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Abstract 
As simulations grow in scale, optimization techniques 

become virtually required to provide real-time response.  In 

this paper we will discuss how spatial hashing can be 

utilized to optimize many aspects of large-scale simulations.   

Spatial hashing is a technique in which objects in a 2D or 3D 

domain space are projected into a 1D hash table allowing for 

very fast queries on objects in the domain space.  Previous 

research has shown spatial hashing to be an effective 

optimization technique for collision detection.  We propose 

several extensions of the technique in order to 

simultaneously optimize nearly all aspects of simulations 

including: 1) mobile object collision, 2) object-terrain 

collision, 3) object and terrain rendering, 4) object 

interaction, decision, or AI routines, and 5) picking.  The 

results of a simulation are presented where visibility 

determination, collision and response, and an AI routine is 

calculated in real-time for over 30,000 mobiles objects on a 

typical desktop PC. 

 

Introduction 
As the number objects in a simulation increases there 

becomes a growing need for optimization in order to provide 

real-time response.  The main areas where performance 

becomes unacceptably low for large numbers of objects are 

rendering, collision, and decisions or AI routines.  With 

regard to rendering, objects not in view of the camera must 

quickly be discarded from consideration to maintain an 

acceptable frame rate.  With regard to collision, it is 

generally an N2 routine where all objects must be compared 

to all other objects in the scene.  Due to the exponential 

nature of collision, application performance can quickly 

degrade as number of objects in the simulation increases.  

With regard to AI or autonomous agent decisions, they can 

often be exponential as well.  For example, consider any 

application where objects must react to other objects in the 

vicinity.  Clearly every object must be aware of the distance 

to every other object.  In this paper we propose several 

methods to concurrently optimize collision, rendering, and AI 

routines in simulations based on the following established 

techniques: 

 

• Spatial Hashing: where objects in 2D or 3D space 

are projected into a 1D hash table allowing 

especially fast location and proximity detection 

queries 

• Bounding Volumes: where complex objects are 

encased in simple volumes for fast location and 

collision computation 

• Position Over Time:  where the position of an 

object is not only considered each frame 

(discrete), but over the course of each frame 

(continuous) 

 

Specifically, using spatial hashing-based methods we will 

address the implementation and optimization of: 

 

• Object-object collision: collision between mobile 

objects 

• Object-terrain collision: traversal of terrain by the 

mobile objects 

• Rendering: use of the grid and hash table to 

quickly discard objects and terrain that are not in 

view of the camera and thus need not be rendered 

(visibility determination) 

• Picking and Object Selection: a type of collision 

detection where one or more objects in the scene 

are selected by users or AI entities 

• AI decisions: use of the fast location and 

proximity detection provided by hashing to speed 

up AI decisions 

 

All of the above can be simultaneously implemented or 

optimized with little additional memory overhead using the 

proposed techniques.  Discussion will proceed in the 

following manner.  First, we will examine related research, 

discuss any restrictions posed upon the application setup, and 

discuss the basics of spatial hashing and bounding volumes.  

Then, we will look at the details of implementing a spatial 

hashing based scheme to optimize collision, rendering, 

picking, and AI routines.  Finally, we will conclude with the 

results of a C++/OpenGL simulation.    

 

Related Work 
Various forms of spatial hashing have been used for:  

real-time collision detection for simulations or games with 

large numbers of mobile objects [7], collision of flexible or 

deformable models [3] [4] [6], collision for dense mesh 

animations [9], penetration depth and deformable model 

collision response [5].  Spatial hashing methods have also 

been used outside the graphics and simulations area in 

several ways including:  nearest-neighbor detection in spatial 

databases [12], spatial hash-joins in relational databases [10], 

and range-monitoring queries on mobile, real-world objects 

[8].   

 

To the best of our knowledge there has been no widely 

published research on the application of spatial hashing to 

concurrently optimize collision, rendering, picking, and AI 

routines.  Tree-based techniques do exist that may be used for 

both collision and rendering optimization (for example BSP 

trees [13]) however they may perform poorly for scenes with 

thousands of mobile objects since the tree must be rebuilt for 

every frame of animation.  Rebuilding a tree every frame is at 

best O(NlogN) for N objects whereas rebuilding a hash table 

is O(N) by application of a simple hash function to each 

object.  Tree-based solutions are further complicated by the 

need to insure a balanced tree.  These deficiencies have been 

overcome by self-adjusting trees [11] where the tree is only 

partially updated any given frame and automatically kept 

balanced.  Self-adjusting trees have shown to be sufficiently 

fast for collision detection in real-time applications with a 

substantial number of moving objects.  However, we wish to 

simultaneously optimize collision, rendering, and AI routines 

with a single data structure.    

  



Assumptions and Restrictions 
We assume a typical real-time application setup with an 

update/draw loop. Every frame all objects are updated and 

then rendered.  The only restriction posed on the simulation 

setup by our spatial hashing method is that most objects 

should be somewhat smaller than the grid cells that subdivide 

the scene.  This not absolutely required but as we will see, it 

makes hashing more efficient. 

 

Spatial Hashing Overview 
Spatial hashing is a process by which a 3D or 2D 

domain space is projected into a 1D hash table.  To 

implement spatial hashing at least three things are required. 

 

• a 2D or 3D grid 

• a hash function 

• a hash table 

 

First, the entire domain space is subdivided by a grid 

(uniform spatial subdivision) which may be 2D or 3D.  The 

grid can be defined by three variables. 

 

• float cell size: the size of each cell 

• float min, max: two points that “anchor” the grid 

in the domain space 

 

The hash function takes any given 2D or 3D positional 

data and returns a unique grid cell that corresponds to a 1D 

bucket in the hash table.  Objects are hashed periodically 

(every frame for real-time applications usually) and their 

locations can then be quickly queried in the hash table.  

Spatial hashing can be implemented in a number of ways, but 

the following method is presented as an example. 

 

Figure 1 shows a 2D grid over a domain space, 10 

mobile objects, a 16 bucket hash table, and an object index 

(objects lettered A- J) where each object’s current bucket in 

the hash table is indexed.  We define the following variables: 

 

• float min = 0 

• float max = 100 

• int cell size = 25 

• int width = (max-min)/cell size = 4 

• int number of buckets = width2    

 

The spheres represent mobile objects wandering 

through the grid.  Each cell is 25 units (cell size) and the 

entire grid is 100 units across (max - min).  Since the width is 

4 ((max-min)/cell size), a 16 bucket hash table (width2) is 

required.  As mobile objects wander the grid space, they hash 

their position (x,y) every frame using the formula: 

 

int grid_cell = ( floor(x/cell size) )  +   

              ( floor(y/cell size) )*width 

 

This formula translates a 2D object location into a 

single integer – the unique grid cell that the object occupies.  

The hash function can be made considerably faster by 

removing division with a new variable “conversion factor” 

which is set as 1/cell size.  We can also remove the floor 

function by allowing type coercion to truncate our positional 

data (floating point) to a hash bucket (integer).  So the 

modified hash function will look like this: 

 

int grid_cell =  x*conversion factor +  y*conversion 

        factor*width 

 

There are two ways to update the hash table.  If all 

objects are re-hashed every frame (usually the case in 

animated simulations or games) the contents of every bucket 

can simply be deleted before update.  If objects are only 

updated infrequently, the old hash-data for the object must be 

deleted before the new hash-data is inserted.  This can be 

easily determined using the object index. 

 

 

 

 

 
Figure 1 – An example of mobile objects in a grid, a hash table, and the object index. 
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Now that the hash table and index are built we can 

make several types of queries on it: 

 

• Cell Query (Which objects are in cell X?): O(1) 

by direct access of hash bucket X 

• Object Query (In which cell is mobile object A 

located?): O(1) by direct access of the object-

index 

• Proximity Query (Which objects are near object 

A?): the range of buckets is computed, then an 

O(1) cell query performed on each bucket 

 

As we will see, these query types can be used to 

effectively optimize collision, rendering, and AI routines. 

 

Bounding Volumes 
All complex models we consider shall be surrounded 

by a simple bounding volume to greatly reduce computation 

required for both hashing and collision. Bounding volumes 

may serve as either: 

 

• the object’s collision model, where collision with 

the bounding volume signifies collision with the 

object 

• a “first pass” indicator signifying possible 

collision with the object’s complex model, where 

more detailed collision detection is performed 

later 

 

Essentially any bounding volume can be used in spatial 

hashing, but in the remaining discussion we will use axis-

aligned bounding boxes (AABB). An AABB can be 

represented by two points – min and max. An AABB never 

tilts despite movement of the enclosed object; it is always 

aligned with the axis thus streamlining computation. 

 

 

 
Figure 2 – An object within an Axis-Aligned Bounding Box 

(AABB). 

 

Hashing an Object 
Previously we discussed the hashing of a single point; 

however we wish to quickly hash entire objects.  Hashing is 

based on bounding boxes and therefore objects may hash to 

multiple cells in the grid.  An AABB may span 1, 2 or 4 cells 

as illustrated in figure 3.  To determine what cells are 

spanned by an object at a certain position, the four corners of 

the AABB are considered.  Notice that the hash function for 

AABB can be short-circuit evaluated based on the fact that: if 

min and max hash to the same cell, no further evaluation is 

required.  As mentioned previously, it is advantageous for 

objects to be smaller than grid cells since the hash function 

proceeds faster, and each individual object hashes to fewer 

cells.  However, if cells are too large more objects must be 

considered for potential collision.  Thus selection of a proper 

grid cell size is a matter of experimentation based on number 

of objects, size of objects, and expected distribution of the 

objects in the scene.  A more detailed look at the hashing of 

AABB and other object types (oriented bounding boxes and 

spheres) is presented in [7].   

 

 
Figure 3 - An AABB will span multiple cells in 3 distinct 

cases.  These cases may be used to quickly hash the object. 

 

Hashing Objects Over Time 
Since collision for mobile objects must be determined 

over the course of the frame there is another factor to 

consider – the object’s position at the start and the end of the 

frame.  For example, suppose at time T1 Object 1 and Object 

2 are in positions designated by figure 4.  Then suppose after 

update their new positions are as shown at time T2.  If 

collision detection is based only on position at time T2, then 

this collision will go undetected.  Clearly collision is a 

function of position and time, not just position. 

 

 

 
Figure 4 – When collision is computed only every frame 

some collisions may “miss”. 

 

Therefore in applications where precise collision over 

time is required, we must determine all grid cells the object 

has passed through during the frame.  For small or very fast 

moving objects determining which cells are traversed is done 

as follows. 

 

• Determine the initial cell the object occupies 

• Determine the final cell the object occupies 

• Find the cells traversed between them

 



If objects are small compared to grid cells, this issue 

may be somewhat similar to a line raster problem – where the 

endpoints of the line are the initial and final positions and the 

“pixels” are the cells traversed.  Figure 5 illustrates this.  For 

most objects we can take more simplistic (and faster) 

approach however.  Suppose an object hashes to cell A at the 

beginning of the frame and cell B at the end of the frame.  

We will simply “draw a box” that encompasses the cells from 

A to B.   

 

 
Figure 5 – Finding the cells traversed by small, fast moving 

objects is similar to rastering a line. 

 

The algorithm works as follows, where A and B are 

Grid Cells (x,z), A is the lower valued cell (i.e A.x < B.x and 

A.z < B.z), and A != B. 

 

for(i=A.x; i<(B.x–A.x); i++) 

    for(j=A.x; j<(B.z–A.z); j++) 

     { 

          Add object to the hash bucket… 

          … associated with grid cell(i,j) 

     } 

 

This may seem a sub-optimal or “brute force” approach 

but consider: 

 

• Cells are significantly larger than objects 

• Time between frames is fairly small in real-time 

applications 

 

From this we can conclude that an object will almost 

always move no more than one cell from its current position 

during the frame. Clearly a complex algorithm for traversing 

cells is not needed, and may actually slow hash computation 

somewhat.  In almost all situations cell traversal over the 

course of the frame will be similar to one of the three cases 

presented in figure 6.  Thus our simple nested “for” loop is 

adequate.  The above discussion suggests at least two types 

of hashing based on object behavior. 

 

• small, fast collision objects: bullets for example, 

will be line traced through the grid 

• normal collision objects: simple nested for loop to 

“draw a box” 

 

 
Figure 6 – Since frame rate in real-time applications is high; 

generally objects will move no more than 1 cell per frame.  

This fact can be used to simplify cell occupancy 

determination.  The positions A and B are an objects 

respective position at the start and the end of a frame of 

animation. 

 

Collision Detection 
Optimized collision proceeds by only colliding objects 

that hash to the same bucket.  In this manner, objects that can 

possibly collide (those in the same cell) are quickly found 

with an O(1) cell query.  There are 2 phases to collision: 

 

• Hash Phase: all mobile objects are hashed (static 

objects are only hashed once at startup) 

• Collision Phase: for every hash bucket, collide the 

objects in that bucket 

 

As noted above the hash function automatically 

accounts for objects that cross cell boundaries.  Such objects 

will be referenced in multiple hash buckets.  It is possible 

that further optimization could be obtained by designating a 

third class of “seldom moving” objects.  Such objects that 

only rarely move might only be hashed after a movement.  

Note that static objects need only be hashed once at 

application startup.  A hashing based terrain traversal method 

is described below in the simulations results section.  Exact 

collision formulas are bounding volume dependent and will 

vary across applications.  Note also that collision over time is 

optional and many applications may not require it.  Further 

discussion of spatial hashing with regard to mobile object 

collision can be found in [3] and [7].  Discussion of the 

mathematics of mobile object collision over time can be 

found in [2] and [14]. 

 

Picking 
Picking is a type of collision detection where user input 

(usually a mouse-controlled pointer) selects objects in the 

scene.  Every object in the scene can possibly be picked but 

by using the hash table we can quickly discount a majority of 

objects.  Picked objects can be found by:   

 

• projecting a ray through the screen where the user 

clicked 

• in a 3D grid, tracing the ray through the grid 

• in a 2D grid intersecting the ray with grid plane, 

then hashing the intersection point 

• objects in the hash buckets corresponding to 

intersected grid cells are candidates for picking 

 

 

 

 



Additionally, allowing the user to “click and drag” a 

box on screen (similar to figure 7) is a common method of 

allowing selection of objects and can efficiently implemented 

by: 1) hashing the max point of the selection, 2) hashing the 

min point of the selection, and 3) finding the cells between 

them as described previously. 

 

 
Figure 7 – A “click and drag” picking method can be 

implemented very efficiently.  Only objects within the shaded 

region are possibly in the selection region. 

  

Rendering 
Visibility determination is the process of finding 

objects that are in view of the camera and rendering only 

those objects.  Visibility determination with the hash table 

proceeds as follows. 

 

• find which hash cells are in view of the camera 

• only render objects in those cells 

 

We will look at two different ways to perform visibility 

determination using the hash table.  The two methods are 

based on application type which affects the typical “view” or 

behavior of the camera during rendering. 

 

• Top-down camera: where the camera is locked 

in a view looking down at the scene 

• Free Camera: where the camera rotates freely 

 

A top-down camera scheme is commonly used in 

simulations, 2D applications, and many real-time strategy 

(RTS) games where the camera is above the domain space 

and is fixed looking down.  A 2D grid naturally lends itself to 

this type of application since mobile objects may wander 

over a 3D terrain, but in general are spread out in two 

dimensions.  Finding objects in view of a top-down camera 

proceeds as a somewhat simplified form of frustum culling.  

First we define: 

 

• frustum max point(x,y): the point found by 

projecting a line from the camera through the top-

right corner of the screen, intersecting the line 

with the grid plane, and then hashing that point 

• frustum min point(x,y): the point found by 

projecting a line from the camera through the 

bottom-left corner of the screen, itersecting the 

line with the grid plane, and then hashing that 

point 

 

The objects in cells between those that contain frustum 

max and frustum min are objects in view of the camera (see 

figure 8).  Note this method only works when the camera is 

locked above the grid and special care must be taken when 

one of the points projects off the grid. 

   

 
Figure 8 – Visibility determination in a system with 2D grid 

and top-down camera view. 

 

After determining frustum max point and frustum min 

point, the cells between can be determined in the following 

manner.  First we define: 

 

float conversion_factor = 1/cell_size 

fint width = (max-min)/cell_size 

 

int draw_bucket 

 

int minx = frustum_min_point.x * conversion_factor 

int minz = frustum_min_point.z * conversion_factor 

 

int maxx = frustum_max_point.x * conversion_factor 

int maxz = frustum_max_point.z * conversion_factor 

 

Conversion factor and width have already been defined 

for our hash function.  Draw_bucket will hold the value of 

any bucket whose contents are drawn on screen.  Minx, 

maxx, minz, and maxz are used to compute a grid from the 

frustum min point to the frustum max point.  We now 

compute the individual draw buckets to draw as follows: 

 

for(i=minx; i<=maxx; i++) 

{ 

     for(j=minz; j<=maxz; j++) 

     { 

          draw_bucket = i*width + j; 

 

          …render contents of draw_bucket… 

      } 

} 

 
Figure 9 – Frustum culling may be performed with a 3D 

grid.  If a given grid cell does not intersect the view frustum, 

objects within that grid cell are not visible to the camera.



The simulation for which results are presented later 

uses a technique similar to the above.  In applications where 

the camera rotates freely “true” frustum culling is employed 

(see figure 9). 

 

• mobile objects are hashed to their respective 

buckets 

• the frustum is intersected with each hash bucket  

• if a bucket does not intersect with the frustum, 

objects contained in that bucket are not in view of 

the camera 

 

As for the grid cell vertices, they may either: 1) be 

computed on the fly using min, max, cell size, and an offset 

based on hash bucket, or 2) be stored explicitly in a 2D or 3D 

array.  Further discussion of frustum culling via bounding 

boxes can be found in [1]. 

 

AI and Decision Making 
AI-related routines can be implemented or optimized in 

several ways using the hash table.  

 

• Proximity-based AI decisions: object proximity 

can be quickly estimated without explicit distance 

calculation 

• Designated zones or areas of interest: a method of 

designating areas or volumes of the domain space 

as having certain characteristics that affect 

navigation or AI decisions 

• Radar or sensing: where a radar-like functionality 

is required that provides a condensed, or alternate 

representation of the domain space or section of 

the domain space 

 

First, any AI decision based on evaluation of objects in 

the vicinity can be quickly resolved using a proximity query 

(see figure 10).  For example, suppose a decision made by an 

AI is affected by all other AI objects within a radius of 

distance.  To implement such a query we can define: 

 

• float radius: distance of the query 

• int base cell: the (x,y) cell the object making the 

query occupies 

• int offset:  number of grid cells in the x,y axis 

around the base cell computed by radius/cell size 

• int next bucket: the next bucket in the area 

covered by the query 

 

We now compute each bucket in the query: 

 

(for i=base-offset; i<base+offset; i++) 

{ 

  (for j=base-offset; j<base+offset; j++) 

  { 

     next_bucket = i*width + j; 

  } 

} 

 

For a 3D grid this would be computed in three 

dimensions.  As noted previously, an O(1) query on the hash 

table returns the objects in each bucket computed – which are 

the objects within a radius r of the object. 

 

 
Figure 10 – A proximity query determines what objects are 

in the vicinity (shaded area) of a specific object.  The buckets 

surrounding the object can be quickly found using the 

object’s base cell, the radius of the query, and an offset.   

 

Cell queries provide a fast way to find objects in a 

limited section of the domain space surrounding an object.  

This is ideal to implement a radar-like functionality for user 

or AI which is fairly common in simulations and games.  

Additionally, cell queries need not be limited to the 

granularity of the grid. More precise queries (see figure 10) 

can be represented by: 

 

• an explicit query area or volume: a sphere or cube 

for example 

• a range of cells: that the query volume hashes to 

 

Thus any object within the range of query cells is 

intersected with the query volume.  The query cells may be 

re-hashed upon movement or re-sizing of the query volume.  

This provides an excellent way of quickly determining 

objects within an area or volume.  Proximity queries also 

allow certain areas or volumes of the domain space to be 

designated as special areas of interest.  Such query areas may 

have properties that affect AI or user behavior.   

 

Performance Analysis 

Let us now analyze performance and memory 

requirements for the proposed methods.  With regard to time 

complexity: 

 

• Hashing: O(N) for each of N objects in the scene 

the hash function is applied 

• Cell Query (Which objects are in cell X?): O(1) 

by direct access of hash bucket X 

• Object Query (In which cell is mobile object A 

located?): O(1) by direct access of the object-

index 

• Proximity Query (Which objects are near object 

A?): the range of buckets is computed, then an 

O(1) cell query performed on each bucket 

 

As for performance with regard to collision, visibility 

determination, and AI decisions, it will depend heavily on 

object distribution throughout the domain space.  Collision 

performance breaks down as follows supposing N objects are 

in the scene: 

 

• Best Case: O(1). In this case every object hashes 

to a different grid cell. No collision will be 

performed at all. 

• Worst Case: O(N2). In this case, every object in 

the scene is in the same grid cell.  

 



Clearly performance will be somewhere between these 

extremes depending on object distribution in the scene. AI is 

affected by object distribution similarly to collision. With 

regard to speedup for rendering optimization: 

 

• Visibility Determination: O(N) where there are N 

hash buckets in the table 

 

When performing 3D frustum culling each of N cells is 

intersected with the frustum. With regard to system memory 

requirements a spatial hashing-based method requires at 

least: 

 

• Hash Table: 1 to 4 integers or references per 

object for most bounded objects 

• Object Index: 1 to 4 integers or references per 

object for most bounded objects, the object index 

is optional however and only required for certain 

queries 

 

Each bounded object will typically span 1 to 4 cells. Thus a 

reference or integer is placed in the appropriate hash bucket 

for each cell it occupies. 

 

Simulation and Results 

 

A simulation was developed using the following 

technologies: 

 

• Code: C++ 

• Graphics: OpenGL 

• Windows Framework: nehe.gamedev.net OpenGL 

Application Framework  

• Math Libraries: DirectX 9.0c 

• Compiler: Microsoft Visual Studio.net 2003 

Version 7.1.3088 

 

The simulation consisted of mobile objects (multi-

colored spheres) that randomly roam over a fixed, randomly 

generated terrain (triangle mesh).  A screenshot of the 

simulation is shown in Figure 11.  The hash table was 

implemented using a two-dimensional vector (C++ vector 

class). 

 

 
Figure 11 – The simulation of several thousand mobile 

objects wandering over a terrain separately times collision, 

rendering, and AI functions, and allows toggling of camera 

types and manipulation of grid variables. 

 

The three main phases of computation were 

benchmarked independently: 

 

• Collision:  The collision phase consists of 

computing collision between all spheres in the 

scene, collision of all spheres to the terrain, and 

applying a response where colliding spheres 

“bounce” based on their respective impact angles. 

• Rendering:  In the rendering phase all spheres and 

terrain triangles are drawn.  Visibility 

determination is performed with the 2D grid 

method discussed previously. 

• AI:  An AI routine is applied in this phase where 

each mobile object will examine the other objects 

within a radius.  The object will count the number 

of different colored objects in the vicinity from a 

fixed set of color.  The object will then change to 

the least occurring color. 

 

A random terrain is generated at startup with the 

restriction that no terrain surface may be vertical.  All terrain 

mesh triangles are hashed once (since they are static).  The 

terrain traversal algorithm then proceeds as follows.  Every 

frame each mobile object is hashed.  It is then determined 

which triangle an object rests upon by 2D collision on the 

X,Z plane.  This is fast and is feasible since we are assured 

that no triangle is at 90 degrees – thus no concave surfaces or 

“caves” in the terrain.  The height of the object is then 

determined by using 1) the radius of the object’s collision 

hull, and 2) the interpolated Y values of the triangle vertices 

(essentially a height map) based on the object’s position. 

 

The test machine for the simulation was a desktop PC: 

Intel Pentium4 3.2GHz, 1 Gig of RAM, and Radeon 9800 

Pro GPU.  Figures 13 through 15 display the results of the 

simulation.  The results are presented in frames-per-second 

(FPS) for each phase of the algorithm.  “60+” denotes that 

phase can be computed over 60 times per second.  “<1” 

denotes the phase was computed less than once per second.  

“Objects” denotes the number of mobile objects in the 

simulation. “Cell size” denotes the cell size in world units of 

each grid cell.  The percentage value denotes the size of the 

cell in relation to the entire domain space.  Since the domain 

space was 400 units across, a cell size of 100 is equivalent to 

25% of the domain space.  Objects had a radius of 1.0.  “Un-

optimized” denotes measurement for the application with no 

optimzation whatsoever.  This is provided to illustrate the 

magnitude of speedup from the hashing and to allow other 

methods to be compared with these results.  The highlighted 

cells indicate a computation time too slow for real-time 

applications (under 20 FPS).  The slowest phase was AI 

calculation and the fastest phase was visibility determination.  

 

9. Conclusions and Future Work 

Overall the simulation showed that using the spatial 

hashing-based techniques presented here, collision, collision-

response, terrain traversal, proximity-based AI routines, and 

visibility determination can be computed for well over 

30,000 mobile objects simultaneously at real-time frame rates 

on a desktop PC.  The test machine was able to run the entire 

application (all phases, while processing user input and 

OpenGL drawing) with 30,000 at between 20 and 30 FPS.  In 

order to provide faster hashing grid cells should be somewhat 

larger than the average object.  However, the grid cells 

should be small compared to the size of the domain space.  

Smaller cells result in fewer O(N2) comparisons of all objects 

inside those cells.  Although, smaller cell size results in 

larger memory usage since objects are more likely to span 

multiple cells.  Thus there is a memory-performance tradeoff, 

where smaller cells (to a certain point) provide better 

performance but at the cost of more memory.   

 

 



One possibility for future work certainly includes a 

type of auto-adjusting grid that changes in with regard to 

number of objects, distribution of objects, and average size of 

objects in the scene.  Since the hash table is wiped every 

frame, changing the hash function and grid cell size at any 

time is allowable.  Other possibilities for future research on 

the application of spatial hashing to the graphics and 

simulations area include:  multi-grid hashing where several 

grids partition the scene at differing levels of granularity, 

examination of the efficiency of hashing different bounding 

volume types, more detailed work and benchmarks on 3D 

hashing, closer examination of the tradeoff between cell size, 

performance, and memory overhead, and hash table 

optimization. 

 

 

 

 

Un-
Optimized 

Cell Size 
5 

Cell Size 
10 

Cell Size 
25 

Cell Size 
50 

Cell Size 
100 

 Objects   1.25% 2.50% 6.25% 12.50% 25% 

500 60+ 60+ 60+ 60+ 60+ 60+ 

1000 60+ 60+ 60+ 60+ 60+ 60+ 

2500 25 60+ 60+ 60+ 60+ 60+ 

5000 <1 60+ 60+ 60+ 60+ 60+ 

10000 <1 60+ 60+ 60+ 60+ 2 

20000 <1 60+ 60+ 50 5 <1 

50000 <1 29 23 <1 <1 <1 

Figure 13 – FPS for the collision phase where collision, response, and terrain traversal are computed.  With a cell size of 5, collision 

was computed for 20,000 objects over 60 times per second.  Collision for 50,000 objects was computed around 30 times per second.  

Without optimization less than 3000 objects could be supported in real-time. 

 

 

 

Un-
Optimized 

Cell Size 
5 

Cell Size 
10 

Cell Size 
25 

Cell Size 
50 

Cell Size 
100 

 Objects   1.25% 2.50% 6.25% 12.50% 25% 

500 60+ 60+ 60+ 60+ 60+ 60+ 

1000 60+ 60+ 60+ 60+ 60+ 60+ 

2500 48 60+ 60+ 60+ 60+ 60+ 

5000 16 60+ 60+ 60+ 60+ 60+ 

10000 <1 60+ 60+ 60+ 60+ 60+ 

20000 <1 60+ 60+ 60+ 60 49 

50000 <1 60+ 60+ 60+ 52 40 

Figure 14 – FPS for the visibility determination phase where frustum culling and OpenGL draw calls for all visible objects are made.  

Culling and draw calls could be performed for 50,000 objects over 60 times per second.  Less than 5000 objects could be supported at 

real-time frame rates without optimization. 

 

 

 

Un-
Optimized 

Cell Size 
5 

Cell Size 
10 

Cell Size 
25 

Cell Size 
50 

Cell Size 
100 

 Objects   1.25% 2.50% 6.25% 12.50% 25% 

500 60+ 60+ 60+ 60+ 60+ 60+ 

1000 60+ 60+ 60+ 60+ 60+ 60+ 

2500 35 60+ 60+ 60+ 60+ 60+ 

5000 <1 60+ 60+ 60+ 60+ 60+ 

10000 <1 60+ 60+ 24 33 10 

20000 <1 23 28 12 <1 <1 

50000 <1 8 <1 <1 <1 <! 

Figure 15 – FPS for the AI phase where a proximity based AI routine for all objects is computed.  AI behaved much like collision but 

was slightly slower.  At a cell size of 5, computation for 20,000 objects could be performed approximately 50 times per second.  Less 

than 3000 objects could be supported in real-time without optimization. 
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