
directly from memory. Sub-sessions that cannot be 
recovered have to wait for the next background recovery 
session and extra disk reads will be performed for the 
submitted data items. 

To further improve recovery performance, a cache is 
introduced to store data items that have been transmitted by 
the recovery manager. This can significantly improve 
performance in the situation where a sub-session is 
experiencing continuous failure and needs to be recovered 
for multiple times or for sessions that have multiple sub-
sessions to be recovered.  

III. EXPERIMENTAL STUDY 
Our prototype is being tested for a distributed archive 

product at ImageSoft Technologies. The distributed archive 
is commonly used in the banking industry to archive large 
number of images of finance documents (e.g. cheques, 
deposit slips) in multiple branches/data centers.  In the test 
environment, a stream of approximately 2000 finance 
document images are captured on-the-fly and transmitted 
from a Sun Enterprise 250 server with two 400-MHz 

UltraSPARC-II CPUs running Solaris 8.0 to one or more 
receivers running on PCs of Intel Pentium II 400MHz CPUs 
with Red Hat Linux 8.0 installed.  The size of images range 
from several Kilobytes to several Megabytes.  At each 
receiving end, a receiving application stores the received 
images into a specified directory.  



We tested PSP with the following scenarios. The first 
test case confirmed that a sender could establish multiple 
communication sessions simultaneously. Each could involve 
more than one receiver.  The second test demonstrated that a 
receiver could be in session with more than one sender.  
These two cases were designed to test the different multi-
unicast scenarios under PSP.  We then tested the fault 
tolerance capability of PSP. In all the experiments, the 
recovery interval was set to two minutes. We physically 
removed the line from a computer (i.e., communication 
failure) or from a power source (i.e.., power failure) and 
made the following observations in this study:  (1) A 
disconnection of the communication  link to  Receiver 1  did  
not  affect  the  data delivery to Receiver 2.  Furthermore, 
Receiver 1 could resume the transmission when the broken 
link was physically reconnected.  (2)  The same behavior 
was observed when we unplugged the power line of 
Receiver 2.  (3) When we disconnected the sender from the 
power source, the whole transmission paused.  However, the 
session recovered and resumed the data transmission after 
we replugged the sender to the power source.  In all cases, 
every image arrived orderlly and correctly at the intended 
destinations. 
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Figure 4. System recovery time 

We depict the relationship between the time that takes 
the system to recover from a failure and the recovery 
interval in Figure 4. In the experiment, we had one sender 
application sending images to a remote receiver application. 
We crashed the PSPR in the middle of transmission and 
restarted it sometime later. We recorded the time when the 
receiver application was restarted and the time when its data 
reception was resumed, and the recovery time was calculated 
as the difference between the two. We varied the recovery 
interval from 10 seconds to 60 seconds and recorded the 
results in Figure 4. In the figure, the X-axis represents the 
recovery interval and the Y-axis represents the recovery 
time. We observe that the recovery time is approximately 
proportional to the recovery interval. In the current 
distributed archive environment, we set the recovery interval 
to be 2 minutes. 

To test the time it takes to recover a session, we 
performed another test. In the test, the sender transmitted 
200 images to two receiver applications. We unplugged the 
network link after 50 images were successfully transmitted 
to receiver applications. As a result, the data were 
continually pooled in the PDT whereas the receiver 
applications were unable to receive any data. After all the 

images were stored in the PDT, we plugged the network link 
back and measured the time it took to recover both sub-
sessions. The recovery time for a particular sub-session was 
measured as the difference between the time when the 
recovery thread attempted to reconnect to the receiver 
application and the time the last data item was successfully 
acknowledged by the receiver application. Table 1 
demostrates the recovery time of both sub-sessions. From 
Table 1 we observe that the recovery time for the second 
sub-session was much less than the first one. This is due to 
the employment of the recovery cache. During the recovery 
of the first sub-session, data items were stored in the cache. 
Consequently, the recovery of the second sub-session did not 
involve any disk operation and achieved a 69% 
improvement in terms of recovery time. 

Table 1. Recovery time of sub-sessions 
Sub-

session ID 
Recovery time 
(in seconds) 

1 143 
2 45 

IV. CONCLUSION 
A transactional communication session is an atomic 

communication operation that must deliver the dataset to 
its destination in its entirety, otherwise any partial data 
transmission must be undone as if the communication 
session has never occurred.  Transmission protocols in the 
transactional framework can result in a session abort, and 
therefore require retransmission of the data.   

In this paper, we proposed a new protocol that deals 
with fault-tolerance issues. The Persistent Streaming 
Protocol (PSP) session never aborts; automatically recovers 
failed sessions efficiently and retransmissions are never 
needed. It is therefore suitable for a wide range of 
applications including long-live communication sessions 
(e.g., ftp, batch processing, etc.)  
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