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ABSTRACT

Accurate tracking of a user in a marker-less environment can be
difficult, even more so when agile head or hand movements are
expected. When relying on feature detection as part of a SLAM
algorithm the issue arises that a large rotational delta causes previ-
ously tracked features to become lost. One approach to overcome
this problem is with multiple sensors increasing the horizontal field
of view. In this paper, we perform a systematic evaluation of track-
ing accuracy by recording several agile movements and providing
different camera configurations to evaluate against. We begin with
four sensors in a square configuration and test the resulting output
from a chosen SLAM algorithm. We then systematically remove
a camera from the feed covering all permutations to determine the
level of accuracy and tracking loss. We cover some of the lessons
learned in this preliminary experiment and how it may guide re-
searchers in tracking extremely agile movements.

Index Terms: H.5.1 [ Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities ; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Tracking

1 INTRODUCTION

Accurate environment mapping and localization are critical compo-
nents of an augmented reality (AR) system [1]. Simultaneous local-
ization and mapping (SLAM) algorithms that track agents through
an unknown, marker-less environment, while simultaneously con-
structing a map of the same area, offers one possible solution. One
challenging application of SLAM in this domain involves tracking a
human agent over an agile movement, using only affordable RGB-
D sensors or a mobile device. Agile movements are characterized
as rapid, high frequency motion, such as those encountered when
one spins around, waves a flag, or ducks behind cover [4].

Since localization methods often match image-based feature de-
scriptors across frames, high descriptor quantities enable better
pose estimation. Although commonly employed descriptors are in-
variant to scale, position, and lighting conditions, as Castle et al.
[2] note, agile human movement results in significant tracking er-
ror due to motion blur compounded with a loss of features after
extreme rotation deltas. As a result of these issues, most SLAM
systems suffer high error rates during agile movement [3], or they
simply lose tracking. One option to resolve this is by combining
collocated camera streams into a single information source, as de-
scribed by Williamson et al. for AgileSLAM [4]. By increasing
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coverage via the use of multiple camera sources, localization pro-
cedures are better able to tolerate losses during agile movement.

Although straightforward in concept, there are many open ques-
tions. How many cameras are required to maintain tracking
throughout an agile movement? Will two cameras back-to-back
work as well as four cameras arranged in a square? What is the
trade-off between tracking accuracy and camera count? Is there a
relationship between movement type and camera configuration? To
address these questions and others, we have started a systematic
evaluation of multiple RGB-D sensor configurations over varying
agile movements and present preliminary results that show what
accuracy levels may be possible with fewer sensors than an array
that provides a 360-degree horizontal field of view.

2 EXPERIMENT AND RESULTS

To begin our evaluation we recorded data similar to [4]. New data
was recorded rather than using the existing data set so that IMU
information could be included for future experiments and more ag-
ile movements could be added to the data set as part of our final
evaluation. The code originally created to process this data was
incorporated for our evaluation and is detailed in [4].

We recorded data from an array of ZED sensors, which cap-
ture RGB-D information via two stereo cameras, that were held
by a user via a wooden post that extended beneath the sensors. We
recorded seven calibration movements to verify that truth data had
the same frame of reference as the SLAM estimate. These move-
ments were slow and methodical along each axis (X, Y and Z) and
rotating along each axis (yaw/heading, pitch/attitude, roll/bank).
The seventh calibration data set involved a slow turn 90 degrees
to the right and a movement forward along the relative Z axis.

The agile data recorded contained the following motions. ”Fast-
180” was a 180 degree turn and an equally fast turn back. ”Turn
and Duck” involved a simultaneous 90 degree turn while ducking.
”FPS Simulator” contained large translation movements that may
be seen in a physically active video game. ”Eye Track” had large
rotation deltas of someone following a fast virtual object with their
eyes or controller. ”Flag Controller” had the sensor array represent
a flag and undergoing motions that may be seen as such.

The SLAM algorithm we tested against reconstructs a feature’s
world point using equation 1 from [4]. We modified this code to
base the reconstruction depending on the permutation of the camera
configuration we were running. For example, one configuration
does not incorporate the backward facing camera, so the rotation of
the features would only occur in front of the user, to the right of the
user and to the left of the user. This allowed our modified images
to still be correctly processed by the algorithm.

Each frame recorded was provided to the SLAM algorithm
which would output an estimated pose (position and orientation)
and statistics about the frame. The system could also advise us if an
estimate should be rejected which we did so and added to a rejected
frame counter. Since the four camera configuration was considered
the ideal scenario we looked at the percentage of frames it consid-
ered good for each data set and marked an X for any configuration



Table 1: RMSE Position (in centimeters) for each camera configuration by data set
Scenario 4 3RO 3LO 3FO 3BO 2RL 2RB 2FR 2FL 2FB 2BL 1R 1L 1F 1B
X 5.27 6.53 6.83 5.64 5.08 7.77 12.43 7.85 X X X 63.80 X X X
Y 4.50 5.54 4.53 5.04 4.82 5.48 6.08 4.99 X 5.01 X 14.71 X X X
Z 3.97 6.29 4.10 4.47 3.18 10.68 5.27 4.06 9.32 6.48 X 182.38 X 8.43 X
Yaw 7.77 14.39 7.57 6.36 15.09 X 135.33 6.64 27.14 X 14.53 X X X X
Pitch 13.38 9.76 12.08 15.63 15.41 17.53 14.26 12.24 X 6.92 X 26.41 X X X
Roll 17.55 18.25 14.33 17.12 22.52 X 10.96 12.57 27.24 15.08 X X X X X
Look & Z 8.69 13.50 10.03 13.54 14.97 X X 18.36 22.84 X 21.50 X X X X
Fast 180 5.17 21.54 30.39 26.76 24.98 23.85 X X X 30.49 X X X X X
Turn & D 10.09 17.22 15.12 X 12.83 X X X X X X X X X X
FPS Sim 13.64 X 10.64 X 14.54 X X 12.94 X X X X X X X
Eye Track 12.19 15.83 7.31 14.71 14.48 X X 10.74 35.18 X X X X X X
Flag 13.82 X 7.42 X 13.53 X X X X X X X X X X

Table 2: RMSE Orientation (in degrees) for each camera configuration by data set
Scenario 4 3RO 3LO 3FO 3BO 2RL 2RB 2FR 2FL 2FB 2BL 1R 1L 1F 1B
X 3.74 3.32 3.70 3.79 3.72 3.88 3.49 3.66 X X X 8.95 X X X
Y 1.98 2.00 2.01 2.10 1.86 1.92 2.28 1.99 X 2.05 X 6.04 X X X
Z 2.31 2.31 2.28 2.44 2.35 3.04 2.28 2.45 2.29 2.28 X 136.82 X 2.51 X
Yaw 4.25 4.38 4.29 4.84 4.13 X 20.88 5.19 5.47 X 5.33 X X X X
Pitch 9.59 8.25 9.82 9.77 9.46 9.55 9.92 7.11 X 6.91 X 24.94 X X X
Roll 9.24 9.23 9.51 8.36 8.73 X 9.21 6.90 7.91 9.69 X X X X X
Look & Z 6.41 6.17 6.90 7.48 6.51 X X 7.33 5.61 X 4.30 X X X X
Fast 180 9.15 11.62 10.60 12.87 12.42 11.71 X X X 10.98 X X X X X
Turn & D 2.69 2.84 3.64 X 2.33 X X X X X X X X X X
FPS Sim 2.47 X 2.44 X 2.33 X X 2.54 X X X X X X X
Eye Track 5.05 4.08 4.48 4.99 4.42 X X 4.24 13.92 X X X X X X
Flag 3.80 X 2.76 X 3.80 X X X X X X X X X X

that failed to meet 75% of its performance.
In Table 1 and Table 2 we present the RMSE values from the

pose estimate to truth data delta for each configuration by each data
set. The configurations are abbreviated using the following sym-
bols. F for the forward facing camera, R for the right facing cam-
era, B for the back facing camera, L for the left facing camera, O
for the camera that is switched off and the numbers 1-4 for the total
number of cameras on. As such the configuration where three cam-
eras are on and the back camera is off is labeled 3BO; where as two
cameras on, right and left, are labeled 2RL.

3 DISCUSSION

In this initial analysis we notice several interesting features that are
worthy of discussion and further exploration.

For the number of cameras we found that the worse single per-
forming cameras were the left (1L) and rear (1B) facing cameras.
The left feed featured a large featureless dome unique to our lab
environment while the rear camera was partially obscured by the
user, an issue that would be expected of an AR system using the
forward and rear cameras on a phone. Thus, practitioners will need
to consider how a device is held relative to the user, and if effective
use of a rear facing camera will require the device to be held in an
unusual, nonstandard way.

With the two camera configurations we found that pairing worse
feeds with better ones did not significantly reduce the results. Fur-
thermore we found that which pair is ideal (perpendicular or 180
degrees apart) depends on the motion being performed. We see our
largest improvements when, from the start of an action to its end,
the view of a first camera falls into the view of a second. In regards
to three cameras we saw the performance was almost identical to
the four camera configuration.

Furthermore, camera placement relative to expected motion is
important. Consider pitch, which is rotation about the right facing
axis. In this scenario, the front camera view changes dramatically
and this contributes to why, when compared to a Z-axis translation,
tracking is worse. In our evaluation, all cameras were aligned on
the same plane so that when held upright, the forward direction of

each camera sat parallel to the floor. Based on this relationship
between rotation and camera orientation, it may be beneficial to
adjust certain cameras so that their forward directions are perturbed
up or down as we expect that most agile motions will involve a yaw
component.
4 CONCLUSION AND FUTURE WORK

This work represents our initial venture into multiple camera con-
figurations and the effect that it has on localization accuracy. In
future work we would like to incorporate more sensor configura-
tions into our recording beyond the square formation. These may
include two cameras with some overlap and cameras that are fac-
ing slightly upwards or downwards. We also intend to run through
several other SLAM algorithms to help determine more generalized
results.

While this line of questioning may be in its preliminary stages,
we feel it will be essential for the development of practical aug-
mented reality applications with head mounted displays or hand
held devices.
ACKNOWLEDGEMENTS

This work is supported in part by NSF Award IIS-1638060, Lock-
heed Martin, Office of Naval Research Award ONRBAA15001, and
Army RDECOM Award W911QX13C0052.
REFERENCES

[1] R. T. Azuma. A survey of augmented reality. Presence: Teleoperators
and virtual environments, 6(4):355–385, 1997.

[2] R. Castle, G. Klein, and D. W. Murray. Video-rate localization in mul-
tiple maps for wearable augmented reality. In 2008 12th IEEE Interna-
tional Symposium on Wearable Computers, pages 15–22, Sept 2008.

[3] J. J. LaViola Jr, B. M. Williamson, R. Sottilare, and P. Garrity. An-
alyzing slam algorithm performance for tracking in augmented reality
systems. In Proceedings of the Interservice/Industry Training, Simula-
tion, and Education Conference (I/ITSEC), 2017.

[4] B. M. Williamson, A. Vargas, P. Garrity, R. Sottilare, and J. J. LaVi-
ola Jr. Agileslam: A localization approach for agile head movements
in augmented reality. In Adjunct Proceedings of the International Sym-
posium on Mixed and Augmented Reality, pages 25–30, 2018.


