
Optimization of Large-Scale, Real-Time Simulations by Spatial Hashing

Erin J. Hastings, Jaruwan Mesit, Ratan K. Guha

College of Engineering and Computer Science, University of Central Florida

4000 Central Florida Blvd. Orlando, FL, US 32816

hastings@cs.ucf.edu, jmesit@cs.ucf.edu, guha@cs.ucf.edu

Keywords: spatial hashing, collision detection,

frustum culling, picking, AI

Abstract
As simulations grow in scale, optimization techniques

become virtually required to provide real-time response. In

this paper we will discuss how spatial hashing can be

utilized to optimize many aspects of large-scale simulations.

Spatial hashing is a technique in which objects in a 2D or 3D

domain space are projected into a 1D hash table allowing for

very fast queries on objects in the domain space. Previous

research has shown spatial hashing to be an effective

optimization technique for collision detection. We propose

several extensions of the technique in order to

simultaneously optimize nearly all aspects of simulations

including: 1) mobile object collision, 2) object-terrain

collision, 3) object and terrain rendering, 4) object

interaction, decision, or AI routines, and 5) picking. The

results of a simulation are presented where visibility

determination, collision and response, and an AI routine is

calculated in real-time for over 30,000 mobiles objects on a

typical desktop PC.

Introduction
As the number objects in a simulation increases there

becomes a growing need for optimization in order to provide

real-time response. The main areas where performance

becomes unacceptably low for large numbers of objects are

rendering, collision, and decisions or AI routines. With

regard to rendering, objects not in view of the camera must

quickly be discarded from consideration to maintain an

acceptable frame rate. With regard to collision, it is

generally an N2 routine where all objects must be compared

to all other objects in the scene. Due to the exponential

nature of collision, application performance can quickly

degrade as number of objects in the simulation increases.

With regard to AI or autonomous agent decisions, they can

often be exponential as well. For example, consider any

application where objects must react to other objects in the

vicinity. Clearly every object must be aware of the distance

to every other object. In this paper we propose several

methods to concurrently optimize collision, rendering, and AI

routines in simulations based on the following established

techniques:

• Spatial Hashing: where objects in 2D or 3D space

are projected into a 1D hash table allowing

especially fast location and proximity detection

queries

• Bounding Volumes: where complex objects are

encased in simple volumes for fast location and

collision computation

• Position Over Time: where the position of an

object is not only considered each frame

(discrete), but over the course of each frame

(continuous)

Specifically, using spatial hashing-based methods we will

address the implementation and optimization of:

• Object-object collision: collision between mobile

objects

• Object-terrain collision: traversal of terrain by the

mobile objects

• Rendering: use of the grid and hash table to

quickly discard objects and terrain that are not in

view of the camera and thus need not be rendered

(visibility determination)

• Picking and Object Selection: a type of collision

detection where one or more objects in the scene

are selected by users or AI entities

• AI decisions: use of the fast location and

proximity detection provided by hashing to speed

up AI decisions

All of the above can be simultaneously implemented or

optimized with little additional memory overhead using the

proposed techniques. Discussion will proceed in the

following manner. First, we will examine related research,

discuss any restrictions posed upon the application setup, and

discuss the basics of spatial hashing and bounding volumes.

Then, we will look at the details of implementing a spatial

hashing based scheme to optimize collision, rendering,

picking, and AI routines. Finally, we will conclude with the

results of a C++/OpenGL simulation.

Related Work
Various forms of spatial hashing have been used for:

real-time collision detection for simulations or games with

large numbers of mobile objects [7], collision of flexible or

deformable models [3] [4] [6], collision for dense mesh

animations [9], penetration depth and deformable model

collision response [5]. Spatial hashing methods have also

been used outside the graphics and simulations area in

several ways including: nearest-neighbor detection in spatial

databases [12], spatial hash-joins in relational databases [10],

and range-monitoring queries on mobile, real-world objects

[8].

To the best of our knowledge there has been no widely

published research on the application of spatial hashing to

concurrently optimize collision, rendering, picking, and AI

routines. Tree-based techniques do exist that may be used for

both collision and rendering optimization (for example BSP

trees [13]) however they may perform poorly for scenes with

thousands of mobile objects since the tree must be rebuilt for

every frame of animation. Rebuilding a tree every frame is at

best O(NlogN) for N objects whereas rebuilding a hash table

is O(N) by application of a simple hash function to each

object. Tree-based solutions are further complicated by the

need to insure a balanced tree. These deficiencies have been

overcome by self-adjusting trees [11] where the tree is only

partially updated any given frame and automatically kept

balanced. Self-adjusting trees have shown to be sufficiently

fast for collision detection in real-time applications with a

substantial number of moving objects. However, we wish to

simultaneously optimize collision, rendering, and AI routines

with a single data structure.

Assumptions and Restrictions
We assume a typical real-time application setup with an

update/draw loop. Every frame all objects are updated and

then rendered. The only restriction posed on the simulation

setup by our spatial hashing method is that most objects

should be somewhat smaller than the grid cells that subdivide

the scene. This not absolutely required but as we will see, it

makes hashing more efficient.

Spatial Hashing Overview
Spatial hashing is a process by which a 3D or 2D

domain space is projected into a 1D hash table. To

implement spatial hashing at least three things are required.

• a 2D or 3D grid

• a hash function

• a hash table

First, the entire domain space is subdivided by a grid

(uniform spatial subdivision) which may be 2D or 3D. The

grid can be defined by three variables.

• float cell size: the size of each cell

• float min, max: two points that “anchor” the grid

in the domain space

The hash function takes any given 2D or 3D positional

data and returns a unique grid cell that corresponds to a 1D

bucket in the hash table. Objects are hashed periodically

(every frame for real-time applications usually) and their

locations can then be quickly queried in the hash table.

Spatial hashing can be implemented in a number of ways, but

the following method is presented as an example.

Figure 1 shows a 2D grid over a domain space, 10

mobile objects, a 16 bucket hash table, and an object index

(objects lettered A- J) where each object’s current bucket in

the hash table is indexed. We define the following variables:

• float min = 0

• float max = 100

• int cell size = 25

• int width = (max-min)/cell size = 4

• int number of buckets = width2

The spheres represent mobile objects wandering

through the grid. Each cell is 25 units (cell size) and the

entire grid is 100 units across (max - min). Since the width is

4 ((max-min)/cell size), a 16 bucket hash table (width2) is

required. As mobile objects wander the grid space, they hash

their position (x,y) every frame using the formula:

int grid_cell = (floor(x/cell size)) +

 (floor(y/cell size))*width

This formula translates a 2D object location into a

single integer – the unique grid cell that the object occupies.

The hash function can be made considerably faster by

removing division with a new variable “conversion factor”

which is set as 1/cell size. We can also remove the floor

function by allowing type coercion to truncate our positional

data (floating point) to a hash bucket (integer). So the

modified hash function will look like this:

int grid_cell = x*conversion factor + y*conversion

 factor*width

There are two ways to update the hash table. If all

objects are re-hashed every frame (usually the case in

animated simulations or games) the contents of every bucket

can simply be deleted before update. If objects are only

updated infrequently, the old hash-data for the object must be

deleted before the new hash-data is inserted. This can be

easily determined using the object index.

Figure 1 – An example of mobile objects in a grid, a hash table, and the object index.

0 1 2

15 14 13

Hash Table -

16 buckets

Grid – 16 cells, 10 mobile objects

12

3

8 9 10 11

x

y

MIN=0,0

MAX=100,100
0

16

4 5 6 7

D

C

B

A

E

F

G

H

I

J

1

1

1

1

6

9

9

12

14

14

Object Index -

10 Objects

A B

C D

E

F
G

H I
J

A B C D

E

F G

H

I J

Now that the hash table and index are built we can

make several types of queries on it:

• Cell Query (Which objects are in cell X?): O(1)

by direct access of hash bucket X

• Object Query (In which cell is mobile object A

located?): O(1) by direct access of the object-

index

• Proximity Query (Which objects are near object

A?): the range of buckets is computed, then an

O(1) cell query performed on each bucket

As we will see, these query types can be used to

effectively optimize collision, rendering, and AI routines.

Bounding Volumes
All complex models we consider shall be surrounded

by a simple bounding volume to greatly reduce computation

required for both hashing and collision. Bounding volumes

may serve as either:

• the object’s collision model, where collision with

the bounding volume signifies collision with the

object

• a “first pass” indicator signifying possible

collision with the object’s complex model, where

more detailed collision detection is performed

later

Essentially any bounding volume can be used in spatial

hashing, but in the remaining discussion we will use axis-

aligned bounding boxes (AABB). An AABB can be

represented by two points – min and max. An AABB never

tilts despite movement of the enclosed object; it is always

aligned with the axis thus streamlining computation.

Figure 2 – An object within an Axis-Aligned Bounding Box

(AABB).

Hashing an Object
Previously we discussed the hashing of a single point;

however we wish to quickly hash entire objects. Hashing is

based on bounding boxes and therefore objects may hash to

multiple cells in the grid. An AABB may span 1, 2 or 4 cells

as illustrated in figure 3. To determine what cells are

spanned by an object at a certain position, the four corners of

the AABB are considered. Notice that the hash function for

AABB can be short-circuit evaluated based on the fact that: if

min and max hash to the same cell, no further evaluation is

required. As mentioned previously, it is advantageous for

objects to be smaller than grid cells since the hash function

proceeds faster, and each individual object hashes to fewer

cells. However, if cells are too large more objects must be

considered for potential collision. Thus selection of a proper

grid cell size is a matter of experimentation based on number

of objects, size of objects, and expected distribution of the

objects in the scene. A more detailed look at the hashing of

AABB and other object types (oriented bounding boxes and

spheres) is presented in [7].

Figure 3 - An AABB will span multiple cells in 3 distinct

cases. These cases may be used to quickly hash the object.

Hashing Objects Over Time
Since collision for mobile objects must be determined

over the course of the frame there is another factor to

consider – the object’s position at the start and the end of the

frame. For example, suppose at time T1 Object 1 and Object

2 are in positions designated by figure 4. Then suppose after

update their new positions are as shown at time T2. If

collision detection is based only on position at time T2, then

this collision will go undetected. Clearly collision is a

function of position and time, not just position.

Figure 4 – When collision is computed only every frame

some collisions may “miss”.

Therefore in applications where precise collision over

time is required, we must determine all grid cells the object

has passed through during the frame. For small or very fast

moving objects determining which cells are traversed is done

as follows.

• Determine the initial cell the object occupies

• Determine the final cell the object occupies

• Find the cells traversed between them

If objects are small compared to grid cells, this issue

may be somewhat similar to a line raster problem – where the

endpoints of the line are the initial and final positions and the

“pixels” are the cells traversed. Figure 5 illustrates this. For

most objects we can take more simplistic (and faster)

approach however. Suppose an object hashes to cell A at the

beginning of the frame and cell B at the end of the frame.

We will simply “draw a box” that encompasses the cells from

A to B.

Figure 5 – Finding the cells traversed by small, fast moving

objects is similar to rastering a line.

The algorithm works as follows, where A and B are

Grid Cells (x,z), A is the lower valued cell (i.e A.x < B.x and

A.z < B.z), and A != B.

for(i=A.x; i<(B.x–A.x); i++)

 for(j=A.x; j<(B.z–A.z); j++)

 {

 Add object to the hash bucket…

 … associated with grid cell(i,j)

 }

This may seem a sub-optimal or “brute force” approach

but consider:

• Cells are significantly larger than objects

• Time between frames is fairly small in real-time

applications

From this we can conclude that an object will almost

always move no more than one cell from its current position

during the frame. Clearly a complex algorithm for traversing

cells is not needed, and may actually slow hash computation

somewhat. In almost all situations cell traversal over the

course of the frame will be similar to one of the three cases

presented in figure 6. Thus our simple nested “for” loop is

adequate. The above discussion suggests at least two types

of hashing based on object behavior.

• small, fast collision objects: bullets for example,

will be line traced through the grid

• normal collision objects: simple nested for loop to

“draw a box”

Figure 6 – Since frame rate in real-time applications is high;

generally objects will move no more than 1 cell per frame.

This fact can be used to simplify cell occupancy

determination. The positions A and B are an objects

respective position at the start and the end of a frame of

animation.

Collision Detection
Optimized collision proceeds by only colliding objects

that hash to the same bucket. In this manner, objects that can

possibly collide (those in the same cell) are quickly found

with an O(1) cell query. There are 2 phases to collision:

• Hash Phase: all mobile objects are hashed (static

objects are only hashed once at startup)

• Collision Phase: for every hash bucket, collide the

objects in that bucket

As noted above the hash function automatically

accounts for objects that cross cell boundaries. Such objects

will be referenced in multiple hash buckets. It is possible

that further optimization could be obtained by designating a

third class of “seldom moving” objects. Such objects that

only rarely move might only be hashed after a movement.

Note that static objects need only be hashed once at

application startup. A hashing based terrain traversal method

is described below in the simulations results section. Exact

collision formulas are bounding volume dependent and will

vary across applications. Note also that collision over time is

optional and many applications may not require it. Further

discussion of spatial hashing with regard to mobile object

collision can be found in [3] and [7]. Discussion of the

mathematics of mobile object collision over time can be

found in [2] and [14].

Picking
Picking is a type of collision detection where user input

(usually a mouse-controlled pointer) selects objects in the

scene. Every object in the scene can possibly be picked but

by using the hash table we can quickly discount a majority of

objects. Picked objects can be found by:

• projecting a ray through the screen where the user

clicked

• in a 3D grid, tracing the ray through the grid

• in a 2D grid intersecting the ray with grid plane,

then hashing the intersection point

• objects in the hash buckets corresponding to

intersected grid cells are candidates for picking

Additionally, allowing the user to “click and drag” a

box on screen (similar to figure 7) is a common method of

allowing selection of objects and can efficiently implemented

by: 1) hashing the max point of the selection, 2) hashing the

min point of the selection, and 3) finding the cells between

them as described previously.

Figure 7 – A “click and drag” picking method can be

implemented very efficiently. Only objects within the shaded

region are possibly in the selection region.

Rendering
Visibility determination is the process of finding

objects that are in view of the camera and rendering only

those objects. Visibility determination with the hash table

proceeds as follows.

• find which hash cells are in view of the camera

• only render objects in those cells

We will look at two different ways to perform visibility

determination using the hash table. The two methods are

based on application type which affects the typical “view” or

behavior of the camera during rendering.

• Top-down camera: where the camera is locked

in a view looking down at the scene

• Free Camera: where the camera rotates freely

A top-down camera scheme is commonly used in

simulations, 2D applications, and many real-time strategy

(RTS) games where the camera is above the domain space

and is fixed looking down. A 2D grid naturally lends itself to

this type of application since mobile objects may wander

over a 3D terrain, but in general are spread out in two

dimensions. Finding objects in view of a top-down camera

proceeds as a somewhat simplified form of frustum culling.

First we define:

• frustum max point(x,y): the point found by

projecting a line from the camera through the top-

right corner of the screen, intersecting the line

with the grid plane, and then hashing that point

• frustum min point(x,y): the point found by

projecting a line from the camera through the

bottom-left corner of the screen, itersecting the

line with the grid plane, and then hashing that

point

The objects in cells between those that contain frustum

max and frustum min are objects in view of the camera (see

figure 8). Note this method only works when the camera is

locked above the grid and special care must be taken when

one of the points projects off the grid.

Figure 8 – Visibility determination in a system with 2D grid

and top-down camera view.

After determining frustum max point and frustum min

point, the cells between can be determined in the following

manner. First we define:

float conversion_factor = 1/cell_size

fint width = (max-min)/cell_size

int draw_bucket

int minx = frustum_min_point.x * conversion_factor

int minz = frustum_min_point.z * conversion_factor

int maxx = frustum_max_point.x * conversion_factor

int maxz = frustum_max_point.z * conversion_factor

Conversion factor and width have already been defined

for our hash function. Draw_bucket will hold the value of

any bucket whose contents are drawn on screen. Minx,

maxx, minz, and maxz are used to compute a grid from the

frustum min point to the frustum max point. We now

compute the individual draw buckets to draw as follows:

for(i=minx; i<=maxx; i++)

{

 for(j=minz; j<=maxz; j++)

 {

 draw_bucket = i*width + j;

 …render contents of draw_bucket…

 }

}

Figure 9 – Frustum culling may be performed with a 3D

grid. If a given grid cell does not intersect the view frustum,

objects within that grid cell are not visible to the camera.

The simulation for which results are presented later

uses a technique similar to the above. In applications where

the camera rotates freely “true” frustum culling is employed

(see figure 9).

• mobile objects are hashed to their respective

buckets

• the frustum is intersected with each hash bucket

• if a bucket does not intersect with the frustum,

objects contained in that bucket are not in view of

the camera

As for the grid cell vertices, they may either: 1) be

computed on the fly using min, max, cell size, and an offset

based on hash bucket, or 2) be stored explicitly in a 2D or 3D

array. Further discussion of frustum culling via bounding

boxes can be found in [1].

AI and Decision Making
AI-related routines can be implemented or optimized in

several ways using the hash table.

• Proximity-based AI decisions: object proximity

can be quickly estimated without explicit distance

calculation

• Designated zones or areas of interest: a method of

designating areas or volumes of the domain space

as having certain characteristics that affect

navigation or AI decisions

• Radar or sensing: where a radar-like functionality

is required that provides a condensed, or alternate

representation of the domain space or section of

the domain space

First, any AI decision based on evaluation of objects in

the vicinity can be quickly resolved using a proximity query

(see figure 10). For example, suppose a decision made by an

AI is affected by all other AI objects within a radius of

distance. To implement such a query we can define:

• float radius: distance of the query

• int base cell: the (x,y) cell the object making the

query occupies

• int offset: number of grid cells in the x,y axis

around the base cell computed by radius/cell size

• int next bucket: the next bucket in the area

covered by the query

We now compute each bucket in the query:

(for i=base-offset; i<base+offset; i++)

{

 (for j=base-offset; j<base+offset; j++)

 {

 next_bucket = i*width + j;

 }

}

For a 3D grid this would be computed in three

dimensions. As noted previously, an O(1) query on the hash

table returns the objects in each bucket computed – which are

the objects within a radius r of the object.

Figure 10 – A proximity query determines what objects are

in the vicinity (shaded area) of a specific object. The buckets

surrounding the object can be quickly found using the

object’s base cell, the radius of the query, and an offset.

Cell queries provide a fast way to find objects in a

limited section of the domain space surrounding an object.

This is ideal to implement a radar-like functionality for user

or AI which is fairly common in simulations and games.

Additionally, cell queries need not be limited to the

granularity of the grid. More precise queries (see figure 10)

can be represented by:

• an explicit query area or volume: a sphere or cube

for example

• a range of cells: that the query volume hashes to

Thus any object within the range of query cells is

intersected with the query volume. The query cells may be

re-hashed upon movement or re-sizing of the query volume.

This provides an excellent way of quickly determining

objects within an area or volume. Proximity queries also

allow certain areas or volumes of the domain space to be

designated as special areas of interest. Such query areas may

have properties that affect AI or user behavior.

Performance Analysis

Let us now analyze performance and memory

requirements for the proposed methods. With regard to time

complexity:

• Hashing: O(N) for each of N objects in the scene

the hash function is applied

• Cell Query (Which objects are in cell X?): O(1)

by direct access of hash bucket X

• Object Query (In which cell is mobile object A

located?): O(1) by direct access of the object-

index

• Proximity Query (Which objects are near object

A?): the range of buckets is computed, then an

O(1) cell query performed on each bucket

As for performance with regard to collision, visibility

determination, and AI decisions, it will depend heavily on

object distribution throughout the domain space. Collision

performance breaks down as follows supposing N objects are

in the scene:

• Best Case: O(1). In this case every object hashes

to a different grid cell. No collision will be

performed at all.

• Worst Case: O(N2). In this case, every object in

the scene is in the same grid cell.

Clearly performance will be somewhere between these

extremes depending on object distribution in the scene. AI is

affected by object distribution similarly to collision. With

regard to speedup for rendering optimization:

• Visibility Determination: O(N) where there are N

hash buckets in the table

When performing 3D frustum culling each of N cells is

intersected with the frustum. With regard to system memory

requirements a spatial hashing-based method requires at

least:

• Hash Table: 1 to 4 integers or references per

object for most bounded objects

• Object Index: 1 to 4 integers or references per

object for most bounded objects, the object index

is optional however and only required for certain

queries

Each bounded object will typically span 1 to 4 cells. Thus a

reference or integer is placed in the appropriate hash bucket

for each cell it occupies.

Simulation and Results

A simulation was developed using the following

technologies:

• Code: C++

• Graphics: OpenGL

• Windows Framework: nehe.gamedev.net OpenGL

Application Framework

• Math Libraries: DirectX 9.0c

• Compiler: Microsoft Visual Studio.net 2003

Version 7.1.3088

The simulation consisted of mobile objects (multi-

colored spheres) that randomly roam over a fixed, randomly

generated terrain (triangle mesh). A screenshot of the

simulation is shown in Figure 11. The hash table was

implemented using a two-dimensional vector (C++ vector

class).

Figure 11 – The simulation of several thousand mobile

objects wandering over a terrain separately times collision,

rendering, and AI functions, and allows toggling of camera

types and manipulation of grid variables.

The three main phases of computation were

benchmarked independently:

• Collision: The collision phase consists of

computing collision between all spheres in the

scene, collision of all spheres to the terrain, and

applying a response where colliding spheres

“bounce” based on their respective impact angles.

• Rendering: In the rendering phase all spheres and

terrain triangles are drawn. Visibility

determination is performed with the 2D grid

method discussed previously.

• AI: An AI routine is applied in this phase where

each mobile object will examine the other objects

within a radius. The object will count the number

of different colored objects in the vicinity from a

fixed set of color. The object will then change to

the least occurring color.

A random terrain is generated at startup with the

restriction that no terrain surface may be vertical. All terrain

mesh triangles are hashed once (since they are static). The

terrain traversal algorithm then proceeds as follows. Every

frame each mobile object is hashed. It is then determined

which triangle an object rests upon by 2D collision on the

X,Z plane. This is fast and is feasible since we are assured

that no triangle is at 90 degrees – thus no concave surfaces or

“caves” in the terrain. The height of the object is then

determined by using 1) the radius of the object’s collision

hull, and 2) the interpolated Y values of the triangle vertices

(essentially a height map) based on the object’s position.

The test machine for the simulation was a desktop PC:

Intel Pentium4 3.2GHz, 1 Gig of RAM, and Radeon 9800

Pro GPU. Figures 13 through 15 display the results of the

simulation. The results are presented in frames-per-second

(FPS) for each phase of the algorithm. “60+” denotes that

phase can be computed over 60 times per second. “<1”

denotes the phase was computed less than once per second.

“Objects” denotes the number of mobile objects in the

simulation. “Cell size” denotes the cell size in world units of

each grid cell. The percentage value denotes the size of the

cell in relation to the entire domain space. Since the domain

space was 400 units across, a cell size of 100 is equivalent to

25% of the domain space. Objects had a radius of 1.0. “Un-

optimized” denotes measurement for the application with no

optimzation whatsoever. This is provided to illustrate the

magnitude of speedup from the hashing and to allow other

methods to be compared with these results. The highlighted

cells indicate a computation time too slow for real-time

applications (under 20 FPS). The slowest phase was AI

calculation and the fastest phase was visibility determination.

9. Conclusions and Future Work

Overall the simulation showed that using the spatial

hashing-based techniques presented here, collision, collision-

response, terrain traversal, proximity-based AI routines, and

visibility determination can be computed for well over

30,000 mobile objects simultaneously at real-time frame rates

on a desktop PC. The test machine was able to run the entire

application (all phases, while processing user input and

OpenGL drawing) with 30,000 at between 20 and 30 FPS. In

order to provide faster hashing grid cells should be somewhat

larger than the average object. However, the grid cells

should be small compared to the size of the domain space.

Smaller cells result in fewer O(N2) comparisons of all objects

inside those cells. Although, smaller cell size results in

larger memory usage since objects are more likely to span

multiple cells. Thus there is a memory-performance tradeoff,

where smaller cells (to a certain point) provide better

performance but at the cost of more memory.

One possibility for future work certainly includes a

type of auto-adjusting grid that changes in with regard to

number of objects, distribution of objects, and average size of

objects in the scene. Since the hash table is wiped every

frame, changing the hash function and grid cell size at any

time is allowable. Other possibilities for future research on

the application of spatial hashing to the graphics and

simulations area include: multi-grid hashing where several

grids partition the scene at differing levels of granularity,

examination of the efficiency of hashing different bounding

volume types, more detailed work and benchmarks on 3D

hashing, closer examination of the tradeoff between cell size,

performance, and memory overhead, and hash table

optimization.

Un-
Optimized

Cell Size
5

Cell Size
10

Cell Size
25

Cell Size
50

Cell Size
100

 Objects 1.25% 2.50% 6.25% 12.50% 25%

500 60+ 60+ 60+ 60+ 60+ 60+

1000 60+ 60+ 60+ 60+ 60+ 60+

2500 25 60+ 60+ 60+ 60+ 60+

5000 <1 60+ 60+ 60+ 60+ 60+

10000 <1 60+ 60+ 60+ 60+ 2

20000 <1 60+ 60+ 50 5 <1

50000 <1 29 23 <1 <1 <1

Figure 13 – FPS for the collision phase where collision, response, and terrain traversal are computed. With a cell size of 5, collision

was computed for 20,000 objects over 60 times per second. Collision for 50,000 objects was computed around 30 times per second.

Without optimization less than 3000 objects could be supported in real-time.

Un-
Optimized

Cell Size
5

Cell Size
10

Cell Size
25

Cell Size
50

Cell Size
100

 Objects 1.25% 2.50% 6.25% 12.50% 25%

500 60+ 60+ 60+ 60+ 60+ 60+

1000 60+ 60+ 60+ 60+ 60+ 60+

2500 48 60+ 60+ 60+ 60+ 60+

5000 16 60+ 60+ 60+ 60+ 60+

10000 <1 60+ 60+ 60+ 60+ 60+

20000 <1 60+ 60+ 60+ 60 49

50000 <1 60+ 60+ 60+ 52 40

Figure 14 – FPS for the visibility determination phase where frustum culling and OpenGL draw calls for all visible objects are made.

Culling and draw calls could be performed for 50,000 objects over 60 times per second. Less than 5000 objects could be supported at

real-time frame rates without optimization.

Un-
Optimized

Cell Size
5

Cell Size
10

Cell Size
25

Cell Size
50

Cell Size
100

 Objects 1.25% 2.50% 6.25% 12.50% 25%

500 60+ 60+ 60+ 60+ 60+ 60+

1000 60+ 60+ 60+ 60+ 60+ 60+

2500 35 60+ 60+ 60+ 60+ 60+

5000 <1 60+ 60+ 60+ 60+ 60+

10000 <1 60+ 60+ 24 33 10

20000 <1 23 28 12 <1 <1

50000 <1 8 <1 <1 <1 <!

Figure 15 – FPS for the AI phase where a proximity based AI routine for all objects is computed. AI behaved much like collision but

was slightly slower. At a cell size of 5, computation for 20,000 objects could be performed approximately 50 times per second. Less

than 3000 objects could be supported in real-time without optimization.

10. References

[1] Asserson, U. and T. Moller. 2000. “Optimized View

Frustum Culling Algorithms for Bounding Boxes”. Journal

of Graphic Tools 2000.

[2] Blow, J. 1997. Practical Collision Detection. Proceedings

of the Game Developers Conference 1997.

[3] Gross M.; B. Heidelberger; M. Muller; D. Pomernats; M.

Teschner. 2003. “Optimized Spatial Hashing for Collision

Detection of Deformable Models”. Vision, Modeling, and

Visualization 2003.

[4] Gross M.; B. Heidelberger; M. Muller; D. Pomernats; M.

Teschner. 2004. Collision Detection for Deformable Models.

Eurographics 2004.

[5] Gross M.; B. Heidelberger; M. Muller; D. Pomernats; M.

Teschner. 2004. “Consistent Penetration Depth Estimation

for Deformable Collision Response”. Vision, Modeling, and

Visualization 2004.

[6] Guha, R.; E. Hastings; J. Mesit. 2004. “Optimized

Collision Detection for Flexible Objects in a Large

Environment”. International Conference on Computer

Games: Artificial Intelligence, Design, and Education 2004.

[7] Guha, R.; E. Hastings; J. Mesit. 2004. “T-Collide:

Temporal, Real-Time Collision Detection for Mobile

Objects”. International Conference on Computer Games:

Artificial Intelligence, Design, and Education 2004.

 [8].Hastings, E. and R. Guha. 2005. “Real-Time Range

Monitoring Queries on Heterogeneous Mobile Objects by

Spatial Hashing”.

[9] Kanai, T.; and R. Kondo. 2004. “Interactive Physically

Based Animation System for Dense Meshes”. Eurographics

2004.

[10] Lo, M. and C. Ravishankar. 1996. “Spatial Hash-Joins”.

ACM SIGMOD International Conference on Management of

Data 1996.

[11] Luque, R.; Comba, J.; Freita, C. 2005 “Broad Phase

Collision Detection Using Semi-Adjusting BSP Trees”.

Proceedings of ACM Siggraph Interactive 3D Graphics and

Games 2005.

[12] Mamoulis, N.; D. Papidias; Y Tao; J Zhang. 2001. “All-

Nearest-Neighbors Queries in Spatial Databases”. IEEE

Conference on Scientific and Statistical Database

Management 2001.

[13] Naylor, B. 1992. “Interactive Solid Geometry via

Partitioning Trees”. Proceedings of Graphics Interface 1992.

[14] Policarpo, F. and A. Watt. 2001. “Real Time Collision

Detection and Response with AABB”. SIBGRAPI 2001.

