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ABSTRACT

Community detection has arisen as one of the most relevant
topics in the field of graph mining, principally for its applica-
tions in domains such as social or biological networks anal-
ysis. Different community detection algorithms have been
proposed during the last decade, approaching the problem
from different perspectives. However, existing algorithms
are, in general, based on complex and expensive computa-
tions, making them unsuitable for large graphs with millions
of vertices and edges such as those usually found in the real
world.
In this paper, we propose a novel disjoint community

detection algorithm called Scalable Community Detection
(SCD). By combining different strategies, SCD partitions
the graph by maximizing the Weighted Community Clus-
tering (WCC), a recently proposed community detection
metric based on triangle analysis. Using real graphs with
ground truth overlapped communities, we show that SCD
outperforms the current state of the art proposals (even
those aimed at finding overlapping communities) in terms
of quality and performance. SCD provides the speed of
the fastest algorithms and the quality in terms of NMI and
F1Score of the most accurate state of the art proposals. We
show that SCD is able to run up to two orders of magni-
tude faster than practical existing solutions by exploiting
the parallelism of current multi-core processors, enabling us
to process graphs of unprecedented size in short execution
times.
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1. INTRODUCTION
During the last years, the analysis of complex networks

has become a hot research topic in the field of data mining.
Social, biological, information and collaboration networks
are typical targets for such analysis, just to cite a few of
them. Among all the tools used to analyze these networks,
community detection is one of the most relevant [7, 22].
Communities, also known as clusters, are often referred to as
vertices with a high density of connections among them and
seldom connected with the rest of the graph [9]. Community
detection provides valuable information about the structural
properties of the network [5, 9], the interactions among the
agents of a network [3] or the role the agents develop inside
the network [21].

Community detection algorithms are often computation-
ally expensive and are not scalable to large graphs with
billions of edges. Recently, Yang and Leskovec provided a
benchmark with real datasets and its corresponding ground
truth communities [24]. In such work, they measure the
time spent by several state of the art algorithms, such as
clique percolation [16] or link clustering [1], and found that
they did not scale to networks with more than hundreds
of thousands of edges. Even their new proposal aimed at
large networks, BigClam [24], was not able to process the
largest graph in the benchmark, the Friendster graph, with
roughly 2 billion edges. On the other hand, algorithms such
as Louvain [4], which can locate communities in graphs with
a scale similar to that of Friendster graph, does not scale in
quality [2, 8, 10,22].

In this paper, we present SCD, which is a new community
detection algorithm that is much faster than the most ac-
curate state of the art solutions, while maintaining or even
improving their quality. SCD is able to compute the com-
munities of the Friendster graph, yet using a modest 32GB
RAM computer. Figure 1 illustrates schematically the two
most important dimensions to evaluate community detec-
tion algorithms: quality and scalability. We observe that no
algorithm in the state of the art excels both in scalability
and quality.

SCD detects disjoint communities in undirected and un-
weighted networks by maximizing WCC, a recently pro-
posed community metric [18]. WCC is a metric based on
triangle structures in a community. In contrast to modular-
ity, which is the most widely used metric and has resolution
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Figure 1: Scale vs quality of different community

detection algorithms.

problems when optimized [2,8], WCC mathematically guar-
antees that the communities emerged from its optimization
are cohesive and structured [18]. Furthermore, we show in
this paper that the computation of WCC can be efficiently
parallelized, allowing the design of algorithms that take ad-
vantage of current multi-core processors.
SCD implements a two-phase procedure that combines

different strategies. In the first phase, SCD uses the cluster-
ing coefficient as an heuristic to obtain a preliminary parti-
tion of the graph. In the second phase, SCD refines the ini-
tial partition by moving vertices between communities while
the WCC of the communities increases. In order to speed
up this second phase, we propose a WCC estimator that ap-
proximates the original metric and it is faster to compute.
The evaluation of SCD indicates that the quality of the

communities found by SCD is at least as good as the best
state of the art algorithms though orders of magnitude faster.
Although the communities found by SCD are disjoint, we
evaluate our algorithm with overlapping community bench-
marks. We note that this quality comparison is biased against
our algorithm, because SCD is not able to detect overlaps,
which are present in the ground truth. The reason of our
good quality score despite this handicap is that our algo-
rithm goes beyond edge counting metrics and accounts for
triangle structures using WCC. The communities obtained
usingWCC are meaningful and precise, and thus have a very
good match to real communities. It is beyond the scope of
this paper to extend WCC and SCD to handle overlapping
partitions, which are also known as covers.
We summarize the main contributions as follows:

1. We propose a very scalable parallel community detec-
tion algorithm that is able to handle graphs with bil-
lions of edges. Our algorithm is in the same order of
magnitude as the fastest community detection tech-
niques [4], which have, in general, a lower quality than
the best state of the art algorithms, and thus far below
SCD.

2. By using ground truth real world benchmarks, we show
that the quality of the communities of SCD is as good
as the best state of the art algorithms [12, 24], which
are at least two orders of magnitude slower than SCD.

3. SCD shows that the topological and structural analy-
sis of communities beyond edge counting metrics pro-

vides better quality communities. In particular WCC,
which is based on triangle counting, is very effective lo-
cating meaningful communities.

4. According to our results, we observe that overlapping
community detection metrics are still far from obtain-
ing high quality results, since non-overlapping methods
are able to obtain better communities using overlap-
ping benchmarks.

The rest of the paper is structured as follows. In Section 2,
we review the related work. In Section 3, we describe SCD,
including a brief introduction to WCC, the proposal of the
estimators and an analysis of the complexity of the algo-
rithm. In Section 4, we describe the experimental setup. In
Section 5, we show the results and discuss them. In Sec-
tion 6 we introduce a case study where the use of SCD is
proven successful and in Section 7, we conclude the paper
and give guidelines for the future work.

2. RELATED WORK
In the literature, we find a wide range of different commu-

nity detection algorithms which follow different strategies.
The biggest family of community detection algorithms is
formed by those based on maximizing modularity [14]. Mod-
ularity scores high those partitions containing communities
with an internal edge density larger than that expected in a
given graph model, which is almost always an Erdös-Rényi
model. Several strategies have been proposed for its opti-
mization, such as agglomerative greedy [6] or simulated an-
nealing [13]. A multilevel approach has been proposed which
scales to graphs with hundreds of millions of objects [4], but
the quality of its results decreases considerably as long as
the size of the graph increases [10]. Moreover, it has been
reported that modularity has resolution limits [2,8]. Modu-
larity is unable to detect small and well defined communities
when the graph is large, and its maximization delivers sets
with a tree-like structure, which cannot be considered com-
munities. SCD does not suffer from these problems because
it is based on WCC, whose maximization is proven to de-
liver cohesive and structured communities [18].

Random walks is a tool on which several community de-
tection algorithms rely. The intuition behind this is that in
a random walk, the probability of remaining inside of a com-
munity is higher than going outside due to the higher density
of internal edges. This strategy is the main idea exploited in
Walktrap [17]. Another algorithm based on random walks
is Infomap [20]. In this case, a codification for describing
random walks based on communities is searched. The codi-
fication that requires less memory space (attains the highest
compression rates) is selected. According to the comparison
performed by Lancichinetti et al. [10], Infomap stands as one
of the best community detection algorithms.

Another category of algorithms is that formed by those
capable of finding overlapping communities. An example of
such an algorithm is Oslom, which uses the significance as
a fitness measure in order to assess the quality of a clus-
ter. Similar to modularity, the significance is defined as the
probability of finding a given cluster in a random null model.
Another algorithm that falls into this category is Link Clus-
tering Algorithm (LCA) [1]. This algorithm is based on the
idea of taking edges instead of vertices to form a commu-
nity. By means of an iterative process, the similarity of
adjacent edges (i.e. those edges that share a vertex, forming



an opened triad) is assessed by using the Jaccard coefficient
of the adjacency lists of the two other vertices of the edges.
In this case, thanks to taking the edges instead of the ver-
tices, the overlapped communities emerge naturally. Label
propagation is another family of iterative techniques that
initially sets labels to nodes. Then, it defines rules that sim-
ulate the spread of these labels in the network similarly to
infections [19, 23]. Finally, a recently proposed algorithm
is BigClam by Yang et al. [24]. This algorithm is based
on computing an affiliation of vertices to communities that
maximizes an objective function using non negative matrix
factorization. The objective function is based on the intu-
ition that the probability of existing an edge between two
vertices increases with the number of communities the ver-
tices share (i.e. the number of communities in which the
vertices overlap).
Finally, the exploitation of parallelism has been an evasive

topic in the field of community detection with few remark-
able exceptions [24]. SCD differs from existing solutions by
being designed with parallelism in mind, and hence can take
advantage of current multi-core architectures.

3. SCALABLE COMMUNITY DETECTION
Scalable Community Detection (SCD) finds disjoint com-

munities in an undirected and unweighted graph by maxi-
mizing WCC. First, we briefly introduce WCC, and then
we describe the proposed algorithm. For a more detailed
description of WCC, please refer to [18].

3.1 WCC
WCC is a community metric based on the fact that real

networks contain a large number of triangles due to their
community structure. Since communities are groups of highly
connected vertices, the probability of these vertices to close
triangles among them is larger than the expected between
vertices of different communities. WCC uses this feature to
quantify the quality of a partition of vertices.
Given a graph G(V,E), a vertex x and a community C,

t(x,C) denotes the number of triangles that vertex x closes
with the vertices in C and vt(x,C) denotes the number of
vertices in C that close at least one triangle with x and
another vertex in G. Then, the level of cohesion of a vertex
x with respect to community C is denoted by WCC(x,C),
which is defined as follows:

WCC(x,C) =

{

t(x,C)
t(x,V )

· vt(x,V )
|C\{x}|+vt(x,V \C)

if t(x, V ) 6= 0;

0 if t(x, V ) = 0.
(1)

Using Equation 1, the WCC of a community C is com-
puted as follows:

WCC(S) =
1

|C|

∑

x∈S

WCC(x,C). (2)

Given a set C, WCC(C) is the average WCC of all the
vertices in C. Finally, the WCC of a graph partition P =
{C1, ..., Cn} such that (C1 ∩ ... ∩ Ck) = ∅ is:

WCC(P) =
1

|V |

n
∑

i=1

(|Ci| ·WCC(Ci)) . (3)

The WCC of a partition is the weighted average of the
WCC of all the communities in the partition. In other
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Figure 2: The algorithm’s general schema.

words, it is the average WCC of every vertex x in the graph
with respect to the community C in P where x belongs.

3.2 Algorithm description
SCD takes a graph G as input, and generates a partition

of G resulting from a WCC optimization process. Before
starting the execution of the algorithm, we perform a pre-
processing step where unnecessary edges of the graph are
removed. Figure 2 shows the general structure of SCD. The
algorithm is divided into two phases. The first phase con-
sists in finding an initial partition. The second phase is fed
with this initial partition and refines it.

3.2.1 Graph loading and preprocessing

During the loading of the graph, we perform the following
cleanup of the graph. We compute the number of triangles
where each edge in the graph belongs to. Then, we remove
from the graph those edges that do not close any triangle.
Those edges that do not close any triangle, are irrelevant
from the point of view of WCC. Hence, by removing these
edges we reduce the memory consumption and improve the
performance of SCD. Furthermore, removing these edges
simplifies the estimator proposed in Section 3.3, since we
can assume that each edge closes at least one triangle.

3.2.2 Initial partition

The initial partition is computed by a fast heuristic pro-
cess, described in Algorithm 1. First, we compute the clus-
tering coefficient of each vertex (Line 2). This information
is needed by this step as well as the refinement step. Then,
we sort the vertices of the graph by their clustering coeffi-
cient decreasingly. For those vertices with equal clustering
coefficient, we use the degree as a second sorting criterion
(Line 3). Then, the vertices are iterated and, for each vertex
v not previously visited, we create a new community C that
contains v and all the neighbors of v that were not visited
previously (Line 7 to 13). Finally, community C is added
to partition P (Line 14) and all the vertices of the commu-
nity are marked as visited. The process finishes when all the
vertices in the graph have been visited.

The intuition behind this heuristic is the following: the
larger the clustering coefficient of a vertex, the larger the
number of triangles the vertex closes with its neighbors, and
the larger the probability that its neighbors form triangles
among them. Hence, considering Equation 1, the larger the
clustering coefficient of a vertex, the larger is the probability
that the WCC of its neighbors is large if we include them
in the same community.



Data: Given a graph G(V,E)
Result: Computes a partition of G

1 Let P be a set of sets of vertices;
2 ComputeCC(G);
3 S ← sortByCC( V );
4 foreach v in S do

5 if not visited(v) then

6 markAsVisited(v);
7 C ← v;
8 foreach u in neighbors(v) do

9 if not visited(u) then

10 markAsVisited(u);
11 C.add(u);

12 end

13 end

14 S.add(C);

15 end

16 end

17 return P;

Algorithm 1: Phase 1, initial partition.

3.2.3 Partition refinement

The partition refinement phase is described in Algorithm 2.
The goal of this phase is to refine the partition received from
the previous phase. This phase follows a hill climbing strat-
egy, that is, in each iteration, a new partition is computed
from the previous one by performing a set of modifications
(movements of vertices between communities). The algo-
rithm repeats the process until the WCC of the new par-
tition does not percentually improve over the previous one
more than a given threshold. In our tests, this threshold is
set at 1%, which provided a good tradeoff between perfor-
mance and quality.
In each iteration, for each vertex v of the graph, we use the

bestMovement function to compute the movement of v that
improves the WCC of the partition most (Line 8). There
are three types of possible movements:

• No Action: leave the vertex in the community where
it currently is.

• Remove: remove the vertex from its current commu-
nity and place it as a singleton (a community formed
by a single vertex).

• Transfer: remove the vertex from its current commu-
nity and insert it into another one.

Note that bestMovement does not modify the current par-
tition, and that the best movement of each vertex is com-
puted independently from the others. This feature allows
the computation of the best movements for all the vertices
in the graph in parallel. Once each vertex of the graph has a
best movement, we apply it simultaneously to all the vertices
(applyMovements Line 10). Finally, we update the WCC of
the new partition (Line 11) and check whether it improved
since the last iteration.
Before describing function bestMovement, we introduce

some auxiliary functions that are used in its computation.
The proofs of the theorems introduced are Appendix A.

• WCCI(v, C) computes the improvement of the WCC
of a partition when vertex v (which belongs to a sin-
gleton community) is inserted into community C.

Data: Given a graph G(V,E) and a partition P
Result: A refined partition P’

1 newP ← P;
2 newWCC ← computeWCC(P);
3 repeat

4 WCC’ ← newWCC;
5 P’ ← newP;
6 M ← ∅;
7 foreach v in V do

8 M.add( bestMovement(v,P’) );

9 end

10 newP ← applyMovements(M,P’);
11 newWCC ← computeWCC(newP);

12 until (newWCC −WCC′)/WCC′ ≥ t;
13 return P’;

Algorithm 2: Phase 2, refinement.

Theorem 1. Let P = {C1, . . . , Ck, {v}} and P ′ =
{C′

1, . . . , Ck} be partitions of a graph G = (V,E) where
C′

1 = C1 ∪ {v}. Then,

WCC(P ′)−WCC(P ) = WCCI(v, C1)

=1/|V | ·
∑

x∈C1

[

WCC(x,C′
1)−WCC(x,C1)

]

+

1/|V | ·WCC(v, C′
1).

• WCCR(v, C) computes the improvement of the WCC
of a partition when vertex v is removed from commu-
nity C and placed as a singleton community.

Theorem 2. Let partitions P = {C1, . . . , Ck} and
P ′ = {C′

1, . . . , Ck, {v}} of a graph G = (V,E) where
C1 = C′

1 ∪ {v}. Then,

WCC(P ′)−WCC(P ) = WCCR(v, C1) = −WCCI(v, C
′
1).

• WCCT (v, C1, C2) computes the improvement of the
WCC of a partition when vertex v is transfered from
community C1 and to C2.

Theorem 3. Let P = {C1, C2, . . . , Ck−1, Ck} and P ′ =
{C′

1, C2, . . . , Ck−1, C
′
k} be partitions of a graph G =

(V,E) where C1 = C′
1∪{v} and C′

k = Ck∪{v}. Then,

WCC(P ′)−WCC(P ) = WCCT (v, C1, Ck)

=−WCCI(v, C
′
1) +WCCI(v, Ck).

From Theorem 1, we conclude that in order to compute
the improvement of WCC derived from inserting a vertex v
(i.e. a singleton community) into a community C, only the
WCC of vertex v and those vertices in C has to be com-
puted. This limits the number of computations to perform
a movement, because only a very local portion of the graph
needs to be accessed for each vertex. Theorems 2 and 3
show that we can express any of the movements needed by
the algorithm, in terms of function WCCI(), simplifying the
implementation of the algorithm.

Algorithm 3 describes the bestMovement function. First,
we compute the improvement of removing vertex v from its



Data: Given a graph G(V,E) a partition P
and a vertex v

Result: Computes the best movement of v.
1 m ← [NO ACTION];
2 sourceC ← GetCommunity(v,P);
3 wcc r ← WCCR(v,sourceC);
4 wcc t ← 0.0;
5 bestC ← ∅;
6 Candidates ← candidateCommunities(v,P);
7 for c in Candidates do

8 aux ← WCCT (v,sourceC,c) ;
9 if aux > wcc t then

10 wcc t ← aux;
11 bestC ← c;

12 end

13 end

14 if wcc r > wcc t and wcc r > 0.0 then

15 m ← [REMOVE];

16 else if wcc t > 0.0 then

17 m ← [TRANSFER , bestC];
18 end

19 return m;

Algorithm 3: bestMovement.

current community (Line 3). Then, we obtain the set of
candidate communities, formed by those communities con-
taining the neighbors of v (Line 6). After that, we calculate
which is the candidate community where transferring vertex
v improves theWCC most (Lines 7 to 13). Finally, we select
whether the best improvement is obtained from removing
the vertex from its current community (REMOVE) or trans-
ferring it into a new community (TRANSFER) (Lines 14
to 18). If neither of the two movements improves the WCC
of the partition, we keep the vertex in the current commu-
nity (NO ACTION) (Line 1).

3.3 WCCI Estimation
The exact computation of WCC needs the computation

of the triangles of the target vertex with the rest of its neigh-
bors. For a vertex of degree d, the complexity of this oper-
ation is O(d2). And, since real graphs typically have power
law distributions, this cost is large for the highest degree
vertices in the graph. Furthermore, considering that the
functions that compute the WCC improvements are called
several times per vertex and iteration, they become the most
time consuming part of the algorithm. As shown in the pre-
vious section, all auxiliary functions can be computed with
only the WCCI() function. In this section, we propose a
model to estimate WCCI() with a constant time complex-
ity function (given some easy to compute statistics) that we
call WCC′

I().
WCC′

I() stands as the approximated increment of WCC
when vertex v is inserted into a community C. We depict
the simplified schema in Figure 3. For the considered vertex
v, we only record the number of edges that connect it to
community C. For each community C, we keep the follow-
ing statistics: the size of the community r; the edge density
of the community δ; and the number of edges b that are in
the boundary of the community. We also record the clus-
tering coefficient of the graph ω, which is constant along all
the community detection process. These statistics homoge-

din

dout

r, δ

G, ω

b

v

C

Figure 3: Model for estimating the WCC improve-

ment.

nize the community members and allow the computation of
WCC′

I() as follows:

Theorem 4. Consider the situation depicted in Figure 3,
with the following assumptions:

• Every edge in the graph closes at least one triangle.

• The edge density inside community C is homogeneous
and equal to δ .

• The clustering coefficient of the graph is homogeneous
for all nodes outside C and equals to ω.

Then,

WCC(P ′)−WCC(P ) = WCC′
I(v, C)

=
1

V
· (din ·Θ1 + (r − din) ·Θ2 +Θ3), (4)

where,

Θ1 = (r−1)δ+1+q

(r+q)·((r−1)(r−2)δ3+(din−1)δ+q(q−1)δω+q(q−1)ω+doutω)
·

(din−1)δ;

Θ2 = − (r−1)(r−2)δ3

(r−1)(r−2)δ3+q(q−1)ω+q(r−1)δω
· (r−1)δ+q

(r+q)(r−1+q)
;

Θ3 = din(din−1)δ
din(din−1)δ+dout(dout−1)ω+doutdinω

· din+dout

r+dcout

and q = (b− din)/r.

Conceptually, Θ1, Θ2 and Θ3 are the WCC improvements
of those vertices in C connected to v, those vertices in C not
connected to v, and vertex v respectively, when v is added to
community C. The evaluation of Equation 4 is O(1) given
all the statistics. And, the update of all statistics is only
performed when all communities are updated, with a cost
O(m) for the whole graph. Note that we use aggregated
statistics to estimate the number of triangles, and thus we
are not computing the triangles when we compute WCC′

I().

3.4 Complexity of the Algorithm
Let n be the number of vertices andm the number of edges

in the graph. We assume that the average degree of the
graph is d = m/n and that real graphs have a quasi-linear
relation between vertices and edges O(m) = O(n · log n).

In the initial partition phase, for each edge in the graph,
we compute the triangles that each edge participates in. The
triangles are found by intersecting the adjacency lists of the
two connected vertices. Since we assume sorted adjacency
lists, the complexity of computing the intersection is O(d).
Since the average degree is m/n, we have that the cost of
the first phase is O(m · d) = O(m · log n).



Vertices Edges Communities % non-overlap % two-overlap % three-plus-overlap

Amazon 334,863 925,872 151,037 3.9 3.6 92.4
Dblp 317,080 1,049,866 13,477 57.5 16.6 25.9
Youtube 1,134,890 2,987,624 8,385 62.4 16.1 21.5
LiveJournal 3,997,962 34,681,189 287,512 35.8 17.2 47.0
Orkut 3,072,441 117,185,083 6,288,363 6.2 5.7 88.1
Friendster 65,608,366 1,806,067,135 957,154 45.5 20.8 33.6

Table 1: Characteristics of the test graphs.

Regarding the second phase, let α be the number of iter-
ations required to find the best partition P’, which in our
experiments is between 3 and 7. In each iteration, for each
vertex v of the graph, we compute, in the worst case, d+ 1
movements of type WCC′(I) that have a cost O(1). Then,
the computation of the best movement for all vertices in the
graph in an iteration is O(n · (d + 1)) = O(m). The ap-
plication of the all the movements is linear with respect to
the number of vertices O(n). We also need to update, for
each iteration of the second phase, the statistics δ, cout, din
and dout for each vertex and community, which has a cost of
O(m). Finally, the computation of the WCC for the current
partition is performed by computing for each edge the trian-
gles, which is O(m · log n) as already stated. Hence, the cost
of the refinement phase becomes O(α·(m+n+m+m·log n)),
which after simplification, becomes O(m · log n) assuming α
as constant.
The final cost of the algorithm is the sum of the two

phases: O(m · log n+m · log n) = O(m · log n)

4. EXPERIMENTAL SETUP
For the experimental evaluation of SCD, we used all the

community benchmark datasets provided by SNAP1 that
include a community ground truth, which we use to verify
the quality of the algorithms. To our knowledge, these are
the largest datasets that include such a gold standard ver-
ification, which range from a million edges to almost two
billion edges, as reported in Table 1. The communities field
indicates the number of ground truth communities. Note
that, for all the graphs, a vertex can belong to more than
one community. In Table 1, we show the percentage of ver-
tices that belong to one, two, or three or more ground truth
communities. We see that the number of overlaps is not ho-
mogeneous and in some graphs a vertex tends to participate
in more communities than others.
In this paper, we do not make any special distinction be-

tween disjoint and overlapping community detection algo-
rithms. We are interested in determining how meaningful
are the output communities. Therefore, we simply analyze
the matching between the output of the algorithms and the
real communities specified in the ground truth. We consider
better, in terms of quality, those algorithms that have better
matching with the gold standard, independently of the type
of algorithm under consideration.

Amazon: This graph represents a network of products,
where each vertex is a product and an edge exists between
two products if they have been co-purchased frequently. The
product categories provided by Amazon define the ground
truth communities.

1http://snap.stanford.edu

DBLP: This graph represents a network of coauthorships,
where each vertex is an author and two authors are con-
nected if they have written a paper together. Each journal
or conference defines a ground truth community formed by
those authors which published in that journal or conference.

Youtube: This graph represents the Youtube social net-
work, where each vertex is a user and two users are linked
if they have established a friendship relation. Communities
are defined by the groups created by the users, which are
formed by those users that joined that group.

LiveJournal: This graph represents the social network around
LiveJournal. Similar to the Youtube network, the vertices
are the users, which establish friendship relationships with
other users. Users can create groups, which define the ground
truth communities and which are formed by those users that
joined that group.

Orkut: This graph represents the Orkut social network.
Similar to the Youtube and LiveJournal networks, the ver-
tices are the users of the social network and the edges rep-
resent the friendship relationships between the users. The
groups created by the users define the ground truth com-
munities, which are formed by those users that joined the
group.

Friendster: This graph represents the Friendster gaming
social network, where each vertex is a user of the network
and two users are connected if they established a friendship
relation. In this network, users create groups, which define
the ground truth communities. Then, each ground truth
community is formed by those vertices in that group.

We select the most relevant community detection algo-
rithms in the state of the art: Infomap [20], Louvain [4],
Walktrap [17], BigClam [24] and Oslom [12]. Infomap, Lou-
vain and Walktrap are considered the best algorithms for
disjoint community detection, according to [10, 15]. On the
other hand, we take BigClam and Oslom as the state of the
art of overlapping community detection. We use the imple-
mentations provided in the website of the authors and are
all implemented in C++. SCD was implemented in C++
and can be found in the website of the authors2.

We use two metrics to evaluate the quality of the different
algorithms. The first metric is the Average F1Score, F̄1,
following the approach taken by the authors of the commu-
nity benchmark [24]. The F1Score of a set A with respect to
a set B is defined as the harmonic mean (H) of the precision

2http://www.dama.upc.edu



and the recall of A with respect to B:

precision(A,B) =
|A ∩B|

|A|
, recall(A,B) =

|A ∩B|

|B|
.

H(a, b) =
2 · a · b

a+ b

F1(A,B) = H(precision(A,B), recall(A,B))

Then, the average F1Score of two sets of communities C1

and C2 is given by:

F1(A,C) = argmax
i

F1(A,Ci), ci ∈ C = {C1, · · · , Cn}

F̄1(C1, C2) =
1

2|C|

∑

ci∈C

F1(ci, C
′) +

1

2|C′|

∑

ci∈C′

F1(ci, C)

The second metric is the Normalized Mutual Infor-

mation (NMI) [11], which is based on information theory
concepts. The NMI provides a real number between zero
and one that gives the similarity between two sets of sets of
objects. An exact match between the two inputs obtains a
value of one.
The computer used in the experiments has: a CPU Intel

Xeon E5530 at 2.4 GHz, 32 GB of RAM, 1TB of disk space
and Debian Linux with kernel 2.6.32-5-amd64.

5. EXPERIMENTAL RESULTS

5.1 Quality and Performance
Figure 4 shows the execution time of the different tested

algorithms. Missing columns indicate that the algorithm
was not able to process that graph due to memory consump-
tion, or because it took more than a week of computing. All
the state of the art algorithms are executed using their de-
fault parameters. In BigClam, parameter k, which indicates
the number of communities, is set to the actual number of
ground truth communities. In this experiment, all the algo-
rithms were set to run as single threaded, including ours, be-
cause most implementations provided were single threaded.
Note that since the differences between the fast and the slow
algorithms are in the orders of magnitude, multi-threading
does not alter the conclusions.
When we look at the execution times, we see that there

are mainly two groups of algorithms in terms of scalability:
SCD and Louvain on one side, and the rest of algorithms
on the other. In general, the group formed by SCD and
Louvain, runs about two orders of magnitude faster than the
rest. For practical purposes, this computational complexity
creates a barrier to analyze large networks by the group of
slow algorithms. Oslom takes several days to analyze the
Orkut graph whereas SCD finds the communities in a few
minutes. Even assuming that these slow algorithms scale
linearly with the problem size, which is not true for most of
them, the analysis of large graphs may require unaffordable
times. We see that SCD’s performance is better than for
Louvain, the fastest algorithm in the state of the art.
Figures 5 and 6 show the F̄1 and NMI quality scores of

the tested algorithms, respectively. We observe that both
metrics are correlated, though some small deviations exist
among them. From these results, we conclude that SCD
obtains the best quality, followed by Oslom and Louvain.
In the case of F̄1, SCD obtains the best quality in all the
test graphs except Livejournal, where it is close to BigClam.
On the other hand, Oslom stands as the second best option
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Figure 4: Execution times in seconds.
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Figure 5: F̄1 score using ground truth.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Amz Dblp You Live Orkut Friend

N
M
I

 
walktrap

infomap

louvain

bigclam

oslom

scd

Figure 6: NMI using ground truth.

except for Amazon and Livejournal. Note that the F̄1 of
Louvain for the Friendster graph cannot be appreciated in
the figure due to its small value. When we turn into NMI,
we see that SCD obtains the best quality in four out of six of
the tested graphs. For the rest of the graphs, SCD obtains
a score close to the best one. In terms of NMI, Louvain
and Oslom are the closest ones to SCD on average, but with
less quality in most of the graphs. Broadly speaking, SCD
improves the quality of the best community detection algo-
rithms but running much faster.
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ent number of threads.

5.2 Scalability
We parallelized the two most time consuming parts of the

algorithm: the computation of the clustering coefficient of
the vertices and the refinement part. In the former, we par-
allelized the loop that computes, for each edge, the number
of triangles that the edge closes. In the later, we parallelized
the loop in Line 7 of Algorithm 2, which calls the function
bestMovement for each of the vertices in the graph, as well
as the computation of WCC for the partition at the end of
the iteration. Since all the parallel code is in the form of
loops, we used OpenMP with dynamic scheduling, using a
chunk size of 32. Figure 7 shows the normalized execution
times of SCD with different number of threads. In this ex-
periment, we have excluded the time spent in I/O, which
includes reading the graph file and printing the results.
Broadly speaking, we see that SCD is able to achieve very

good scalability, specially for the larger graphs which are
also the graphs with the largest degree. The larger the de-
gree of the graph, the larger the cost of those parts that have
been parallelized, which become dominant over the sequen-
tial ones. This translates into a better scalability due to a
direct application of Ahmdal’s Law.
For large graphs, the implementation of SCD is able to

exploit all the processor’s resources available. The config-
uration with four threads of SCD keeps the four cores of
the processor active, and hence obtains about a four fold
improvement over the single threaded version. These re-
sults show that SCD is an algorithm capable of exploiting
multi-core architectures efficiently, especially on large graphs
where this feature is more appreciated. More specifically,
SCD processes the Friendster graph using four threads in
just 4.3 hours.
Figure 8 shows the execution time of SCD with respect

to the number of edges of the graph. Each point represents
the time spent by the four thread version of SCD in the six
datasets. We observe that SCD scales approximately as a
line with respect to the number of edges of the graph.

5.3 Memory Consumption
In Table 2, we show the memory consumption of SCD for

each of the graphs. We split the memory consumption into
three different concepts:
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Graph Triangles Partitions Total

Amazon 11.4 1.3 16.0 28.7
Dblp 12.2 1.3 14.9 28.4
Youtube 37.5 4.5 68.9 110.9
Livejournal 325.4 16.0 197.7 539.1
Orkut 974.3 12.3 124.4 1111.0
Friendster 15235.8 262.4 3317.6 18815.8

Table 2: SCD Memory consumption in MB.

• Graph: the size of the data structure that stores the
graph as a list of adjacencies. We relabel the indices
of the vertices to the range from 1 to n, and hence, we
also account an array containing a mapping between
our vertex identifier and the original identifier.

• Triangles: an array with size equals to the number of
vertices, which contains the number of triangles each
vertex belongs to.

• Partitions: accounts the statistics for the partitions.
We report the iteration with the largest memory con-
sumption.

The auxiliary data structures (triangles and partitions)
built by SCD scale linearly with the number of vertices of
the graph, and not with the number of edges. Since the
number of statistics stored per node is small, the amount of
memory consumed by SCD is often dominated by the graph
representation itself. Among the tested benchmarks, the
only exception is Youtube, because of its very small average
degree of 2.6. For the largest graphs, SCD allocates only
data structures for an additional 23% (Friendster) and 14%
(Orkut) of the original graph. The amount of memory con-
sumed for the Friendster graph is roughly 18GB, indicating
that even larger graphs could be processed with the 32 GB
of memory of the test machine.

6. CASE STUDY
In this section, we present results showing the behavior

of SCD in a real world application, such as product pur-
chasing recommendation. We have downloaded, from the
SNAP website, the metadata associated with the products
of the co-purchasing Amazon graph described above. This



Modern
Information
Retrieval

Finding Out About: A Cognitive Perspective on Search Engine
Technology and the WWW (Richard K. Belew);

Understanding Search Engines: Mathematical Modeling and
Text Retrieval (Michael W. Berry);

Managing Gigabytes: Compressing and Indexing Documents
and Images (Ian H. Witten);

Foundations of Statistical Natural Language Processing
(Christopher D. Manning);

Information Retrieval: Data Structures and Algorithms
(William B. Frakes and Ricardo Baeza-Yates);

Modern Information Retrieval (Ricardo Baeza-Yates);

Natural Language Processing for Online Applications: Text
Retrieval, Extraction, and Categorization (P. Jackson and I.
Moulinier);

Readings in Information Retrieval (Karen Spark Jones and Pe-
ter Willett);

Harry
Potter

Harry Potter and the Sorcerer’s Stone (Book 1);

Harry Potter and the Chamber of Secrets (Book 2);

Harry Potter and the Prisoner of Azkaban (Book 3);

Harry Potter and the Goblet of Fire (Book 4);

Harry Potter and the Order of the Phoenix (Book 5);

Harry Potter and the Sorcerer’s Stone (Hardcover);

Harry Potter and the Prisoner of Azkaban (Hardcover);

Harry Potter and the Order of the Phoenix (Book 5, Deluxe
Edition);

Harry Potter and the Sorcerer’s Stone (Book 1, Large Print);

Harry Potter and the Sorcerer’s Stone (Book 1, Audio CD);

Harry Potter and the Prisoner of Azkaban (Book 3, Audio CD);

Harry Potter and the Goblet of Fire (Book 4, Audio CD);

Harry Potter and the Order of the Phoenix (Book 5, Audio);

Lonely
Planet
Barcelona

Eyewitness Top 10 Travel Guides: Barcelona;

Barcelona and Catalonia (Eyewitness Travel Guides);

Eyewitness Travel Guide to Barcelona and Catalonia;

Lonely Planet Barcelona;

The National Geographic Traveler: Barcelona;

Lonely Planet Barcelona City Map;

Streetwise Barcelona;

Table 3: Examples of communities of co-purchased products of WCC.

metadata includes information such as the title of the prod-
uct, the type and the categories that it belongs to, and was
collected in 2006. As stated above, a ground truth com-
munity in the Amazon graph is formed by those products
belonging to the same groups and form a connected com-
ponent. Therefore, the communities in the Amazon graph
should contain similar products than have been usually co-
purchased. Hence, once a new buyer purchases a product, it
could be recommended with those products of the same com-
munities of that he bought. We select three profiles of well
known products: the technical computer science book titled
“Modern Information Retrieval”, by Ricardo Baeza; the first
book of a popular novel series “Harry Potter and the Sor-
cerer’s Stone”; and a travel book “Lonely Planet Barcelona”.
We run the SCD algorithm on the whole network and we

report the communities where these books were assigned in
Table 3. In the case of “Modern Information Retrieval”, we
see that the community is formed by relevant books in the
field of information retrieval and text analysis. In the case of
Harry Potter, we see that the community contains different
books of the Harry Potter series (for the curious reader,
the two last books of the series were published after the
crawl and are not present in the dataset), as well as Harry
Potter audio books and some special editions. Finally, for
the “Lonely Travel Barcelona” guide, the community found
Barcelona travel guides from other publishers. We observe
that SCD is able to perform a good selection of the relations
in the graphs in order to give meaningful communities.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed SCD, a novel algorithm for dis-

joint community detection based on optimizing WCC. We
proposed a mechanism to estimate WCC, allowing the com-
putation of WCC faster. We compared SCD with the best
community detection algorithms in the state of the art, by
means of a methodology for overlapping community detec-
tion using ground truth data. SCD is able to detect com-
munities as meaningful (and in the most of the cases better)
as the most high-profile algorithms in the literature. More-

over, the results show that SCD is able to run faster than
these highest quality existing solutions, matching the speed
of those algorithms aimed at large scale graphs. This trans-
lates into SCD being able to process graphs of an unprece-
dented size, such the Friendster which has roughly 2 billion
edges in just 4.3 hours on off the shelf computer hardware.
The design of SCD also allows a remarkable scalability that
is close to four fold improvements in a four core processor.
Also, we showed that SCD is able to deliver meaningful com-
munities, by means of a case study consisting of a product
recommendation application. Finally, we can conclude that
going beyond edge counting, i.e. focusing on richer struc-
tures such as triangles for community detection, provides
better results.

The fact that SCD, being a disjoint community detection
algorithm, performs better than pure overlapping commu-
nity detection algorithms, gives us the hint that overlapping
community detection is a problem still far from being solved.
Hence, one of the future research lines is to extend the ideas
behind the topological analysis of the graph performed by
SCD to overlapped communities. On the other hand, we
have seen that SCD is able to scale on current multi-core
architectures. Another interesting research line to explore
in the future is how to adapt SCD to a vertex centric large
graph processing model such as GraphLab or Pregel.
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APPENDIX

A. PROOF OF THEOREM 1

Proof.

WCC(P ′)−WCC(P ) =

=1/|V |

(

|C1 ∪ {v}| ·WCC(C1 ∪ {v}) +
∑k

i=2
|Ci| ·WCC(Ci)

)

−

1/|V |

(

|C1| ·WCC(C1) +
∑k

i=2
|Ci| ·WCC(Ci) +WCC({v})

)

=1/|V |(|C′
1| ·WCC(C′

1))− 1/|V |(|C1| ·WCC(C1) + 0)

=1/|V |

(

∑

x∈C′

1

WCC(x,C′
1) +

∑

x∈C1

WCC(x,C1)

)

=1/|V |

(

∑

x∈C1

WCC(x,C′
1) +WCC(v, C′

1)−

∑

x∈C1

WCC(x,C1)

)

B. PROOF OF THEOREM 2

Proof. As stated in the theorem assumptions, the partition
P ′ is build by removing v from C1. Alternatively, the parti-
tion P can be build by removing vertex v to C′

1 in P ′. Then,
the two following equalities hold:

WCC(P ) +WCCR(v, C1) = WCC(P ′),

WCC(P ) = WCC(P ′) +WCCI(v, C
′
1)

and thus: WCCR(v, C1) = −WCCI(v, C
′
1)

C. PROOF OF THEOREM 3

Proof. Since WCC is a state function, all paths from P to
P ′ have the same differential. Then, we express the transfer
operation as a combination of remove and insert:

WCC(P ) +WCCT (v, C1, Ck) = WCC(P ′)

WCC(P ) +WCCR(v, C1) +WCCI(v, Ck) = WCC(P ′)

WCC(P ′)−WCC(P ) = −WCCI(v, C
′
1) +WCCI(v, Ck)

D. PROOF OF THEOREM 4

Proof. Consider the situation depicted in Figure 3. LetN(x)
be the set of neighbors of x. Given that, we define sets
F = N(v) ∩ C which contains those vertices in C that are
actual neighbors of v, and G = (C \ N(x)), which contains
those vertices in C that are not neighbors of v. Therefore,
from Theorem 1 we have:

WCCI(v, C) =

=1/|V |

∑

x∈C
(WCC(x,C ∪ {v})−WCC(x,C))+

1/|V |WCC(v, C ∪ {v})

=1/|V |

∑

x∈F
(WCC(x,C ∪ {v})−WCC(x,C))+

1/|V |

∑

x∈G
(WCC(x,C ∪ {v})−WCC(x,C))+

1/|V |WCC(v, C ∪ {v})

We know that |F | = din and |G| = r − din, then we can
define WCC′

I(v, C) with respect to three variables Θ1, Θ2

and Θ3, which represent the WCC improvement of a vertex
of F , a vertex of G and v respectively. Then,

WCC′
I(v, C) = 1/|V |(|F | ·Θ1 + |G| ·Θ2 +Θ3).

We define q = (b−din)/r as the number of edges connecting
each vertex in C with the rest of the graph excluding v.
Then,

(i) If x ∈ F , we have

t(x,C) =(r − 1)(r − 2)δ3;

t(x,C ∪ {v}) =(r − 1)(r − 2)δ3 + (din − 1)δ;

t(x, V ) =(r − 1)(r − 2)δ3 + (din − 1)δ + q(r − 1)δω+

q(q − 1)ω + doutω;

vt(x, V ) =(r − 1)δ + 1 + q;

|C ∪ {v} \ {x}|+ vt(x, V \ {C ∪ {v}}) = r + q;

|C \ {x}|+ vt(x, V \ C) = r − 1 + q + 1 = r + q;

In t(x,C), we account for those triangles that x closes
with two other vertices in C. Similarly, in t(x,C ∪ {v})
we account for those triangles that x closes with two other
vertices in C, and those triangles that x closes with v and
another vertex in C. t(x, V ) accounts for all triangles that
vertex x closes with the graph, which are: t(x,C ∪{v}) plus
those triangles that vertex x closes with another vertex of
C and a vertex of V \ C, plus those triangles that vertex x
closes with two other vertices in V \ C, plus those triangles
vertex x closes with v and another vertex of V \ C. Since
we assume that every edge in the graph closes at least one
triangle, vt(x, V ) accounts for the number of vertices in C
that are actual neighbors of x plus 1 (for vertex v) and q
vertices that are connected to x. Finally, we have that the
union of vertices in C and those vertices in V with whom x
closes at least one triangle is r + q. Therefore,

Θ1 = WCC(x,C ∪ {v})−WCC(x,C)

= t(x,C∪{v})
t(x,V )

· vt(x,V )
|C∪{v}\{x}|+vt(x,V \{C∪{v}})

−

t(x,C)
t(x,V )

· vt(x,V )
|C\{x}|+vt(x,V \C)

= vt(x,V )
(r+q)·t(x,V )

· (t(x,C ∪ {v})− t(x,C))

= (r−1)δ+1+q

(r+q)·((r−1)(r−2)δ3+(din−1)δ+q(r−1)δω+q(q−1)ω+doutω)
·

(din−1)δ.

(ii) If x ∈ B, we have

t(x,C) =(r − 1)(r − 2)δ3;

t(x,C ∪ {v}) =(r − 1)(r − 2)δ3;

t(x, V ) =(r − 1)(r − 2)δ3 + q(q − 1)ω + q(r − 1)δω;

vt(x, V ) =(r − 1)δ + q;

|C ∪ {v} \ {x}|+ vt(x, V \ {C ∪ {v}}) = r + q;

|C \ {x}|+ vt(x, V \ C) = r − 1 + q;

t(x,C) accounts for those triangles that x closes with two
other vertices in C. Since, x is not connected to v, we have
that t(x,C) = t(x,C∪{v}). t(x, V ) accounts for the number
of triangles that x closes with the rest of vertices in V . These
are t(x,C) plus those triangles that vertex x closes with



another vertex of C and a vertex of V \C, plus those triangles
that vertex x closes with two other vertices in V \C. vt(x, V )
accounts for the number of vertices in V with whom x closes
at least one triangle, which are the neighbors of x in C and
those t vertices with whom x is connected. Finally, we have
that the union of vertices in C ∪ {v} and vertices in V with
whom x closes at least one triangle is r+q, and the union of
vertices in C and vertices in V with whom x closes at least
one triangle is r + q − 1. Therefore,

Θ2 = WCC(x,C ∪ {v})−WCC(x,C)

= t(x,C∪{v})
t(x,V )

· vt(x,V )
|C∪{v}\{x}|+vt(x,V \{C∪{v}})

−

t(x,C)
t(x,V )

· vt(x,V )
|C\{x}|+vt(x,V \C)

=

= − (r−1)(r−2)δ3

(r−1)(r−2)δ3+q(q−1)ω+q(r−1)δω
· (r−1)δ+q

(r+q)(r−1+q)
.

(iii) If x = v we have

t(x,C ∪ {v}) = din(din − 1)δ;

t(x, V ) = din(din − 1)δ + dout(dout − 1)ω + doutdinω;

vt(x, V ) = din + dout;

|C|+ vt(x, V \ C) = r + dout;

In this case, t(x,C ∪ {v}) accounts for those triangles that
x closes with C, with whom it is connected to din vertices.
t(x, V ) are those vertices vertex x closes with V , which are
those x closes with C plus those x closes with other two
vertices in V \C. vt(x, V ) accounts for the number of vertices
in V with whom x closes at least one triangle, which are din
plus dout since we assume that every edge closes at least one
triangle. Finally, the union between the vertices in C and
those vertices in V with whom x closes at least one triangle
is r + dout. Therefore,

Θ3 = WCC(v, C ∪ {v})

= t(x,C∪{v})
t(x,V )

· vt(x,V )
|C|+vt(x,V \C)

=

= din(din−1)δ
din(din−1)δ+dout(dout−1)ω+doutdinω

· din+dout

r+dcout
.
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community detection. PNAS, 104(1):36, 2007.

[9] M. Girvan and M. Newman. Community structure in
social and biological networks. PNAS, 99(12):7821,
2002.

[10] A. Lancichinetti. Community detection algorithms: a
comparative analysis. Phy. Rev. E, 80(5):056117, 2009.

[11] A. Lancichinetti, S. Fortunato, and J. Kertész.
Detecting the overlapping and hierarchical community
structure in complex networks. New Journal of
Physics, 11(3):033015, 2009.

[12] A. Lancichinetti, F. Radicchi, J. Ramasco, and
S. Fortunato. Finding statistically significant
communities in networks. PloS one, 6(4):e18961, 2011.

[13] A. Medus et al. Detection of community structures in
networks via global optimization. Physica A,
358(2-4):593–604, 2005.

[14] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Phy. Rev. E,
69(2):026113, 2004.

[15] G. K. Orman, V. Labatut, and H. Cherifi. Qualitative
comparison of community detection algorithms. In
Digital Information and Communication Technology
and Its Applications, pages 265–279. Springer, 2011.
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