
Yacine Atif
United Arab Emirates University

Building Trust
in E-Commerce

A network of Internet-based intermediaries that guarantee

delivery and payment in e-commerce could help bolster

consumer and merchant confidence.

Most of us who have purchased
items via the Internet have felt
reluctant about the transaction

at some point — usually when entering
our credit card number or receiving
unexpected goods. As customers, we need
guarantees that the other party will not
misuse confidential information, and
merchants need guarantees that they will
receive payment for the goods delivered.
While security protocols such as the
Secure Sockets Layer (SSL) and Secure
Electronic Transactions (SET) ensure that
a credit card number will not be inter-
cepted during transmission, they provide
no guarantee against its misuse by the
receiving party, nor against fraud by the
transmitting party.

To increase confidence in commercial
transactions over the Web, where the
transacting parties are invisible to each
other, we need not just new protocols
but also new transaction processes. One
solution is to enlist a third party, referred
to here as a trust service provider (TSP),
to act as an Internet-based intermediary
that assumes responsibility for a smooth
transaction. The TSP is known and trust-
ed by both customer and merchant and

makes purchases on behalf of the one
and conveys the goods on behalf of the
other.

This article describes my proposal for
a trust web model based on a distributed
search algorithm and a network of trust-
ed intermediaries that can establish a
trusted channel through which terminal
transacting parties deal virtually directly
and risk-free with each other. I have
developed a CORBA-based implementa-
tion of the trust-path building algorithm
and am currently testing its performance.
The actual version of the system can be
found at http://faculty.uaeu.ac.ae/~atif/
research/ecommerce/ec.html.

Building Trust
The trust web features three essential
components for establishing confidence
between e-commerce parties:

� A simple model composed of a network
of TSP entities and an algorithm that
establishes a trust path prior to carry-
ing out an e-commerce transaction.

� An open extensible TSP architecture
that can include additional e-com-
merce mediating services and an

18 JANUARY • FEBRUARY 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

E-
C

om
m

er
ce

application programming interface (API) to run
the trust-path building algorithm.

� A parallel implementation of the trust-path
search algorithm, which contributes to a balance
between time and network traffic complexity.

Once the TSP network is in place, a commercial
organization can easily access trust services by
registering with a selected TSP. The organization
needs a minimum Common Object Request Broker
Architecture (CORBA) interface to connect to the
object request broker (ORB), which conveys its ini-
tiated trust requests to a trust manager object run-
ning on the TSP host. There is no need to purchase
expensive CORBA implementations; the new
releases of Netscape Navigator and the Java Devel-
oper’s Kit already support CORBA.

Establishing Relationships
A trust connection is established by an initiating
entity that wishes to build a relationship with
another selected entity by some means, such as a
private favorable relationship, positive past expe-
rience, or simply by reputation. Once the ap-
proached entity approves the trust-connection
building request, it becomes fully liable for carry-
ing out incoming transactions issued by the initi-
ating entity. The process somewhat resembles
opening a bank account, wherein the bank is
bound to carry out the customer’s incoming
requests and be responsible for their outcome. This
liability level eliminates transaction risks.

This form of Internet-based mediation can be
iteratively extended when the customer-contract-
ed broker does not have a direct trust link with the
targeted merchant. Inter-TSP connectivity, along
with the customer and the merchants, thus forms a
web of trusted entities. Figure 1 shows a graph-
theoretic representation of the trust web; vertices
denote the intervening entities and edges reflect
trust relationships.

Finding a Path
The process of reaching a targeted merchant with-
in the trust web can be framed as a distributed
search problem aimed at identifying a trust path.
This path links the customer with the targeted
merchant across a chain of TSPs that each trust
their immediate neighbors. The trust-path build-
ing process remains invisible to the transacting
parties because it is carried out automatically (that
is, with no offline delay) to let the parties deal vir-
tually directly with each other. There are three
major challenges in the search for a trust path.

� Each TSP knows only its immediate trusted
neighbors rather than each principal in the
global trust web.

� Each TSP might be running on different oper-
ating systems and hardware and following a
variety of software standards.

� The trust web’s connectivity might be high —
that is, each TSP entity might be linked to sev-
eral other TSPs — increasing the complexity of
the search process.

The distributed search algorithm I propose in this
article addresses the first issue by allowing only
local information related to neighboring TSPs to
be available to each TSP. Maintaining platform
independence in the system will handle the issue
of heterogeneity among TSPs, and implementing
a parallel Web search version of the algorithm will
decrease search complexity, as will constraining
the search process using cost functions.

Trust-Path Building Algorithm
The TSP — which is basically a software agent —
automatically relays a customer trust-building
request to the corresponding merchant if it knows
and trusts the merchant directly. Otherwise, the
TSP approaches other trusted brokers until it
establishes a trusted channel across which the con-
fident exchange of goods and money can occur.
The trust web represents the algorithm’s search
space, and the algorithm requires the cooperation
of multiple principals to find a trust path.

When the customer initiates the search process to
acquire commodities from a set of targeted mer-
chants, it relays these targets automatically to the
nearest trusted TSPs in hopes of finding the targets.
If the approached TSPs do not have trust connec-
tions with the targets, they forward the customer’s
request to adjacent TSPs to identify targets deeper
within the trust web. The parallel nature of trust
invocations and trust web connectivity means a TSP

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 19

Building Trust

Customer

Merchant 1

TSP TSP

TSP TSP

TSPTSP

Merchant 2

Figure 1. Graph-theoretic representation of the “trust web.” Vertices
denote the intervening trust service providers, and edges reflect trust
relationships.

might receive and process the same request twice. To
avoid this, each request includes a unique session ID
and time stamp.1 All received requests are back-
logged, and duplicate requests are discarded.

Reducing Complexity
The search process proceeds from the root node
representing the customer to a leaf node repre-
senting the merchant. A TSP simply stops the
search if it faces a dead end because it has no trust
connections or all its connections lead to already
explored TSPs. We can reduce the search space
complexity by pruning the alternatives that do not
satisfy some constraints.

A customer can specify certain TSPs not to
include on the path, for example, by indicating
individual TSPs’ identities or geographical
regions to exclude. Other constraints could spec-
ify the maximum cost the customer will pay for
TSP services, the number of intervening TSPs, or
even the communication cost. Additional con-
straints increase message size but reduce the
number of messages exchanged between princi-
pals. Combining trust-path building constraints
with a parallel search for trusted partners pro-
vides a tradeoff between time and network traf-
fic complexity.

Locating Targets
Each principal executes the distributed search
algorithm described in Figure 2 whenever it
receives a message. (Later, in the algorithm’s
object-oriented implementation, messages take the
form of remote object invocations.) Initially, cus-
tomer A sends a message to its immediate TSP’s
set: the TSPs with which the customer has direct
trust relationship. Table 1 describes the structure
of a message M = {S, ts, R, P, EP, C, D}, sent to the
trusted intermediaries after being encrypted using
each TSP’s public key.

As Figure 2 indicates, the algorithm recognizes
two message types: forward and backward. The
search for targets generates forward messages.
When targets have been located, backward mes-
sages trace the path of the forward messages back
to the trust-building request initiator. No backward
messages are generated if the path could not be
found. If a starting principal does not receive a
backward message after a certain time, it assumes
that no path was found.

The algorithm starts by sending messages
from the customer (A) to all of its directly con-
nected principals ti in the trust web. On receiv-
ing a message, a TSP forwards it to its direct

20 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Table 1. Message structure.

Label Legend

S Unique session ID to identify the request
ts Time stamp
R Return path initially containing one entry (R=[a])
P List of target principals. (P=[p1 ,p2,... ,pn])
EP Path constraints: a list of principals to be excluded from

the trust path
C Cost constraints, such as number of TSPs on the path,

maximum charges that the customer will pay, communica-
tion costs, or time after which the search should end

D Accumulated costs along the path

1 The customer A prepares the initial message M, and sends it in parallel to
all of its TSPs.
Forward messages: On receiving a message, each trusted intermediary ti
performs the following steps.

2.1 ti retrieves its set Ti of trusted neighboring principals.

2.2 ti stores the ID of the sending principal in tsender.

2.3

2.4

2.5

2.6

2.7

2.8

ti removes from Ti the excluded principals that are on
the path constraint list (Ti

(1)←Ti\(Ti∩Ep)).

If the resulting Ti
(1) is empty, all further processing on

M stops. This is a dead end.
ti removes the visited TSPs from its neighbors and builds
an updated set of trusted neighbors (Ti

(2)←Ti
(1))\(Ti

(1∩P)).
If the resulting Ti

(2) is empty, all further processing on
M stops. This is a dead end.

A
 T

SP
 r

ec
ei

ve
s

a
tr

us
t-

pa
th

 b
ui

ld
in

g
in

vo
ca

tio
n

fr
om

 t
he

 c
us

to
m

er
 o

r
fr

om
 a

no
th

er
 T

SP
.

ti retrieves set Pi of the target principals that are in its
neighborhood (Pi

←P∩T) .

If some target principals are found (i.e. Pi≠Ø) then:

2.8.1 ti adds the found targets Pi to the trust path R and
updates R(R(1)←R∪Pi)

2.8.2 ti builds the set of target principals P(1) left to locate
(P(1)←P \ Pi).

Fo
un

d
ta

rg
et

s
ar

e
ad

de
d

to
th

e
tr

us
t

pa
th

. B
ac

kw
ar

d
m

es
sa

ge
 is

 in
iti

at
ed

 if
 a

ll
ta

rg
et

s
ha

ve
 b

ee
n

lo
ca

te
d.

2.8.3 If all target principals have been located (P(1) ≠ Ø),
ti prepares and sends a backward message M(1) in
which trust path R is replaced by the newly updated
path R(1), and moves on to step 3.

2.9

ti retrieves the message-recipients Ti
(3) to which the message

is to be forwarded by applying a cost function on each
TSP and filtering out the resulting TSPs (Ti

(2)←apply-cost-
constraints(C,D, Ti

(2))).

2.10
If the resulting TSP set Ti

(3) is empty, all processing on
M stops. This is a dead end.

2.11 ti adds itself to the trust path R and updates R (R(2).. R>>[ti]).

2.12
ti prepares the new forward message M(2) in which the
trust path R is replaced by newly augmented path R(2).

2

T
he

 T
SP

 p
re

pa
re

s
to

 s
en

d
a

ne
w

 fo
rw

ar
d

m
es

sa
ge

 t
o

lo
ca

te
 t

he
 r

em
ai

ni
ng

 t
ar

ge
ts

.

2.13 ti sends M(2) to all TSPs in Ti
(3) in parallel (∀ tk | tx ∈ Ti

(3),
Send (M(2) ,tk)).

3 Backward messages: On receiving a backward message, each ti sends it to the
associated tsender.

Figure 2.Trust-path building algorithm. Each principal executes the
algorithm when it receives a message from another.

principals that are not in the path constraint EP

(step 2.3) and have not already been visited (step
2.5). The receiving TSP then checks whether any
neighboring principal is in the target principal
list, P (step 2.7). If so, that target principal is
removed from P and appended to the construct-
ed path, R. Once a TSP has located the last tar-
get principal yet to be found, it sends the mes-
sage back to tsender, from which it received the
message (step 2.8.3).

Thus begins the message’s backward traversal.
If some target principals remain, the cost con-
straints are applied using the function apply-cost-
constraints (step 2.9), and any violating principal
is removed from the list of neighboring TSPs.
Finally, the algorithm appends the current princi-
pal to R and sends forward messages to all its

trusted principals that passed the constraints test
(step 2.13).

Path-Building Example
Figure 3 (next page) illustrates how the trust-path
building algorithm might work using the trust web
in Figure 1. The number attached to each TSP node
(t1, t2, t3, and so on) indicates the trust service
charge. Assume that cost-constraint list C states
that the path should include no more than four
TSPs and that total charges should not exceed 200.
Customer A also wants to exclude principal t5
from the path. For simplicity, omit the time stamp
ts and the session ID S from the message structure
and trace only one message, issued from A and
addressed to t2. Table 2 (next page) provides a
detailed legend for the link labels in Figure 3 that

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 21

Building Trust

Early work on trust-path evaluation origi-
nated in the problem of public-key exchange
and authentication.1 Most of the research
focused on interconnected “authentication”
servers that were used to obtain public keys
with little or no risk.This research inspired
the work proposed in this article on devel-
oping a network of trusted intermediaries
for Internet-based commerce.

More recently, Borcherding and
Borcherding suggested a centralized algo-
rithm, based on the Dijkstra shortest-path
algorithm, for calculating a trust path for
safely transmitting public keys.2 I have incor-
porated aspects of this approach in the trust
web proposal described in the main text.

A New Dimension
Much of the related research focuses on
network security and authentication, but e-
commerce domains add a new dimension
of trust requirements. In an e-commerce
system, trust stems from consumers’ and
merchants’ confidence in the competence,
dependability, and security of the system
under risk conditions.3

A typical e-commerce transaction fol-
lows three steps:

� locating business parties,
� establishing a trusted path between

parties, and
� executing the transaction along the

trust path.

The buyer usually seeks out the business
party, but a merchant could also initiate the
search by mining for potential customers.
In most cases, customers do know the tar-
geted merchants before issuing purchase
requests or looking through Web-based
catalogue servers. In either case, the search
phase results in a list of targeted merchants
the customer wishes to deal with.This list
represents the input to the trust-path
building algorithm discussed in this article.

Trusted Intermediaries
Successful e-commerce systems depend
heavily on the second step, but the Internet
fosters distrust because the involved parties
are invisible to each other.This dilemma can
be solved by using a trusted intermediary (TI),4

which is basically a broker trusted by and
accountable to both customer and merchant.
The TI verifies that the goods match the
specifications, and then forwards the goods
to the customer and the payment to the
merchant. Unless transacting parties know
who is liable for guaranteeing transactions,
confidence in e-commerce will remain weak.5

Ketchpel and Garcia-Molina first sug-
gested a solution for conducting risk-free
transactions with the aid of trusted inter-
mediaries,4 but they did not describe how
to build a “trust path” between unknown

parties. Su and Manchala proposed one
such algorithm for evaluating trust paths
with the help of trusted intermediaries.6 In
their proposal, a central server calculates
the minimum-length Steiner tree for con-
necting selected vertices with customer
and merchants as leaf nodes.This approach,
however, requires a centralized execution
of the algorithm and assumes that the cen-
tral server on which the algorithm is run-
ning knows the entire solution space.

References
1. R.Yahalom,B.Klein, and T.Beth,“Trust-Based Nav-

igation in Distributed Systems,” J. Computing Sys-

tems, vol. 7, no. 1, 1994, pp. 45-73.

2. B. Borcherding and M. Borcherding, “Efficient and

Trustworthy Key Distribution in Webs of Trust,” Com-

puters and Security, vol.17,no.5,1998,pp.447-454.

3. A. McCullagh, “E-commerce — A Matter of

TRUST,” Information Industry Outlook Conf., 1998;

available at http://www.acs.org.au/presi-

dent/1998/past/io98/etrust.htm.

4. S.P. Ketchpel and H. Garcia-Molina,“Making Trust

Explicit in Distributed Commerce Transactions,”

Proc. 16th Int’l Conf. Distributed Computing Systems,

IEEE CS Press,Los Alamitos,Calif.,1996,pp.270-281.

5. V. Ahuja,“Building Trust in Electronic Commerce,”

IT Professional, vol. 2, no. 3, May 2000, pp. 61-63.

6. J. Su and D. Manchala,“Building Trust for Distrib-

uted Commerce Transactions,” 17th Int’l Conf.Dis-

tributed Computing Systems, IEEE CS Press, Los

Alamitos, Calif., 1997, pp 322-329.

Related Work in Trust

represent the exchanged messages.
The algorithm’s main overhead comes from

the messages generated. In the worst-case situa-
tion — with no search constraints and a fully
connected trust web in which each TSP trusts
only one merchant — a single customer trust-
path building request generates k(n!) messages,
where n is the total number of TSPs in the trust
web and k is the number of TSPs the customer
directly trusts. This network traffic rate is unlike-
ly under normal conditions, however, because
the real-life trust web is partially connected.
Moreover, a TSP normally trusts many mer-
chants; hence some messages do not travel
through the whole network.

Architecture and Implementation
To make the trust web and the trust-path building
process a reality, the implementation must meet
certain requirements that are common to all open
system standards.2

� Interoperability. Internet-based applications
must be able to work together through well-
defined interfaces.

� Portability. Applications must be decoupled
from any particular computing environment.

� Integration. Applications should require minimal
effort to be incorporated with existing systems.

I have chosen to use CORBA3 to implement the
trust web model because it satisfies all these
requirements.

TSP Architecture
Exploring the TSP architecture in depth shows how
to integrate trust services in existing e-commerce
systems. Successful e-commerce systems follow an
object-oriented approach based on two major prin-
ciples: Modularity divides the system into self-con-
tained modules or objects, and abstraction sepa-
rates these objects’ descriptions from their actual
implementation. Architectures based on these
design principles prove to be scalable and flexible,
allowing easy integration of new services. Figure
4 shows how such an e-commerce system can be
fine-tuned to embody trust services and thus
become a TSP.

The architecture shown in Figure 4 divides an e-
commerce system into three distinct layers:

� The interface layer presents the services to
external entities (customers or other business-
es). This layer identifies service types. Trust
services augment the already advertised group
of services.

� The service implementation layer contains a
processing methodology for the advertised ser-
vices. It includes the business-aware rules and
control functions embedded in objects; each
service implementation might require a set of
such objects.

� The service-related data layer incorporates the
data management functionality implemented
using database servers (possibly from multiple
vendors). ODBC and Java database connectiv-
ity (JDBC) drivers allow access to these hetero-
geneous database systems, as all major data-
bases have dedicated ODBC/JDBC drivers.

This open architecture allows us to easily integrate
new services — including trust services — into
existing systems by defining additional interfaces
and creating the implementing objects and
required data sources for the new services. For an
e-commerce system to integrate trust services and
become a TSP, an additional interface that includes
the signature of the FindPath method augments
the interface layer. This interface at the service

22 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Table 2. Legend for Figure 3.

Step Message Type

1 Customer A sends to t2 {[a],[p1,p2],[t5],[4,200],[1,20]} Forward
2 t2 sends to t3, {[a,t2],[p1,p2],[t5],[4,200],[2,80]} Forward
3 t2 sends to t4 {[a,t2],[p1,p2],[t5],[4,200],[2,120]} Forward
4 t4 sends to t1:{[a,t2,t4],[p2],[t5],[4,200],[3,170]} Forward
5 t2 sends to t6:{[a,t2],[p1,p2],[t5],[4,200],[2,90]} Forward
6 t6 sends to t2:{[a,t2,,t6,,p1,p2],[],[t5],[4,200],[2,90]} Backward
7 t2 sends to a:{[a,t2,,t6,,p1,p2],[],[t5],[4,200],[2,90]} Backward

Figure 3.Trust-path building example.The cost-constraint list deter-
mines the message’s path.

P2

t2/20

t3/60

t5/50

t6/70

6

5
2

1
a

t1/50 t4/100

P1

4

3

7

implementation layer corresponds to the trust-
path finding algorithm proposed in Figure 2.

Each TSP stores information about its trusted
neighbors (IDs, charges, and so on) in its trust data-
base, which is integrated at the data level of the TSP
architecture. Table 3 shows the database’s structure.
The algorithm searches this table to find a regis-
tered trusted merchant or check for cost constraints.

Trust Web Architecture
TSPs act as both servers and clients in the trust
web. As servers, TSPs expose a remote object
through its interface. Trusted clients can invoke the
exposed-object methods remotely. TSPs become
clients when they invoke other TSPs’ methods. As
discussed earlier, the interface is a purely declara-
tive component that hides the implementation
details. This deliberate strategy facilitates interop-
erability and software integration.

Figure 5 (next page) depicts the trust web’s
basic system architecture. Implementing the
trust web as middleware allows remotely located
TSP objects to communicate. A TSP joins the
trust web by advertising its services interface
through an ORB (such as CORBA). TSPs can thus
locate each other automatically on the trust web
using their individual IDs (stored in their indi-
vidual trust databases).

A TSP also runs a Web server so that clients
(customers, merchants, or other trusted TSPs) can
remotely invoke its trust-building API, FindPath.
This process includes a public-key authentication
mechanism to ensure that only TSP registered
clients who have previously subscribed to the ser-
vices can access a host’s TSP server. The client
specifies the target principals and path and cost
constraints and then remotely invokes the Find-
Path method supplied by the trust manager object
in each TSP’s service implementation layer. When
a host contacts the trust managers of its neigh-
boring trusted intermediaries, it becomes their
client. This process continues until the ORB locates
targeted merchants and constructs trust paths.

Parallel Web Search
The search for targeted merchants is distributed and
parallelized across the trust web. Initially, the cus-
tomer may approach several TSPs concurrently,
which then relay in parallel the trust-path building
request to their trusted neighbors. This implementa-
tion (see http://faculty.uaeu.ac.ae/~atif/research/
ecommerce/ec.html) uses multithreading to invoke
the FindPath method many times simultaneously.
CORBA’s multithreading support allows a TSP to

simultaneously receive and process multiple Find-
Path method invocations. For each invocation ses-
sion, the TSP server spawns a new trust manager
thread that supervises the incoming trust request.
Each thread has its own state-related information
with a serialized shared section-part to avoid any
critical section violation problem.

Multithreading also lets a host send parallel
requests to neighboring trusted intermediaries,
which helps cut down the search time and com-

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 23

Building Trust

Table 3.Trust database layout.

Host ID Charges Type

B1 0 Merchant
T1 100 TSP
T2 200 TSP
T4 50 TSP

Find path

Subscribe

T
ru

st

First Virtual

DigiCash

Pa
ym

en
t Products

Support

C
or

po
ra

te

Service interface

Service implementation

Service-related data

ODBC/JDBC drivers

Trust DB

Oracle

Corp. DB1

SQL

Corp. DB2

DB2

Trust objects Payment protocol Other objects

Figure 4.TSP system architecture.Trust services can be integrated
into the three primary layers of most modular e-commerce systems.

plexity. My Java-based TSP implementation uses
Java’s synchronization mechanism on the concur-
rent threads. A client TSP sends forward messages
to all the TSPs in its trust database that pass the
path and cost-constraint tests. Client threads
spawned to “bind” to a neighboring host’s trust
server object then remotely call its FindPath
method. Each thread then waits for a response
from the server, which might invoke further Find-
Path instances on its neighboring nodes until it
locates the target principals or encounters a dead
end. In either case, the resulting response is chan-
neled back to the originator.

Conclusion
Building confidence in e-commerce requires more
than robust processing systems. The human per-
ception of trust is a core ingredient in any online
transaction,4 and future e-commerce systems must
support trust services to gain loyalty at both the

consumer and provider ends.
Trust might seem an intangible feature to incor-

porate into computing systems, but the automatic
trust-building algorithm and system architecture
proposed here achieve that by negotiating cus-
tomers’ requests to identify a sequence of trust-
worthy intermediaries in order to complete a trans-
action with a merchant. However, this model is
based only on Boolean relationships. That is, any
two entities can share either a complete trust or a
complete distrust relationship. Future work will
consider a trust model based on fuzzy logic for
determining the best-suited trust-path.5

References

1. H. El-Rewini and T.G. Lewis, Distributed and Parallel Com-

puting, Manning Publications, Greenwich, Conn., 1997.

2. A. Umar, Application (Re)Engineering: Building Web-Based

Applications and Dealing With Legacies, Prentice Hall,

Upper Saddle River, N.J., 1997.

3. Z. Tari and O. Bukhres, Fundamentals of Distributed Object

Systems: The CORBA Perspective, John Wiley & Sons, New

York, 2001.

4. D.W. Manchala, “E-Commerce Trust Metrics and Models,”

IEEE Internet Computing, vol. 4, no. 2, 2000, pp. 36-44.

5. H. Hsiung, S. Sheurich, and F. Ferrante, “Bridging E-Busi-

ness and Added Trust: Keys to E-Business Growth,” IT Pro-

fessional, vol. 3, no. 2, Mar. 2001, pp. 41-45.

Yacine Atif is an assistant professor of computer science at the

Information Technology College of United Arab Emirates

University. He received a PhD from the Hong Kong Uni-

versity of Science and Technology. His primary research

area is distributed computing techniques to support e-

commerce applications.

Readers can contact the author at Yacine.Atif@uaeu.ac.ae.

24 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

TCP/IP network

TSP1

Interface
stub

TSP
architecture TSP2

Trust web
middleware

Public network

TSPn

Object request broker

Figure 5.Trust web architecture.A TSP advertises its trust services
and joins the trust web by plugging its interface to the ORB.

How to Write for IC . . .

IEEE Internet Computing is a bimonthly magazine focused on Internet-based applications and supporting technologies.We seek articles
on the use and development of Internet applications, services, and technologies that let practitioners leverage them in engineering and

applying the Internet tool set.We aim to support individual engineers, as well as groups, in collaborative and coordinated work.

All articles will be peer reviewed and should be submitted as PDF or PostScript.Submissions should be relevant to the typical professional
subscriber of IC and should illustrate the applicability or effect of a specific Internet-based technology.Fielded,tested applications with hard

results are preferred.Prototypes must at least include test results.Submissions should be no longer than 6,000 words.

For detailed instructions, see our Author Guidelines at http://computer.org/internet/author.htm

