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Relational Data Model

John Smith Orlando0005

EMP# NAME ADDR

A relation
(table)

An attribute
(column)

A tuple
(row)

� A database structure is a collection of tables.

� Each table is organized into rows and

columns.

� The persistent objects of an application are

captured in these tables.
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Relational Operator: SCAN

SELECT NAME

FROM EMPLOYEE

WHERE ADDR = \Orlando";

PROJECT(NAME)

NAME
Jane Doe

John Smith

Jane Doe0002 Orlando
0005 John Smith Orlando

EMP# NAME ADDR

SELECT (ADDR=Orlando)

John Smith Orlando0005

EMP# NAME ADDR

Jane Doe0002 Orlando

SCAN
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Relational Operator: JOIN

SELECT �

FROM EMPLOYEE, PROJECT

WHERE EMP# = ENUM

EMP# NAME ADDR

Jane Doe0002 Orlando

ENUM PROJECT DEPT

0002 Research

EMP# = ENUM

EMP# NAME ADDR PROJECT DEPT

EMPLOYEE: PROJECT:

EMP_PROJ:

No
Yes

Matching

0002 Jane Doe Orlando Database Research

0002 Database Research

0002 Jane Doe Orlando GUI Research

GUI
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Hash-Based Join

EMP# NAME ADDR ENUM PROJ DEPT
EMPLOYEE: PROJECT:

JOIN JOIN JOIN JOIN

0004

0004

0008

E0 E1 E2 E3P0 P1 P2 P3

EMP_PROJ_0 EMP_PROJ_1 EMP_PROJ_2 EMP_PROJ_3

0004 0004

0008

HASH:(EMP#) = EMP# mod 4 HASH(ENUM) = ENUM mod 4‘

Examples: 0 mod 4 = 0 4 mod 4 = 0

1 mod 4 = 1 5 mod 4 = 1

2 mod 4 = 2 6 mod 4 = 2

3 mod 4 = 3 7 mod 4 = 3



T
T

H

⋈

J1
The only one processing unit 
must do all 16 small joins 
sequentially, one at a time

“Divide and Concur” 
done sequentially

Hash-bucket pairs from the two operand relations



H

T T TT
T1, R1 T2, R2 T3, R3 T4,R4

H H H

⋈ ⋈ ⋈ ⋈

J1 J2 J3 J4

The same divide and concur can be done on 
four processing nodes in parallel. 
Each PN must finish its read and write for the 
current phase before the next phase can start 

“Divide and Concur” Done 
on Four Processing Nodes
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Bucket Sizes and I/O Costs

Bucket A Bucket B

Memory

One tuple at a time

Bucket B does not �t

in the memory in its

entirety. It must be

loaded several time.

Memory

Bucket A(1)

Bucket A(2)

Bucket A(3)

Bucket B(2)

Bucket B(3)

LOAD

One tuple at a time

Bucket B(1)

Bucket B �ts in the

memory. It needs to be

loaded only once.

hao
Text Box
Bucket A

hao
Text Box
Bucket B does not fit in the memory
in its entirety. Bucket A must be loaded
several times.

hao
Text Box
Bucket B(1) fits in the memory.
A(1) needs to be loaded only once.
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Speedup and Scaleup

The ideal parallel systems demonstrates two key

properties:

1. Linear Speedup:

Speedup =
small system elapsed time

big system elapsed time

Linear Speedup : Twice as much hardware can

perform the task in half the elapse time (i.e.,

speedup = number of processors.)

2. Linear Scaleup:

Scaleup =
small system elapsed time on small problem

big system elapsed time on big problem

Linear Scaleup : Twice as much hardware can

perform twice as large a task in the same elapsed

time (i.e., scaleup = 1.)
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Barriers to Parallelism

� Startup:

The time needed to start a parallel operation

(thread creation/connection overhead) may

dominate the actual computation time.

� Interference:

When accessing shared resources, each new

process slows down the others (hot spot

problem).

� Skew:

The response time of a set of parallel

processes is the time of the slowest one.
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The Challenge

� The ideal database machine has:

1. a single in�nitely fast processor,

2. an in�nitely large memory with in�nite bandwidth

�! Unfortunately, technology is not

delivering such machines !

� The challenge is:

1. to build an in�nitely fast processor out of

in�nitely many processors of �nite speed, and

2. to build an in�nitely large memory with

in�nitely many storage units of �nite speed.
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Performance of Hardware Components

� Processor:

{ Density increases by 25% per year.

{ Speed doubles in three years.

�Memory:

{ Density increases by 60% per year.

{ Cycle time decreases by 1
3
in ten years.

�Disk:

{ Density increases by 25% per year.

{ Cycle time decreases by 1
3
in ten years.

The Database Problem: The I/O bottleneck will worsen.
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Hardware Architectures

P :  Processor

:  Memory ModuleM

:  Disk Drive

(a) Shared Nothing (SN)

Network

Communication

P P P P

M M M M

P

M

(b) Shared Disk (SD)

Network

Communication

P P P P

M M M M

M M M

PPP

Communication

Network

(c) Shared Everything (SE)

Shared Nothing is more scalable for very 
large database systems
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Shared-Everything Systems

P P P P P P P P P P P PP P P P

M M M M

M M M M M M M M M M M M M M M M

M M M M M M M M

CACHE

CPU

CACHE

CPU

CACHE

CPU

CACHE

CPU

COMMUNICATION  NETWORK

.   .   .

.   .   .

Cross Interrogation

MEMORY MEMORY MEMORY MEMORY



Shared Disk Architecture 

Communication Network 

Memory 

P 

Memory 

P 

Memory 

P 

Memory 

P 

4K 
page 

Update 

Cross Interrogation for a small change to a page. 
Processing units interfere each other even they  
work on different records of the same page. 
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Hybrid Architecture

.   .   .

Cluster N

.  .  .

Bus

Memory

Cluster 1

Memory

Bus

.  .  .P P P P P P

COMMUNICATION NETWORK

� SE clusters are interconnected through a communication network

to form an SN structure at the inter-cluster level.

� This approach minimizes the communication overhead associated

with the SN structure, and yet each cluster size is kept small

within the limitation of the local memory and I/O bandwidth.

� Examples of this architecture include Sequent computers, NCR

5100M and Bull PowerCluster.

� Some of the DBMSs designed for this structure are the Teradata

Database System for the NCR WorldMark 5100 computer, Sybase

MPP, Informix Online Extended Parallel Server.
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Parallelism in Relational Data Model

� Pipeline Parallelism: If one operator sends its

output to another, the two operators can execute in

parallel.

INSERT

JOIN

SCAN SCAN

C

A B

INSERT INTO C

SELECT

FROM

WHERE

*

A, B

A.x = B.y;

� Partitioned Parallelism: By taking the large

relational operators and partitioning their inputs and

outputs, it is possible to turn one big job into many

concurrent independent little ones.

JOIN

SCAN

INSERT INSERT INSERT

B0
B1SCAN

A0
A1

A2

C0 C1 C2



Merge & Split Operators 

• Merge operator 
combines 
several parallel 
data streams 
into a simple 
sequential 
stream 

Merger 

Merger 

Process 
executing 
operator 

Split 

In
p

u
t 

st
re

am
s 

O
u

tp
u

t 
st

re
am

s 

• Split operator is used to partition or 
replicate the stream of tuples 

• With split and merge operators, a web of 
simple sequential dataflow nodes can be 
connected to form a parallel execution 
plan 

JOIN 
JOIN 

INSERT INSERT INSERT 

JOIN 

SCAN 
SCAN 

SCAN 

SCAN 
SCAN 

Split 

Merge 
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Data Partitioning Strategies

Data partitioning is the key to partitioned
execution:

� Round-Robin: maps the ith tuple to disk i mod n.

� Hash Partitioning: maps each tuple to a disk

location based on a hash function.

� Range Partitioning: maps contiguous attribute

ranges of a relation to various disks.

NETWORK

P0 P1 P2 P3

NETWORK

P0 P1 P2 P3

A - F G - L M - R S - Z

Range Partitioning

NETWORK

P0 P1 P2 P3

.   .   .

HASH

.   .   .

Hashed Partitioning

Round-Robin
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Comparing Data Partitioning Strategies

�Round Robin Partitioning:

Advantage: simple

Disadvantage: It does not support associative search.

�Hash Partitioning:

Advantage: Associative access to the tuples with a

speci�c attribute value can be directed

to a single disk.

Disadvantage: It tends to randomize data rather

than cluster it.

�Range Partitioning:

Advantage: It is good for associative search and

clustering data.

Disadvantage: It risks execution skew in which all

the execution occurs in one partition.
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Horizontal Data Partitioning

COMMUNICATION  NETWORK

0 < GPA < .99

P0 P1

1 < GPA < 1.99 2 < GPA < 2.99 3 < GPA < 4

P2 P3

GPA ?

012345678
876543210 2.9

3.8 Computer Science
English

Jane Doe
John Smith

GPASSN NAME MAJOR

STUDENT

.

..
.
..

.

..
.
..

Query 1: Retrieve the names of students who have

a GPA better than 2.0.

=) Only P2 and P3 can participate.

Query 2: Retrieve the names of students who ma-

jor in Anthropology.

=) The whole �le must be searched.

Kien
Callout
 Partitioning attribute
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Age 
 70 

Salary 

The tuples in this 
cell are assigned to 
processing node #5 
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6 7 8 0 1 3 4 5 

1 2 3 4 5 6 7 8 0 

4 5 6 7 8 0 1 2 3 

7 8 0 1 2 3 4 5 6 

2 
 
5 

3 
 
6 

4 
 
7 

5 
 
8 

6 
 
0 

7 
 
1 

8 
 
2 

0 
 
3 

1 
 
4 

8 0 1 2 3 4 5 6 7 

2 

Footprint of 
a 2-attribute 

query 

Footprint of 
a 1-attribute 

query 

1-attribute 
query 

Multidimensional Data Partitioning 

Advantages: 

• Degree of parallelism is maximized 
(i.e., using as many processing nodes 
as possible) 

• Search space is minimized (i.e., 
searching only relevant data blocks) 
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Query Types

Query Shape: The shape of the data sub-

space accessed by a range

query.

Square Query: The query shape is a

square.

Row Query: The query shape is a rect-

angle containing a number

of rows.

Column Query: The query shape is a rect-

angle containing a number

of columns.
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Optimality

� A data allocation strategy is usage optimal

with respect to a query type if the execution

of these queries can always use all the PNs

available in the system.

� A data allocation strategy is balance

optimal with respect to a query type if the

execution of these queries always results in a

balance workload for all the PNs involved.

� A data allocation strategy is optimal with

respect to a query type if it is usage optimal

and balance optimal with respect to this

query type.
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Coordinate Modulo Declustering (CMD)

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

2 3 4 5 6 7 0 1

3 4 5 6 7 0 1 2

4 5 6 7 0 1 2 3

5 6 7 0 1 2 3 4

6 7 0 1 2 3 4 5

7 0 1 2 3 4 5 6

Advantages: Optimal for row and col-

umn queries.

Disadvantages: Poor for square queries.



Hilbert Curve Allocation 
(HCA) Method

Hilbert curve in the 2D space
Mark the Hilbert curve with 
the PN IDs

B E

B E
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8  …  0 1 2 3 4 5 6 7

Stretch out 
the Hilbert 
curve and 
mark the 
line 

Return the 
marked line 
to the grid, 
and the grid 
cells are now 
labeled 
accordingly



Hilbert Curve Allocation 
(HCA) Method

• Property:  A space-filling curve that preserves
locality fairly well

⟹ Two data points which are close to each
other in 1D space are also close to each 
other in the high-dimensional space

• Advantage:  Good for square range queries

• Disadvantage:  Poor for row and column
queries

Hilbert curve in the 2D space
Navigate the Hilbert curve to 
label the data cells

There are 8 processing nodes
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General Multidimensional Data Allocation

(GMDA)

0 1 2 3 4 5 6 7 8

3 4 5 6 7 8 0 1 2

6 7 8 0 1 2 3 4 5

1 2 3 4 5 6 7 8 0

4 5 6 7 8 0 1 2 3

7 8 0 1 2 3 4 5 6

2 3 4 5 6 7 8 0 1

5 6 7 8 0 1 2 3 4

8 0 1 2 3 4 5 6 7

Check row

Check row

Check row

Row  0

Row  1

Row  2

Row  3

Row  4

Row  5

Row  6

Row  7

Row  8

N is the number of processing nodes

Regular Rows: Circular left shift b
p
Nc po-

sitions.

Check Rows: Circular left shift b
p
Nc + 1

positions.

Advantages: optimal for row, column, and

small square range queries (jQj < b
p
Nc2).



Handling 3D
A cube with N3 grid blocks can be seen as N
2D planes stacked up in the third dimension 

3 9
2

= 4

3 9 = 2

N = 9

Shifting 
distance
3
9
2

= 4

Shifting 
distance 
3
9 = 2

1

2



Shifting Distance

• Number of dimension N=3

• Step 1:  Shifting distance is

• Step 2:  Shifting distance is

3
9
2

= 4

3
9 = 2

Number of 
dimensions 

N = 3
N – 1 = 2

N – 2 = 1

Number of 
dimensions 

N = 3
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Handling Higher Dimensions: Mapping Function

A grid block (X1; X2; :::;Xd) is assigned to PN
GeMDA(X1;X2; :::;Xd), where

GeMDA(X1; :::; Xd) =

2
4

dX

i=2

6664Xi �GCDi

N

7775 +
dX

i=1

(Xi � Shf disti)

3
5 mod N;

N = number of PNs,

Shf dist = b d
p
Nc, and

GCDi = gcd(Shf disti; N).

i
i-1
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Optimality Comparison

Allocation Optimal with respect to

scheme row queries column queries small square queries

HCAM No No No

CMD Yes Yes No

GeMDA Yes Yes Yes



Conventional Parallel Hash-
based Join:  Grace Algorithm 

. . . . 

. . .. 

. . 
. 

. 

. 

JOIN JOIN JOIN JOIN 

HASH HASH HASH HASH 

BUCK TUNING BUCK TUNING BUCK TUNING BUCK TUNING 

PN4 PN3 PN2 PN1 

S4 R4 S3 R3 S2 R2 S1 R1 

DATA TRANSMISSION 

. 

. . 

. . 

. ... 

. 

. . 

. 

Hash 
tables into 

buckets 

Merge 
buckets to 
fit memory 

space 

Join 
matching 

bucket 
pairs 

A hash 
bucket 

A bucket 
after 

merging 

Transmit 
tuples to 

their hash 
bucket 

Shared Nothing System 



Grace Algorithm

• Hash Phase:  The hash buckets are evenly
assigned among the PNs.  Each PN hashes
its local partition of each relation and
sends each tuple to the target hash
bucket according to the hash result (i.e.,
the remainder)

• Bucket Tuning Phase:  The small buckets
are logically combined (disk access not
required) to form a larger bucket to better
fit the local memory+.  The buckets of the
two relations must be combined in the
same way according to the same hash
codes (i.e., same remainders).

• Join Phase:  The PNs perform in parallel
their local joins.

+Only one bucket of each bucket pair needs to fit in 
the memory in its entirety so that the other bucket 
needs to be scanned only once.



Computation Cost Estimation

If each of the R partitions has 50 pages and each 
of the S partitions has 100 pages,

• the read cost of the Hash Phase is 50 + 100 = 150
IOs,

• the write cost of the Hash Phase is 50 + 100 = 150
IOs, and

• the total computation cost of the Hash Phase is
150 + 150 = 300 IOs
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The E�ect of Imbalanced Workloads
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Number processors = 64

I/O = 64 X 4 MBytes

Communication = 64 X 4 MBytes



Kien A. Hua 33

Partition Tuning: Largest Processing Time

(LPT) First Strategy

Combine

Combine

P1

P2

Hash Bucket

(Tuples)
Size

B7 B8
B6

B4
B3

B2

B1

Combine

Combine

Combine

Combine

kienhua
Typewritten Text

kienhua
Typewritten Text

kienhua
Typewritten Text

kienhua
Typewritten Text
- Bin Packing

kienhua
Typewritten Text

kienhua
Typewritten Text
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Naive Load Balancing Parallel Hash Join (NBJ)

DATA TRANSMISSION

... ...

......

JOIN

BUCK TUNBUCK TUN

JOIN

... ...

......... ...

......

JOIN

BUCK TUNBUCK TUN

JOIN

... ...

......

..

......

PN4PN3PN2PN1

S4R4S3R3S2R2S1R1

HASH HASH HASH HASH

PART TUN PART TUN PART TUN PART TUN

......

.. ..

... ...

DATA TRANSMISSION

Kien
Callout
PN4 has less I/O work !

kienhua
Typewritten Text
Partition Tuning:  Re-distribute the hash bucket
among the PNs using Bin Packing to balance 
their workload

kienhua
Typewritten Text



. . .. .. . . . . .. .. . .. . . . . . . . 

JOIN JOIN JOIN JOIN 

BUCK TUN BUCK TUN BUCK TUN BUCK TUN 

DATA TRANSMISSION 

PART TUN PART TUN PART TUN PART TUN 

... . ... . ... . ... . 

PN4 PN3 PN2 PN1 

S4 R4 S3 R3 S2 R2 S1 R1 

HASH HASH HASH HASH 

... . ... . ... . ... . 

Each PN 
hashes its 

local tuples 
into local 
buckets 

Local buckets 
are collected 

to their 
destined  PN 
to form the 

bucket based 
on  “bin 
packing” 

Workload is balanced among the PN’s throughout the computation 

What if the partitioning is skew initially ?



ABJ Algorithm
• Hash:  Each PN maintains a subbucket for 

each of the hash buckets. Each PN hashes 
its local partition of each relation and 
stores each tuple to the appropriate 
subbucket according to the hash result 
(i.e., no data transmission)

• Partition  Tuning:  The coordinating PN 
computes the total size of each bucket by 
summing up the sizes of its subbuckets. 
This size information is used to run the 
bin packing algorithm to assign the 
bucket pairs among the PNs to achieve 
load balancing.

• Bucket Tuning:  The small buckets are 
logically combined (disk access not 
required) to form a larger bucket to better 
fit the local memory+.  The buckets of the 
two relations must be combined in the 
same way according to the same hash 
codes (i.e., same remainders).

• Join:  The PNs perform in parallel their 
local joins.



Tuple Interleaving Parallel Hash 
Join (TIJ)

PART TUN PART TUN PART TUN PART TUN

BUC TUN BUC TUN BUC TUN BUC TUN

… …… …… …… …

Workload is balanced among the PN’s 
throughout the computation

Data Transmission

… … … … … … … …

H/TI

R1 S1

H/TI

R2 S2

H/TI

R3 S3

H/TI

R4 S4

Data Transmission

JOIN

… …

JOIN

… …

JOIN

… …

JOIN

… …

PN1 PN2 PN3 PN4

Each PN 
distributes its 

tuples with the 
same hash value 

evenly among 
the 4 subbuckets

in interleaving 
manner

EachPN has a 
subbucket for 

each of the 
hash value

Subbuckets are 
collected to their 

destined PN to 
form the bucket 
based on “bin 

packing”

Smaller buckets 
are 

concatenated to 
form a bigger 

bucket to better 
fit the memory 

capacity
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Simulation Results
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Sampling-based Load Balancing 
(SLB) Join Algorithm

• Sampling Phase:  Each PN loads a small 
percentage of its tuples into memory, and 
hash them into a large number of in-
memory hash buckets (hash on the join 
attribute)

• Partition Tuning:  The coordinating PN 
applies “bin packing” to the in-memory 
buckets to determine the optimal bucket 
allocation scheme (BAS)

• Split Phase:

• Join Phase:  Each PN performs the local 
joins of respectively matching buckets

 The in-memory buckets are 
collected to their destined 
PN in accordance with the 
BAS to form the initial 
partial buckets

 Each PN loads the remaining 
tuples and forwards them to 
their destined hash buckets 
(“bin packing” not needed)
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nCUBE/2 Results:
SLB vs. ABJ vs. GRACE
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0 0.2 0.4 0.6 0.8 1

tim
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partiton skew (data skew = 0.8)

GRACE

ABJ

SBJ

� The performance of SLB approaches that of GRACE

on very mild skew conditions, and

� it can avoid the disastrous performance that GRACE

su�ers on severe skew conditions.
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Pipelining Hash-Join Algorithms

� Two-Phase Approach:

Hash
Table

Matching

First operand

Output stream

Second operand

{ Advantage: requires only one hash table.

{ Disadvantage: pipelining along the outer relation

must be suspended during the build phase (i.e.,

building the hash table).

� One-Phase Approach: As a tuple comes in, it

is �rst inserted into its hash table, and then

used to probe that part of the hash table of

the other operand that has already been

constructed.

Hash
Table

Matching Matching
Table
Hash

First operand

Output stream

Second operand

{ Advantage: pipelining along both operands is

possible.

{ Disadvantage: requires larger memery space.



Kien A. Hua 41

Aggregate Functions

� An SQL aggregate function is a function that

operates on groups of tuples.

Example: SELECT department, COUNT(*)

FROM Employee

WHERE age > 50

GROUP BY department

� The number of result tuples depends on the

selectivity of the GROUP BY attributes (i.e.,

department).
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Centralized Merging

Department Count
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Distributed Merging

Department CountDepartment Count

DepartmentDepartment
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1
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13
17
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PN1 PN2

Kien
Callout
A counter is created for each department.  This strategy uses more memory space

Kien
Callout
Sending local counts to their destined destination through hashing



Repartitioning



Repartitioning

More 
communication, 
proportional to 

number of 
employees

Less 
communication, 
proportional to 

number of 
department
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Performance Characteristics

� Centralized Merging Algorithm:

Advantage: It works well when the number of tuples is small.

Disadvantage: The merging phase is sequential.

� Distributed Merging Algorithm:

Advantage: The merging step is not a bottleneck.

Disadvantage: Since a group value is being accumulted on po-

tentially all the PNs the overall memory require-

ment can be large.

� Repartitioning Algorithm:

Advantage: It reduces the memory requrement as each

group value is stored in one place only.

Disadvantage: It incurs more network tra�c.
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Coventional Aggregation Algorithms

� Centralized Merging (CM) Algorithm:

Phase 1: Each PN does aggregation on its local tuples.

Phase 2: The local aggregate values are merged at a

predetermined central coordinator.

� Distributed Merging (DM) Algorithm:

Phase 1: Each PN does aggregation on its local tuples.

Phase 2: The local aggregate values are then hash-partitioned

(based on the GROUP BY attribute) and the PNs merge

these local aggregate values in parallel.

� Repartitioning (Rep) Algorithm:

Phase 1: The relation is repartitioned using the GROUP BY

attributes.

Phase 2: The PNs do aggreation on their local partitions in

parallel.

Performance Comparison:

� CM and DM work well when the number of result tuples is

small.

� Rep works better when the number of groups is large.
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Adaptive Aggregation Algorithms

� Sampling Based (Samp) Approach:

{ CM algorithm is �rst applied to a small Page-oriented random

sample of the relation.

{ If the number of groups obtained from the sample is small

then DM strategy is used; Rep algorithm is used otherwise.

� Adaptive DM (A-DM) Algorithm:

{ This algorithm starts with the DM strategy under the

common case assumption that the number of group is small.

{ However, if the algorithm detects that the number of groups is

large (i.e., memory full is detected) it switches to the Rep

strategy.

� The Adaptive Repartitioning (A-Rep) Algorithm:

{ This algorithm starts with the Rep strategy.

{ It switches to DM if the number of groups is not large enough

(i.e., number of groups is too few given the number of seen

tuples).

Performance Comparison:

� In general, A-DM performs the best.

� However, A-Rep should be used if the number of groups is

suspected to be very large.

kienhua
Callout
This step incurs overhead

kienhua
Callout
Less overhead
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Implementation Techniques for A-DM

� Global Switch:

{ When the �rst PN detects a memory full condition, it informs

all the PNs to switch to the Rep strategy.

{ Each PN �rst partitions and sends the so far accumulated

local results to PNs they hash to. Then, it proceeds to read

and repartition the remaining tuples.

{ Once the repartitioning phase is complete, the PNs do

aggregate on the local partitions in parallel (as in the Rep

algorithm).

� Local Switch:

{ A PN upon detecting memory full stops processing its local

tuples. It �rst partitions and sends the so far accumulated

local results to the PNs they hash to. Then it proceeds to

read and repartition the remaining tuples.

{ During Phase one, one set of PNs may be executing the DM

algorithm while other are executing the Rep algorithm. When

the latter receives an aggregate value from another PN, it

accumulates it to the corresponding local aggregate value.

{ Once all PNs have completed their Phase 1, The local

aggregate values are merged as in the DM algorithm.

kienhua
Highlight

kienhua
Highlight



A-DM:  Global Switch

Partition
1

Partition
2

Partition
3

Department Count

1 3
2 4
3 5
4 2
5 1
6 4
7 1

Department8 Count

1 2
3 2
5 1
7 5

Department Count

2 1
3 3
6 5
8 2

MOD 3 MOD 3

Department Count

3 15
6 20

MOD 3 MOD 3 MOD 3

Department Count

1 13
4 17
7 13

Department Count

2 13
5 11
8 14

DM DM DM
Rep

Step 1

Step 2

PN1 PN2 PN3

Switching to Rep
• Step 1:  Prepare for Repartitioning
• Step 2:  Apply Repartitioning to the remaining 

tuples

PN2 and PN3 must also switch 
with PN1 (i.e., global switch)



Can only handle 
some of the 
departments

Still handle all 
departments

All PNs start with 
Distributed Merging

Distributed 
Merging
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SQL (Structured Query Language)

EMPLOYEE ENAME ENUM BDATE ADDR SALARY

WORKSON ENO PNO HOURS

PROJECT PNAME PNUM DNUM PLOCATION

An SQL query: SELECT ENAME

FROM EMPLOYEE, WORKSON, PROJECT

WHERE PNAME= `database' AND

PNUM = PNO AND

ENO = ENUM AND

BDATE > `1965'

� SQL is nonprocedural.

� The Compiler must generate the execution plan.

1. Transforms the query from SQL into relational algebra.

2. Restructures (optimizes) the algebra to improve performance.
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Relational Algebra

Relation T1
ENUMSALARYENAME

Andrew $98,000 005
Casey $150,000 003
James $120,000 007

Kathleen $115,00 001
005 Los Angeles 1968

001 Orlando 1964
003 New York 1966

007 London 1958

ENUM ADDRESS BDATE
Relation T2

� Select: Selects rows.

�SALARY�120;000(T1) =

8<
:
(Casey; 150000; 003)

(James; 120000; 007)

9=
;

� Project: Selects columns.

�ENAME;SALARY (T1) =

8>>>>>><
>>>>>>:

(Andrew; 98000);

(Casey; 150000);

(James; 120000);

(Kathleen; 115000)

9>>>>>>=
>>>>>>;

� Cartesian Product: Selects all possible combinations.

T1� T2 =

8>>>>>>>>><
>>>>>>>>>:

(Andrew; 98000; 005; 001; Orlando; 1964);

(Andrew; 98000; 005; 003; New Y ork; 1966);
...

(Kathleen; 150000; 001; 005; Los Angeles; 1968)

(Kathleen; 115000; 001; 007; London; 1958)

9>>>>>>>>>=
>>>>>>>>>;

� Join: Selects some combinations.

T1 1 T2 =

8>>>>>><
>>>>>>:

(Andrew; 98000; 005; Los Angeles; 1968);

(Casey; 150000; 003; New Y ork; 1966);

(James; 120000; 007; London; 1958);

(Kathleen; 115000; 001; Orlando; 1964)

9>>>>>>=
>>>>>>;



Kien A. Hua 53

Transforming SQL into Algebra

An SQL query: SELECT ENAME

FROM EMPLOYEE, WORKSON, PROJECT

WHERE PNAME = `database' AND

PNUM = PNO AND

ENO = ENUM AND

BDATE > `1965'

Canonical Query Tree

ENO = ENUM AND BDATE > ‘1965’
PNAME = ‘database’ AND PNUM = PNO AND

ENAME

PROJECT

EMPLOYEE WORKSON

SELECT
Clause

WHERE
Clause

FROM
Clause

This query tree (procedure) will compute the correct result. However,

the performance will be very poor. =) needs optimization !
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Optimization Strategies

GOAL: Reducing the sizes of the intermediate

results as quickly as possible.

STRATEGY:

1. Move SELECTs and PROJECTs as far down the

query tree as possible.

2. Among SELECTs, reordering the tree to perform the

one with lowest selectivity factor �rst.

3. Among JOINs, reordering the tree to perform the one

with lowest join selectivity �rst.
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Example: Apply SELECTs First

Canonical Query Tree

ENO = ENUM AND BDATE > ‘1965’
PNAME = ‘database’ AND PNUM = PNO AND

ENAME

PROJECT

EMPLOYEE WORKSON

SELECT
Clause

WHERE
Clause

FROM
Clause

After Optimization

PNUM = PNO

ENAME

ENUM = ENO PNAME = ‘database’

PROJECT

WORKSONBDATE > ‘1965’

EMPLOYEE
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Example: Replace \� ��" by \1"

Before Optimization

PNUM = PNO

ENAME

ENUM = ENO PNAME = ‘database’

PROJECT

WORKSONBDATE > ‘1965’

EMPLOYEE

After Optimization

ENAME

PNUM = PNO

ENUM = ENO

BDATE > ‘1965’

EMPLOYEE

WORKSON

PNAME = ‘database’

PROJECT
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Example: Move PROJECTs Down

Before Optimization

ENAME

PNUM = PNO

ENUM = ENO

BDATE > ‘1965’

EMPLOYEE

WORKSON

PNAME = ‘database’

PROJECT

After Optimization

ENAME

PNUM = PNO

PNUM

ENUM = ENO PNAME = ‘database’

PROJECTENO, PNOENAME, ENUM

WORKSONBDATE > ‘1965’

EMPLOYEE

ENAME, PNO



Parallelizing Query Optimizer

Relations are fragmented and allocated 
to multiple processing nodes:

• The role of a parallelizing optimizer is to map 
a query on a global relations into a sequence 
of local operations acting on local relation 
fragments

• Besides the choice of ordering relational 
operations, the parallelizing optimizer must 
select the best PNs to process data

Query 
on 

global 
relations

Operations 
on local 

fragments

INSERT

JOIN

SCAN SCAN

A B
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Parallelizing Query Optimization

SQL query on
global relations

Optimized sequential
access plan

Optimized parallel
access plan

Fragment
Schema

Global
Schema

PARALLELIZING OPTIMIZER

SEQUENTIAL OPTIMIZER

Parallelizing Optimizer:

� Parallelizes the relational operators.

� Selects the best processing nodes for each parallelized

relational operator.

kienhua
Callout
Information about the relations

kienhua
Callout
Information about the data fragments of each relation
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PPPaParall 

Fragments:

E1 = �ENO�E3(E) G1 = �ENO�E3(G)
E2 = �E3<ENO�E6(E) G2 = �ENO>E3(G)

E3 = �ENO>E6(E)

Query : SELECT �

FROM E, G

WHERE E.ENO = G.ENO

(1) Sequential query tree (2) Data Localization

ENO

E G

ENO

E E E G G2 31 1 2

(3) Distributing 1 over [ (4) Eliminate useless JOINs

.  .  .

E E EG G G1 1 2 3 21 E G1 1 E G2 E G3 22

Find the "best" 
ordering of these 
fragment operators

(5)  Select the best processing node for each fragment operator

Parallelizing Example

(Range Partitioning)

Kien
Callout
Operator on relations

Kien
Callout
Fragment operator

kienhua
Callout
Do this join at PN1
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Parallelizing Query Optimization

1. Determines which fragments are involved and

transforms the global operators into fragment

operators.

2. Eliminates useless fragment operators.

3. Finds the \best" ordering of the fragment operators.

4. Selects the best processing node for each fragment

operator and speci�es the communication operations.



Prototype at UCF

• A prototype of a shared-nothing 
system is implanted on a 64-
processor nCUBE/2 computer

• Our system was implemented to 
demonstrate:

– GeMDA multidimensional data 
partitioning technique,

– Dynamic optimization scheme with 
load balancing capability, and

– Competition-based scheduling 
policy
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System Architecture

PRESENTATION  MANAGER

TRANSLATOR
QUERY

QUERY
EXECUTOR

Global
Schema

Fragment
Schema

Operator
Routine

Operator
Routine

. . .

LOAD
UTILITY STORAGE MANAGER

SQL
QueriesResults

Create/Destroy
Tables

Database Database

Kien
Callout
Provides a sequential scan interface to the query processing facilities

Kien
Callout
Interprets the execution tree and calls the corresponding operator routines to carry out the underlying operations
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Software Componets

� Storage Manager: This component manages physical disk

devices and schedules all I/O activities. It provides a sequential

scan interface to the query processing facilities.

� Catalog Manager: It acts as a central repository of all global

and fragment schemas.

� Load Utility: This program allows the users to populate a

relation using an external �le. It distributes the fragments of a

relation across the processing nodes using GeMDA.

� Query Translator: This component provides an interface for

queries. It translates an SQL query into a query graph. It also

caches the global schema information locally.

� Query Executor: This component performs dynamic query

optimization. It schedules the execution of the operators in the

query graph.

� Operator Routines: Each routine implements a primitive

database operator. To execute an operator in a query graph, the

Query Executor calls the appropriate operator routine to carry

out the underlying operation.

� Presentation Manager: This module provides an interactive

interface for the user to create/destroy tables, and query the

database. The user can also use this interface to browse query

results.



Processes

Process 1 runs 
“PowerPoint” Process 2 runs 

a browser

Windows



Server Class
Windows

Process 1 runs 
“PowerPoint”

Process 2 runs 
a browser

Server Class:  A 
group of processes, 
each providing the 
same service (e.g., 
JOIN).

An operator 
server



Many Server Classes per PN

PN1

Server pool

PN2

JOIN

INSERT

Server pool

SCANSCANJOIN

A server 
class for JOIN 

at PN2

Many operator servers 
“simultaneously” share 

the computing 
resources of PN1

JOINSCAN

INSERTINSERT

JOIN

INSERT

SCANSCANJOIN
JOINSCAN

INSERTINSERT



Parallel Processing

PN1

Server pool

PN2

JOIN

INSERT

Server pool

SCANSCANJOIN

A server 
class for JOIN 

at PN2

Many operator servers 
“simultaneously” share 

the computing 
resources of PN1

JOINSCAN

INSERTINSERT

JOIN

INSERT

SCANSCANJOIN
JOINSCAN

INSERTINSERT

Coordinator

Coordinator pool

Coordinator

SELECT

PN1

SELECT

PN2

SELECT

PN3

SELECT

PN4

Scheduler

DONE!

SELECT is done.  
Schedule next 

parallel operator

Execution of a parallel operator



PN1 PN3PN2

SCANSCAN
SCAN

SCAN
JOIN

SCAN
SCAN

INSERT
Server pool

SCANSCAN
SCAN

SCAN
JOIN

Server pool

SCANSCAN
SCAN

SCAN
JOIN

Server pool

Executor

SCAN
SCAN

INSERT

SCAN
SCAN

INSERT

Pa
ra

lle
liz

ed
 E

xe
cu

ti
o

n
 P

la
n

Query Executor 
assigns operators in 
the parallelized 
execution plan to 
logical servers in the 
different server pools 
of the different PNs 
for parallel execution

A logical server is software running in a process, capable of 
performing a certain basic database operation (e.g., INSERT)

JOIN
JOIN

INSERT INSERT INSERT

JOIN

SCAN
SCAN

SCAN

SCAN
SCAN

A logical 
server

A parallel 
execution 

plan

Assign operators to logical servers
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Competition-Based Scheduling

Coordinator

Server
Operator

Dispatcher

Coordinator

. . .

Server pool

Active queries

Coordinator poolWaiting queue

(Operator Servers)

Operator
Server

Coordinator

Advantage: Fair.

Disadvantage: System utilization is not maximized.

Each operator server is associated with a processing node

kienhua
Text Box
The next query is admitted when a Coordinator process becomes available

kienhua
Callout
Coordinator competes for operator servers on the behalf of its query.
When the query is done, the Coordinator returns to the Coordinator pool for a future query



Competition-based:  
Potential drawbacks

PN1 PN2 PN3 PN4

Query 1

Query 2

Query 3

Query 4

Tim
e (FC

FS)

Query 1 is 
currently 

active

PN1 is not available for Query 2; and Query 3 has to 
wait for Query 2 to leave the FIFO waiting queue; …

No 
work



Competition-based:  
Potential drawbacks

PN1 PN2 PN3 PN4

Query 1

Query 2

Query 3

Query 4

PN1 PN2 PN3 PN4

Queries 1/4

Queries 2/3

With some planning (vs. FCFS), the following schedule 
achieves better system utilization:

Tim
e (FC

FS)
Tim

e

Query 1 is 
currently 

active

PN1 is not available for Query 2; and Query 3 has to 
wait for Query 2 to leave the FIFO waiting queue; …

No 
work

Busy



Planning-based Scheduling

• Scheduler:  It plans and schedules the execution of 
operators from multiple queries currently within the 
scheduling window

• Coordinator:  It coordinates the parallel execution 
of each query operator scheduled by the Scheduler

Coordinator

Coordinator pool



Planning-based Scheduling

• Scheduler:  It plans and schedules the execution of 
operators from multiple queries currently within the 
scheduling window

• Coordinator:  It coordinates the parallel execution 
of each query operator scheduled by the Scheduler

Coordinator

Coordinator pool

Coordinator

SELECT

PN1

SELECT

PN2

SELECT

PN3

SELECT

PN4

Scheduler

DONE!

SELECT is done.  
Schedule next 

parallel operator

Execution of a parallel operator



Planning-based Scheduling

• Advantage:   Better system utilization

• Disadvantage:  Less fair  

Coordinator

Coordinator pool



Hardware Organization

• Catalog Manager, Query Manager, 
and Scheduler processes run on 
IFP’s

• Operator processes run on ACP’s 
for parallel query computation

Backend 
database 

accelerator

A parallel 
database 
server on 

the network

Two possible interfaces
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Structure of Operator Processes

Value

Hash

0

1

2

Destination Process

(Processor #3, Port #5)

(Processor #4, Port #6)

(Processor #5, Port #8)

(Processor #6, Port #2)3

Operation

Split Table

Operator  Process

Stream of
tuples

(e.g., 8K byte
batches)

� The output is demultiplexed through a split

table.

�When the process detects the end of its input

stream,

{ it �rst closes the output streams and

{ then sends a control message to its coordinator

process indicating that it has completed execution.

SPLIT

MERGE:  Data from different
streams join the FIFO queue
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Example: Operator and Process Structure

� Query Tree:

Select Scan

Join

A (PN1, PN2) B (PN1, PN2)

C (PN1, PN2)

� Process Structure:

Probe Hash
Table

Scan Store Select

B1 C1 A1

Probe Hash
Table

Scan Store Select

B2 C2 A2

PN3

PN1

PN4

PN2

Kien
Callout
Executing Join on PN3 and PN4

Kien
Callout
Build hash tables for relation A

Kien
Callout
Use "B" tuples to probe the hash tables
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language. 

Contains code for 
each operator in the 
database access 

OPERATOR 

METHODS 

Maintains an active 
scan table that describes 
all the scans in progress. 

Maps file names to file ID’s, 
manages active files, searches 
for the page given a record. 

Manages a buffer pool. 

Manages physical disk devices, 
performs page-level I/O 
operations. 

COMPILED 

QUERY 

ACCESS 
METHODS 

 

 STORAGE 
STRUCTURES 

BUFFER 

MANAGEMENT 

PHYSICAL 
I/O 

A storage 
manager 
provides the 
primitives 
for scanning 
a file via a 
sequential 
or index 
scan 

Database 

Record ID Record 

ACCESS METHOD



Transaction Processing
The consistency and reliability aspects of 
transactions are due to four properties

• Atomicity:  A transaction is either performed in
its entirety or not performed at all

• Consistency:  A correct execution of the
transaction must take the database from one
consistent state to another

• Isolation:  A transaction should not make its
updates visible to other transaction until it is
committed

• Durability:  Once a transaction changes the
database and changes are committed, these
changes must never be lost because of
subsequent failure

Acquire the lock before 
using any data item
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Transaction Manager

TRANSACTION  MANAGER

MANAGER

LOCK LOG

MANAGER

� Lock Manager:

{ Each local lock manager is responsible for the lock

units local to that processing node.

{ They provide concurrency control.

� Log Manager:

{ Each local log manager logs the local database

operations.

{ They provide recovery services.

kienhua
Typewritten Text

kienhua
Typewritten Text

kienhua
Typewritten Text

kienhua
Callout
  Isolation property
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Two-Phase Locking Protocol

Begin Lock
point

End

Transaction
duration

Number
of locks

Phase
Growing Shrinking

Phase

� Any schedule generated by a concurrency control

algorithm that obeys the 2PL protocol is serializable

(i.e., the isolation property is guaranteed).

� 2PL is di�cult to implement. The lock manager has to
know:

1. the transaction has obtained all its locks, and

2. the transaction no longer needs to access the data item in

question. (so that the lock can be released).

� Cascading aborts can occur.

kienhua
Typewritten Text
(because transactions reveal updates before they commit)

kienhua
Typewritten Text
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Strict Two-Phase Locking Protocol

Begin End

Transaction
duration

Number
of locks

The lock manager releases all the locks together when the

transaction terminates (commits or aborts).



Wait-for Graph
• If a transaction reads an object, the
transaction depends on that object
version

• If the transaction writes an object,
the resulting object version depends on
the writing transaction.

READ →WRITE

dependency

WRITE→ READ 

dependency

WRITE →WRITE

dependency

T3

T5

T7 T9

Transaction T5
is waiting for 
transaction T3

Wait-for Graph

W-W dep

W-R dep W-R dep

Read



Implementation

O T3, W T5, W T7, R T9, R

Lock request queueDatabase 
item

T3

T5

T7 T9

Transaction T5
is waiting for 
transaction T3

Wait-for Graph

W-W dep

W-R dep W-R dep

READ →WRITE

dependency

WRITE→ READ 

dependency

WRITE →WRITE

dependency

Read

Waiting
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Handling Deadlocks

�Detection and Resolution:

{ Abort and restart a transaction if it has waited for

a lock for a long time.

{ Detect cycles in the wait-for graph and select a

transaction (involved in a cycle) to abort.

� Prevention:

If Ti requires a lock held by Tj,

? If Ti is older =) Ti can wait.

? If Ti is younger =) Ti is aborted and restarted

with the same timestamp.
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Distributed Deadlock Detection [Chandy 83]

0

1

2

3

5

4 6

7

8(0,0,1)

(0,1,2)

(0,8,0)

(0,4,6)

(0,5,7)

(0,2,3)

PN 0

PN 1
PN 2

�When a transaction is blocked, it sends a special

probe message to the blocking transaction.

The message consists of three numbers: the transaction that

just blocked, the transaction sending the message, and the

transaction to whom it is being sent.

�When the message arrives, the recipient checks to see if

it itself is waiting for any transaction. If so, the

message is updated, replacing the second �eld by its

own TID and the third one by the TID of the

transaction it is waiting for. The message is then sent

to the blocking transaction.

� If a message goes all the way around and come back to

the original sender, a deadlock is detected.

kienhua
Rectangle

Kien
Callout
Transaction  0 is waiting for transaction 1 for a data item -- Transaction 0 is blocked

Kien
Callout
This message goes around and comes back to transaction 0

Kien
Callout
Transaction receiving this message

Kien
Callout
Transaction sending this message

Kien
Callout
Blocked transaction
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Two-Phase Commit Protocol

To ensure the atomicity property, a 2P commit

protocol can be used to coordinate the commit

process among subtransactions.

1

3

2

4

5

3

2

4

5

1 1

PREPARE READY
or

ABORT

COMMIT
or

ABORT

ACK

(Voting)

:  Coordinator, it originates the transaction.

   

:  Agent, it executes a subtransaction on behalf
of its coordinator.
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Recovery

� An entry is made in the local log �le at a processing
node each time one of the following commands is
issued by a transaction:

{ begin transaction

{ write (insert, delete, update)

{ commit transaction

{ abort transaction

�Write-ahead log protocol:

{ It is essential that log records be written before the

corresponding write to the database.

{ If there is no commit transaction entry in the log for a

particular transaction, then that transaction was still active at

the time of failure and must therefore be undone.

If log entry wasn't saved before the crash, corresponding 
change was not applied to database!

This is to ensure the atomicity property

kienhua
Callout
Record the current and the new values of the data record being updated

kienhua
Underline

kienhua
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An entry in the log file

kienhua
Underline
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Commercial Product: Teradata DBC/1012

COPIFPIFP

AMP AMP AMP AMP AMP

Host Computer

Local Area Network

Ynet

IFP:  Interface Processor
AMP:  Access Module Processor
COP:  Communication Processor

� It may have over 1,000 processors and many thousands

of disks.

� Each relation is hash partitioned over a subset of the

AMPs.

� Near-linear speedup and scaleup on queries have been

demonstrated for systems containing over 100

processors.



Ynet (1)

2, 5, 7, 8, 9, …    122, 136

145
168
172
…

137
141
170
…

140
158
174
…

137

139
142
169
…

PN1 PN2 PN3 PN4

Globally sorted

A 
tournament 

tree

Locally 
sorted



Ynet (2) 

2, 5, 7, 8, 9, …    122, 136

2
5
7

…

36
42
56
…

72
75
84
…

108

122
…

136

PN1 PN2 PN3 PN4

Globally sorted

A 
communication

network

Range [1, 35] Range [36, 71] Range [72, 107] Range [108, 136]

As each globally sorted tuple 
emerges from the root , it is 
transmitted to a PN in
accordance with the data range.
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Teradata DBC/1012: Distribution of Data

� The fallback copy ensures that the data remains

available on other AMPs if an AMP should fail.

� In the following example, if AMPs 4 and 7 were to fail

simultaneously, however, there would be a loss of data

availability.

21,  22,  15

3,  11,  19 4,  12,  20

5,  13,  21 6,  14,  22

19,  12,  24

7,  15,  23

20,  5,  6

8,  16,  24

13,  14,  7

Primary Copy Area:

Fallback Copy Area:

Fallback Copy Area:

Primary Copy Area:

DSU/AMP 1 DSU/AMP 2 DSU/AMP 3 DSU/AMP 4
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� Additional data protection can be achieved by

\clustering" the AMPs in groups.

� In the following example, If both AMPs 4 and 7 were

to fail, all data would still be available.
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� Tandem systems run the applications on the same

processors as the database servers.

� Relations may be range partitioned across multiple

disks.

� It is primarily designed for OLTP. It scales linearly

well beyond the largest reported mainframes on the

TPC-A benchmarks.

� It is three times cheaper than a comparable mainframe

system.
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Handling 3D
A cube with N3 grid blocks can be seen as N
2D planes stacked up in the third dimension 
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Shifting Distance


• Number of dimension N=3


• Step 1:  Shifting distance is
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