
Dynamic Stereoscopic 3D Parameter Adjustments for
Enhanced Depth Discrimination

Arun Kulshreshth
Department of Computer Science

University of Central Florida
Orlando, FL 32816, USA
arunkul@knights.ucf.edu

Joseph J. LaViola Jr.
Department of Computer Science

University of Central Florida
Orlando FL 32816, USA

jjl@eecs.ucf.edu

ABSTRACT
Most modern stereoscopic 3D applications use fixed stereo-
scopic 3D parameters (separation and convergence) to ren-
der the scene on a 3D display. But, keeping these parame-
ters fixed during usage does not always provide the best ex-
perience since it can reduce the amount of depth perception
possible in some applications which have large variability in
object distances. We developed two stereoscopic rendering
techniques which actively vary the stereo parameters based
on the scene content. Our first algorithm calculates a low
resolution depth map of the scene and chooses ideal stereo
parameters based on that depth map. Our second algorithm
uses eye tracking data to get the gaze direction of the user
and chooses ideal stereo parameters based on the distance of
the gazed object. We evaluated our techniques in an exper-
iment that uses three depth judgment tasks: depth ranking,
relative depth judgment and path tracing. Our results indi-
cate that variable stereo parameters provide enhanced depth
discrimination compared to static parameters and were pre-
ferred by our participants over the traditional fixed parameter
approach. We discuss our findings and possible implications
on the design of future stereoscopic 3D applications.
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INTRODUCTION
Stereoscopic 3D displays present two images offset to the left
and right eye of the user and these images are then fused by
the brain to give the perception of 3D depth. The generation
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Figure 1. Dynamic stereoscopic parameters adjustment enhances depth
discrimination ability. Ideal stereo parameters are selected based on the
depth information of the scene.

of these two images uses two stereo parameters: separation
and convergence. Separation is defined as the interaxial dis-
tance between the centers of the two virtual eye camera lenses
in the scene and the convergence is defined as the distance of
the plane where left and right eye camera frustums intersect
(see Figure 2). Currently, most stereoscopic 3D applications
(e.g. gaming, scientific/data visualizations, virtual reality ex-
periences, etc.) fix convergence and separation values for
comfortable viewing experience during usage. This approach
is shown to be effective only for objects less than 25 meters
away, and it works best for objects that are much closer (less
than 10 meters) [23]. A larger value of separation and conver-
gence is required to perceive depth for objects which are far-
ther away. Traditionally, it has been believed that motion par-
allax and occlusion are more reliable depth cues than stereo
for distances larger than 25 meters. However, we believe that
dynamic stereo parameters adjustments could enhance depth
discrimination ability even for larger distances.

In some 3D applications (e.g. first person shooter games)
the distance of objects from the camera vary from scene to
scene (e.g. moving from an indoor scene to outdoors) and
using fixed parameters limits depth perception for such ap-
plications. In real life, we continuously adjust the distance
between our eye pupils and converge to different distances
based on the object we are looking at. Therefore, it is in-
teresting to explore dynamic stereo parameter adjustment for
3D applications and see if it is possible to provide better depth
perception regardless of object distance from the viewer.

The concept of dynamic stereo parameter was first proposed
by Ware [23] where they explored the effects of dynamically
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Figure 2. Off-Axis stereo projection.

adjusting separation value. Several researchers [3, 8, 21] have
explored this idea of stereo parameter adjustments for static
images or videos. However, the previous approaches required
offline processing and manual input in some cases [8]. We
need to adjust stereo parameters in realtime in the case of 3D
virtual environments such as video games. Ware et al. [25]
explored dynamic adjustment of separation in realtime for 3D
applications but no thorough user testing with depth judgment
tasks was performed. Furthermore, it is also important that
the stereo rendering is comfortable during usage and a user
should not feel any scene distortion as the parameters change.

In this paper, we explore the usability of dynamic stereo pa-
rameter adjustments for 3D applications. We developed two
dynamic stereo adjustment algorithms. The first algorithms
selects ideal stereo parameters based on distance of the clos-
est object and the second algorithm selects ideal stereo pa-
rameters based on the distance of the object looked at (ob-
tained from eye tracking data). We conducted a within sub-
jects experiment that uses three depth judgment tasks: depth
ranking, relative depth judgment, and path tracing. We exam-
ined performance data (error magnitude for the depth ranking
task and accuracy for the other two tasks), response time, and
self-reported likert scale data on users’ perceptions of the 3D
scenes they looked at.

RELATED WORK
Recent work on stereoscopic 3D found it useful for games
depending upon the task involved [6, 13, 18]. Researchers
have also confirmed increased engagement and preference
for stereoscopic 3D games [14, 18]. Stereoscopic 3D ben-
efits can only be expected if the stereoscopic vision is
not accompanied by distortions (e.g., contradicting depth
cues, ghosting/cross-talk, exaggerated disparity) [26]. While
stereoscopic 3D has shown some positive benefits depending
on the task, it also has shown to cause negative symptoms as
well, such as eyestrain, headache, dizziness, and nausea [10].

There are a few approaches to reduce visual fatigue in stereo
rendered content. One approach to reduce visual fatigue is to
use a smaller separation value [19]. This limits the rendered
stereo images to be in a safe parallax range for visualization.
However, this approach reduces the depth perception in the
scene making the scene look almost like a 2D scene. Another
approach [21] is to use non-linear image warping where a
non-linear transfer function is applied to a disparity map and

thus creates a depth distorted version of the original image
that is visually comfortable. The main problem with this ap-
proach is that it is not realtime and is more suitable for post-
production of 3D movies. This method can not be applied to
3D applications which require realtime adjustment to produce
visually comfortable 3D scenes.

Ware [23] proposed dynamic adjustment of the stereo sepa-
ration parameter to minimize visual discomfort and increase
stereo depth. Furthermore, the results revealed that the sepa-
ration must be changed gradually over a few seconds to allow
users to adjust without noticing any visual distortion of the
scene. Our work optimizes both separation and convergence
parameters for a better visual experience with enhanced depth
discrimination. Ware et al. [25] explored dynamic adjust-
ment of separation in realtime for 3D applications. Their re-
sults revealed that rate of separation should be kept below 0.2
cm/sec. However, their algorithm was not rigorously tested
for depth judgment tasks and would not perform well when
there is a object within a few feet from the camera. We used
an eye tracking device to find the gaze direction of the user
and selected ideal 3D parameters based on the object gazed.
This enhances depth perception even in scenes with a object
within a few feets of the camera.

Bernhard et al. [3] explored dynamic adjustment of stereo
parameters using gaze data and found that it reduces stereo
fusion time and provides a more comfortable viewing expe-
rience. Gurrieri [8] also used eye tracking data to adjust the
stereo images for visual comfort. Their [8] approach used
manually generated disparity maps which is not feasible for
a realtime 3D viewing application. Kulshreshth et al. [12]
explored dynamic stereo parameter adjustments for 3D appli-
cations. However, no formal user evaluation was conducted.

Several researchers [3, 5, 20] have explored gaze based depth
of field (DOF) effects to minimize visual fatigue. However,
people generally disliked the DOF effect with temporal lag of
the gaze-contingent effect being a possible reason. Maiello
et al. [15] explored the interaction of stereo disparity pa-
rameters and DOF blur on stereo fusion. They found that
DOF blur helped the stereo fusion process but only if the blur
was present on the visual periphery. Mauderer et al. [16]
used gaze contingent DOF to produce realistic 3D images and
found that it increases the sense of realism and depth. But,
their system had limited accuracy in terms of depth judgment
of the objects in the scene.

The past work on dynamic stereo mentioned above used sim-
ple static scenes (e.g. random-dot stereograms, a picture, etc.)
to evaluate their work. None of the work rigorously explored
the benefits of dynamic stereo in 3D virtual environments re-
quiring realtime adjustment of separation and convergence
parameters. To the best of our knowledge, our work is the
first to systematically explore dynamic stereo for 3D virtual
environments using several depth judgment tasks.

STEREOSCOPIC ALGORITHMS
The main properties of the stereo algorithms are summarized
in Table 1. These algorithms choose the 3D stereo parame-
ters based on the scene displayed, display size, display aspect
ratio, and the inter-pupilarity distance (IPD) of the user. We



Properties Static Stereo Dynamic Stereo Dynamic Stereo with Eye Tracking

Basis of 3D parameters change? Fixed at start The depth of the closest object. The depth of the object the user is looking at.

Closest object limits depth perception? Yes Yes No

Frequency of 3D parameter adjustment? No Change Lower Higher

Chances of 3D parameter adjustment
detection by user? N/A Minimal

Higher chance especially when the depth
range of the scene is large.

Table 1. Properties of the stereo algorithms.

defined a normalized maximum value for separation distance
as

MaxSeparation =
IPD

Display Width
× Scale Factor (1)

where the Scale Factor is the scale factor to transform from
the real world distances to the virtual world distances. Note
that the IPD and the display width should have the same dis-
tance units in the above formula. In all the following stereo
modes, the separation value is set to a percentage of this max-
imum separation value. The maximum separation value is
based on Nvidia’s recommendation for the best 3D experi-
ences [1]. To give an example, for an average IPD of 65 mm
(0.065 meters) [4], a 27 inch display with 16:9 aspect ratio
(display width of 25.53 inches which is 0.648 meters), and
scale factor of 10, the MaxSeparation is 1.002.

Static Stereo
Static stereo uses fixed 3D stereo parameters which are cho-
sen to provide a good 3D experience in all possible scenar-
ios. As the distance of the objects from the user increase, the
depth discrimination ability of the user decreases. Usually
the parameters are chosen such that it reduces visual com-
fort even when the objects are too close. This reduces visual
fatigue but the stereo effect is greatly reduced for farther ob-
jects. Using static parameters limits depth perception for far-
ther objects when the depth range of the scene is very large
(e.g., a FPS game with a gun very close to the camera and
enemies at large distances). The stereo parameters are chosen
such that the close object (e.g. gun in a FPS game) has min-
imal parallax for comfortable viewing. However, this limits
depth discrimination ability for farther objects (> 25 meters).

Dynamic Stereo
This section describes the two dynamic stereo algorithms de-
veloped. The first algorithm selects ideal 3D parameters (sep-
aration and convergence) based on the depth of the closest
object in the scene. The second algorithm selects ideal 3D
parameters based on the depth of the object the user is look-
ing at (obtained from eye tracking data). We conducted sev-
eral pilot studies to determine ideal stereo parameters for dif-
ferent object distances. We considered object distance up to
250 meters away and divided this distance into several dis-
tance ranges (see Table 2). For each distance range, we tried
several values for separation ranging from 0 to MaxSepara-
tion (as defined in equation 1) with convergence values set to
the distance of the object and chose the separation value that
provided good depth perception with minimal visual fatigue.

Furthermore, we noticed that for objects farther than 200 me-
ters, separation value set to MaxSeparation worked well and
there was no change in stereo depth as we increased the con-
vergence distance. Therefore, we choose separation value of
MaxSeparation and convergence value of 200 meters for all
objects farther than 200 meters. In addition, we also explored
the rate at which these parameters have to be changed in or-
der to allow enough time for a user to gradually adjust to new
parameters. The values for separation, convergence, and rate
of parameter change are summarized in Table 2. For all the
objects farther than 10 meters, the parameters were changed
at the rate of 15% of the change (the difference between the
new value and the previous value). However, special con-
sideration is given to objects less than 10 meters away since
these objects can make stereo uncomfortable to view if ren-
dered with large disparity. The parameters are changed at a
higher rate for these close objects such that they are always
comfortable to view in stereo.

Dynamic Stereo (DS)
This mode chooses ideal 3D parameters based on the distance
of the closest object to the camera. In order to find the dis-
tance of the closest object, the scene is divided into several
zones and the distance is calculated at the center of each zone
using ray-casting. The number of zones depends on the size
of the rendered frame and the size of the objects in the frame.
In our case, we had a frame size of 1920x1080 pixels and we
chose to divide it to 32x16 zones. Once the minimum dis-
tance is found the stereo separation is set based on the values
mentioned in Table 2 and convergence distance is set to the
minimum of the distance of the closest object and 200 me-
ters. The current stereo parameters are gradually changed at
a specified rate (see Table 2) to match the target parameters.

Eye-Tracked Dynamic Stereo (EDS)
This mode chooses ideal 3D parameters based on the distance
of the object the user is currently looking at (obtained from
eye tracking data). Once the minimum distance is found the
stereo separation is set based on the values mentioned in Ta-
ble 2 and convergence distance is set to the minimum of the
distance of the gazed object and 200 meters. The current
stereo parameters are gradually changed at a specified rate
(see Table 2) to match the target parameters. When there is a
close object within 4 meters of the camera, looking at farther
objects causes a lot of disparity for that close object making
stereo viewing uncomfortable. To improve visual discomfort,
the close object was made partially transparent when a user is
not looking at it. The color of that closed object is changed
back to normal color when a user looks at it (see Figure 3).



(a) (b)
Figure 3. Eye-tracked dynamic stereo. The red circle indicates the gazed
area. (a) When a close object is looked at it is in focus with its regular
color (b) When a close object is not looked at it becomes partially trans-
parent. Note that these images are stereo images taken from the display
and that is why you see two images of the cube in the right image.

Distance Range Convergence Separation

Rate of
Parameter
Change (per
second)

< 4 meters depth 1% 50%
4-7 meters depth 5% 25%

7-10 meters depth 10% 15%
10-25 meters depth 20% 5%
25-55 meters depth 40% 5%
55-80 meters depth 60% 5%

80-200 meters depth 80% 5%
> 200 meters 200 meters 100% 5%

Table 2. Stereo parameters and rate of change for different distance
ranges. Here depth is the distance of the closest object in the case of
dynamic stereo and the distance of the object looked at in case of the eye-
tracked dynamic stereo. Separation is a percentage of MaxSeparation as
defined in equation 1 and parameter change rate is a percentage of the
total change desired.

USER EVALUATIONS
We conducted an experiment with our dynamic stereo algo-
rithms to evaluate their effectiveness in terms of depth dis-
crimination ability and response time of users. Since our
dynamic algorithms rely on object distances, a close object
could significantly affect performance in a depth judgment
task. Therefore, in our experiment, we considered if there
was a close object or not. Based on previous findings in re-
lated work and our analysis of the stereo algorithms, we have
the following hypotheses:

Hypothesis 1 (H1) : Both dynamic stereo algorithms will
improve depth discrimination ability in a 3D scene.

Hypothesis 2 (H2) : Dynamic stereo algorithms will reduce
the response time of the users for depth judgment tasks com-
pared to static stereo.

Hypothesis 3 (H3) : Eye-tracked dynamic stereo and dy-
namic stereo will provide similar depth discrimination abil-
ities when there is no object within a few meters of the cam-
era.

Hypothesis 4 (H4) : Eye-tracked dynamic stereo will per-
form better than dynamic stereo when there is a object within
a few meters of the camera.

Hypothesis 5 (H5) : Users will prefer to use dynamic stereo
over static stereo.

Figure 4. The Experimental Setup.

Subjects and Apparatus
We recruited 36 participants (27 males and 9 females ranging
in age from 18 to 33 with a mean age 21.86) from the uni-
versity population. We used an eye tracking device for this
experiment which requires direct line of sight and using vi-
sion correction glasses along with 3D glasses would reduce
the accuracy of the eye tracking data. Therefore, we selected
participants which had either correct vision without glasses
or corrected vision with contact lenses. We had 5 partici-
pants with contact lenses. Out of all participants, only 6 had
prior experience with stereoscopic 3D games, and all the par-
ticipant had prior experience of watching a 3D movie. The
experiment duration ranged from 45 to 60 minutes, depend-
ing upon how fast participants finished the tasks, and all par-
ticipants were paid $10 for their time. Since our algorithms
are customized for each person, we also measured the inter-
pupilarity distance (IPD) of each user using a scale. The IPD
ranged from 61 mm to 79 mm with mean value of 69.16 mm
(σ = 4.21).

The experiment setup, shown in Figure 4, consisted of a 27”
3D monitor (BenQ XL2720Z), wired Nvidia 3D glasses, the
Tobii EyeX eye tracker, a chinrest, and a PC (Core i7 4770K
CPU, GTX 780 graphics card, 8 GB RAM). A mouse was
used for answering questions during the experiment. The To-
bii eye tracker was mounted at the bottom of the monitor. Par-
ticipants were asked to place their chin on the chinrest during
the experiment. The chinrest was centered on screen and was
placed at a distance of 2 feet from the display screen. A chin-
rest was used to fix the user’s position for collecting better eye
tracking data for our eye-tracked dynamic stereo algorithm.
In addition, a fixed position provides a better stereo viewing
experience to a user by positioning them at the sweet spot
for stereoscopic 3D. We used the Unity3D game engine and
Nvidia’s NVAPI for implementing the experimental tasks. To
make sure that all our participants are able to see stereoscopic
3D, we used Nvidia’s medical test image to test stereo abili-
ties of the participants. All our participants passed the test.

Experimental Tasks
The participants were given three different depth judgment
tasks: depth ranking, relative depth measurement, and path
tracing. All our tasks were optimized for the best stereoscopic
3D experience:

• Stereoscopic 3D Specific GUI Elements: Our 2D GUI de-
sign was based on [17] for a better stereoscopic 3D expe-



Figure 5. Depth ranking task with no close object. Participants ranked
the depth of the sphere based on depth scale displayed on both side walls.

rience. All the 2D GUI elements were rendered at screen
depth such that they are always in focus with no disparity.

• Disabled Monocular Cues: Shadows and specular reflec-
tions could also be used as depth cues. We disabled shad-
ows for all the scene objects and all the scene lights were
too far away (equivalent of Sunlight at infinity) to mini-
mize specular reflections. In addition, our target objects
had simple colors instead of textures. We wanted to avoid
their influence in the depth judgment tasks.

• Minimized 3D Glasses Flicker: Initially, we started using
Nvidia 3D wireless glasses. However, we noticed very se-
vere flickering when used with the Tobii eye tracker due to
interference of IR signals between the IR blaster on the eye
tracker and the Nvidia’s IR based 3D sync signal emitter.
Therefore, we decided to use wired Nvidia 3D glasses and
they worked fine with no issues.

Depth Ranking Task
This task has been used in prior research as a depth judgment
task [7] and is very similar to tasks used to evaluate the effect
of shadows on perception of depth and spatial relationships
[11, 22]. In this task, participants were asked to rank the
depth of a sphere floating above the floor in a 3D graphical
scene with uniformly distributed tick-marks (1 to 9), indicat-
ing depth levels, on the side walls (see Figure 5). Each tick-
mark was 25 meters apart with the first mark at 50 meters
from the camera. The participants were asked to determine
the depth of the sphere by indicating which tick-mark they
thought it was aligned with. The depth of the sphere was ran-
domly changed for each trial and was perfectly aligned with
one of the nine tick-marks. Furthermore, to avoid using size
as a depth cue, we also scaled the sphere such that it appears
more or less of the same size on screen no matter what the
depth value is. To input the perceived depth value, partici-
pants were asked to adjust a slider displayed at the bottom of
the screen and then press the “Done” button displayed next to
the slider. We recorded error magnitude and response time of
the participants. The error magnitude was defined as the aver-
age absolute difference between the correct depth and judged
depth over 10 trials and the response time was the average
time over 10 trials taken from when the sphere appeared on
screen to the time when they clicked the “Done” button.

Relative Depth Judgment Task
This task is a variation of the depth ranking task described
above. Depth ranking tasks are more focused on measuring
absolute depth of the target object. This task focuses on mea-
suring the ability to judge relative depth of objects at differ-

Figure 6. Relative depth judgment task with a close object at 3 meters
from the camera. Participants determined which of the two spheres is
closer to them. Possible answers were left, same, and right.

ent distances. In this task, two targets were displayed floating
above the floor in a 3D graphical scene (the scene was the
same as in the depth ranking task). The depth of the targets
were randomly changed from 25 meters to 250 meters from
the camera. The participants were asked to determine which
of the two targets (left or right) is closer to them. The two tar-
gets were mentioned as left and right instead of blue and red
to avoid any issues for color blind participants. The possi-
ble answers were “Left”, “Right”, and “Same” selected using
toggles at the bottom of the screen. Immediately after select-
ing a toggle, participants were asked to press the “Done” but-
ton to go to the next trial. We recorded accuracy and response
time of the participants. The accuracy was defined as the per-
centage of correct responses over 10 trials and the response
time was the average time over 10 trials taken from when the
two targets appeared on screen to the time when they clicked
the “Done” button.

Path Tracing Task
Path tracing tasks have previously been used to evaluate vari-
ous stereoscopic 3D modes (stereo, head coupled stereo, etc.)
[2, 24], and to compare depth perception on various 3D dis-
plays [7]. The ability to trace paths in such graphs is an im-
portant aspect to understanding such information networks.
Our implementation of the path tracing task was based on [7,
24]. A randomly generated graph with 30 nodes and 40 edges
was displayed on screen. The nodes were randomly placed
in a cubical volume (120x50x200 cubic meter) to use screen
space optimally along with a large depth range (200 meters).
While generating the graph, the nodes were randomly posi-
tioned such that they did not occlude each other. The nodes
were divided into three groups of 10 nodes each. Two of
these groups were considered to be leaf nodes, while the third
group was considered to be intermediate nodes. Each node
of the first leaf node group was randomly connected to ex-
actly two intermediate nodes. Each node of the second leaf
node group was randomly connected to exactly two interme-
diate nodes with priority given to intermediate nodes with no
edges to avoid any orphaned nodes. In each graph, the nodes
were colored blue and two leaf nodes were randomly high-
lighted with red color. The task of the user was to determine
whether or not there was a path of length two from one high-
lighted node to the other. Because the highlighted nodes were
both leaf nodes, they could never be connected directly (see
Figure 7). To indicate if there was a path or not, participants
were asked to select one of the two toggles, labeled “Yes”
and “No” displayed at the bottom of screen and then press



Figure 7. Path tracing task. Participants determined if there was a path
of length two between the two highlighted red nodes.

the “Done” button displayed next to the toggles. We recorded
accuracy and response time of the participants. The accuracy
was defined as the percentage of correct responses over 10
trials and the response time was the average time over 10 tri-
als taken from when the graph appeared on screen to the time
when they clicked the “Done” button.

Experiment Design and Procedure
We chose a within-subjects design for our experiment in or-
der to be able to measure and compare user performance and
perceptions of the stereo algorithms on a variety of quan-
titative metrics. Each task had two independent variables:
stereo mode (SM) (static stereo, dynamic stereo, dynamic
stereo with eye tracking) and object mode (OM) (close ob-
ject present and close object not present). In total we had
3 × 2 = 6 conditions for each task and for each conditions
there were 10 trials which makes a total of 3× 6× 10 = 180
trials for all the tasks. Our dependent variables were mean re-
sponse time and task performance data (depth rank error for
depth ranking task, and accuracy for the other two tasks).

The experiment began with the participant seated in front of
the monitor and the moderator seated to the side. Participants
were given a consent form that explained the experiment pro-
cedure. They were then given a pre-questionnaire which col-
lected general information about the participant (age, gender,
if they use contact lenses, and past experience with stereo-
scopic 3D games and movies). At the beginning, each par-
ticipant was explained what they are supposed to do in each
assigned task and were asked to perform each task a few times
to make sure that they understood what they were supposed
to do for each task. Participants performed the three tasks
in order. For a given task, each condition (6 conditions per
task) was presented to the user in preselected order based on
a Latin square design. After each condition, the participant
filled out a post-questionnaire with questions about their ex-
periences with the stereo mode presented and if there were
any negative symptoms (see Table 3).

RESULTS
To analyze the performance data of each task, we used
repeated-measures 2-factor ANOVA per dependent variable.
We did a post-hoc analysis using pairwise sample t-tests. We
used Holm’s sequential Bonferroni adjustment to correct for
type I errors [9] and the Shapiro-Wilk test to make sure the
data was parametric. To analyze the Likert scale data, we
used Friedman’s test and then a post-hoc analysis was done

Post-Questionnaire
Q1 To what extent did you feel that the scene presented was in stereo-

scopic 3D?

Q2 To what extent is depth more defined and clearer?

Q3 To what extent does it feel more like looking at real objects than
a picture of objects?

Q4 To what extent did you notice double images of the same object
(ghosting)?

Q5 To what extent did objects appear distorted?

Q6 To what extent did objects appear transparent and translucent?

Q7 To what extent do you prefer this stereoscopic 3D mode?

Q8 Did you feel any Symptoms from viewing the games in stereo-
scopic 3D (eye strain, headaches, dizziness, Nausea)?

Table 3. Post-Questionnaire. Participants responded to question 1-76 on
a 7 point Likert scale. In question 8, each symptom had a 7 point Likert
scale to indicate the extent of each symptom ranging from not at all to
very much so.

Source Error Magnitude Response Time
OM F1,35 = 39.092, p < 0.005 F1,35 = 1.937, p = 0.173

SM F2,34 = 45.563, p < 0.005 F2,34 = 0.050, p = 0.951

OM×SM F2,34 = 21.127, p < 0.005 F2,34 = 2.386, p = 0.107

Table 4. Repeated measures 2-factor ANOVA results for depth ranking
task. SM: Stereo Mode, OM: Object mode

using Wilcoxon signed rank test. For all of our statistical
measures, we used α = 0.05.

Depth Ranking Task
Repeated measures 2-factor ANOVA results are shown in Ta-
ble 4. In terms of error magnitude, we found significant dif-
ferences based on stereo mode, object mode, and their com-
bination. Error magnitude was significantly higher for static
stereo compared to dynamic stereo (t35 = 7.106, p < 0.005)
and eye-tracked dynamic stereo (t35 = 9.679, p < 0.005).
Dynamic stereo had significantly higher (t35 = 4.688, p <
0.005) error magnitude compared to eye-tracked dynamic
stereo. Error magnitude was significantly higher (t35 =
−6.252, p < 0.005) when there was a close object in front of
the camera. Dynamic stereo with no close object had signifi-
cantly less error magnitude (t35 = −9.240, p < 0.005) com-
pared to dynamic stereo with a close object. We did not find
any significant differences in response time based on stereo
mode or object mode. See Figure 8 for average values of er-
ror magnitude and response time.

When broken down based on object mode, we found dif-
ferences in error magnitude between the stereo modes (see
Figure 9). In the case of no close object, static stereo
had higher error magnitude compared to dynamic stereo
(t35 = 8.445, p < 0.005) and eye-tracked dynamic stereo
(t35 = 8.749, p < 0.005). There was no significant differ-
ence in error magnitudes between dynamic stereo and eye-
tracked dynamic stereo. When the close object was present,
there was no significant difference in error magnitude be-
tween static stereo and dynamic stereo. Eye-tracked dynamic
stereo had significantly less error magnitude compared to
static stereo (t35 = 7.787, p < 0.005) and dynamic stereo
(t35 = 6.227, p < 0.005).
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Figure 8. Error magnitude and response time of each stereo mode for
depth ranking task where ST is static stereo, DS is dynamic stereo and
EDS is eye-tracked dynamic stereo.
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Figure 9. Error magnitude and response time for each object mode in
case of depth ranking task where ST is static stereo, DS is dynamic stereo
and EDS is eye-tracked dynamic stereo.

Relative Depth Judgment Task
Repeated measures 2-factor ANOVA results are shown in Ta-
ble 5. In terms of accuracy, we found significant differences
based on stereo mode, object mode, and their combination
(see Figure 10). Static stereo had significantly less accuracy
compared to dynamic stereo (t35 = −5.999, p < 0.005) and
eye tracked dynamic stereo (t35 = −10.029, p < 0.005).
Eye-tracked dynamic stereo was significantly more accurate
than dynamic stereo (t35 = −7.463, p < 0.005). Accu-
racy was significantly higher (t35 = 6.015, p < 0.005) when
there was no close object present. No significant difference
in response time was found based on stereo mode or object
mode (see Figure 10). However, the combined interaction
between stereo mode and object mode was significant. Dy-
namic stereo with no close object was significantly more ac-
curate (t35 = 9.084, p < 0.005) and had significantly less
response time (t35 = −2.864, p < 0.01) when compared to
dynamic stereo with a close object.

There were significant differences in accuracy and response
time when we looked at each object mode separately (see Fig-
ure 11). In case of no close object, static stereo was signifi-
cantly less accurate than dynamic stereo (t35 = −8.980, p <
0.005) and eye tracked dynamic stereo (t35 = −7.834, p <
0.005). Response time for dynamic stereo was significantly
less (t35 = −2.461, p < 0.025) than eye-tracked dynamic
stereo. When a close object was present, the accuracy of
static stereo and dynamic stereo was not significantly dif-
ferent. Eye-tracked dynamic stereo was significantly more
accurate than static stereo (t35 = −8.859, p < 0.005) and
dynamic stereo (t35 = −9.690, p < 0.005).

Source Accuracy Response Time
OM F1,35 = 36.181, p < 0.005 F1,35 = 0.308, p = 0.582

SM F2,34 = 50.923, p < 0.005 F2,34 = 2.723, p = 0.080

OM×SM F2,34 = 27.774, p < 0.005 F2,34 = 4.658, p < 0.05

Table 5. Repeated measures 2-factor ANOVA results for relative depth
judgment task. SM: Stereo Mode, OM: Object mode
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Figure 10. Accuracy and response time of each stereo mode for relative
depth judgment task where ST is static stereo, DS is dynamic stereo and
EDS is eye-tracked dynamic stereo.

Path Tracing Task
Repeated measures 2-factor ANOVA results are shown in Ta-
ble 6. Accuracy had significant interaction based on stereo
mode (see Figure 12). Static stereo was significantly less ac-
curate than dynamic stereo (t35 = −3.146, p < 0.005) and
eye-tracked dynamic stereo (t35 = −4.745, p < 0.005). Re-
sponse time had significant differences based on object mode,
stereo mode, and their combination (see Figure 12). Re-
sponse time was significantly less (t35 = −3.466, p < 0.005)
when no close object was present compared to when a close
object was present. Eye-tracked dynamic stereo had signif-
icantly less response time (t35 = 2.519, p < 0.02) com-
pared to static stereo. Dynamic stereo with no close ob-
ject had significantly less (t35 = −4.371, p < 0.005) re-
sponse time compared to dynamic stereo with a close object.
Eye-tracked stereo with no close object had significantly less
(t35 = −3.725, p < 0.005) response time compared to eye-
tracked stereo with a close object.

We found significant differences in accuracy and response
time when each object mode was analyzed separately (see
Figure 13). In case of no close object, static stereo was signif-
icantly less accurate than dynamic stereo (t35 = −3.820, p <
0.005) and eye-tracked dynamic stereo (t35 = −5.012, p <
0.005). Static stereo had significantly more response time
than dynamic stereo (t35 = 3.163, p < 0.005) and eye-
tracked dynamic stereo (t35 = 3.454, p < 0.005) when no
close object was present. When a close object was present,
eye-tracked dynamic stereo was significantly more accurate
than static stereo (t35 = −2.462, p < 0.02). No signifi-
cant difference in response time was found between the stereo
modes when a close object was present.

Post-Questionnaire Data
For likert scale data, an average over the three tasks (depth
ranking, relative depth judgment, and path tracing) was cal-
culated and then analyzed using Friedman’s test. The results
for questions 1-7 are summarized in Table 7. There were sig-
nificant differences for all the questions. Mean ratings for
questions 1 to 7 (see Table 3) are summarized in Figure 14.
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Figure 11. Accuracy and response time of each object mode for relative
depth judgment task where ST is static stereo, DS is dynamic stereo and
EDS is eye-tracked dynamic stereo.

Source Accuracy Response Time
OM F1,35 = 1.272, p = 0.267 F1,35 = 12.015, p < 0.005

SM F2,34 = 11.275, p < 0.005 F2,34 = 3.368, p < 0.05

OM×SM F2,34 = 1.453, p = 0.248 F2,34 = 4.061, p < 0.05

Table 6. Repeated measures 2-factor ANOVA results for path tracing
task. SM: Stereo Mode, OM: Object mode

Question 1 (Stereo Perception): In case of no close object,
dynamic stereo (Z = −5.164, p < 0.005) and eye-tracked
dynamic stereo (Z = −5.212, p < 0.005) provided sig-
nificantly more stereo perception compared to static stereo.
In case of the close object, eye-tracked dynamic stereo pro-
vided significantly more stereo perception compared to dy-
namic stereo (Z = −4.990, p < 0.005) and static stereo
(Z = −4.984, p < 0.005). Dynamic stereo with no-close
object provided significantly more (Z = −5.003, p < 0.005)
stereo perception compared to dynamic stereo with a close
object.

Question 2 (Depth Perception): In case of no close object,
dynamic stereo (Z = −5.162, p < 0.005) and eye-tracked
dynamic stereo (Z = −5.021, p < 0.005) provided sig-
nificantly more depth perception compared to static stereo.
In case of the close object, eye-tracked dynamic stereo pro-
vided significantly more depth perception compared to dy-
namic stereo (Z = −4.892, p < 0.005) and static stereo
(Z = −4.720, p < 0.005). Dynamic stereo with no-close
object provided significantly more (Z = −5.134, p < 0.005)
depth perception compared to dynamic stereo with a close
object.

Question 3 (Realism): In case of no close object, dynamic
stereo (Z = −4.887, p < 0.005) and eye-tracked dynamic
stereo (Z = −4.456, p < 0.005) provided significantly more
realism compared to static stereo. In case of the close object,
eye-tracked dynamic stereo provided significantly more depth
perception compared to dynamic stereo (Z = −4.709, p <
0.005) and static stereo (Z = −4.589, p < 0.005). Dy-
namic stereo with no-close object provided significantly more
(Z = −4.908, p < 0.005) realism compared to dynamic
stereo with a close object.

Question 4 (Ghosting): Eye-tracked dynamic stereo with
a close object had significantly more ghosting compared to
the eye-tracked dynamic stereo with no close object (Z =
−3.721, p < 0.005), static stereo with close object (Z =
−4.137, p < 0.005), and dynamic with a close object (Z =
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Figure 12. Accuracy and response time of each stereo mode for path
tracing task where ST is static stereo, DS is dynamic stereo and EDS is
eye-tracked dynamic stereo.
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Figure 13. Accuracy and response time of each object mode for path
tracing task where ST is static stereo, DS is dynamic stereo and EDS is
eye-tracked dynamic stereo.

−3.617, p < 0.005). Although, the ghosting was signifi-
cantly higher for eye-tracked dynamic stereo with close ob-
ject but the mean rating was still low with a value of 2.37 on
a 7 point likert scale.

Question 5 (Distortion): Participants reported that eye-
tracked dynamic stereo with a close object had significantly
more distortions compared to eye-tracked with no close ob-
ject (Z = −2.976, p < 0.005), static stereo with a close
object (Z = −3.393, p < 0.005), and dynamic with a close
object (Z = −2.445, p < 0.025). Although, the distortion
was significantly higher for eye-tracked dynamic stereo with
a close object, this rating was still acceptable with a mean
value of 1.77 on a 7 point likert scale.

Question 6 (Transparency): Participants reported that eye-
tracked dynamic stereo with a close object had significantly
more transparency compared to eye-tracked dynamic stereo
with no close object (Z = −2.492, p < 0.025), and dynamic
stereo with a close object (Z = −2.473, p < 0.025). Al-
though, the distortion was significantly higher for eye-tracked
with a close object, the rating was still acceptable with value
of 1.50 on a 7 point likert scale.

Question 7 (Preference): Participants preferred both dy-
namic stereo (Z = −4.944, p < 0.005) as well as eye-
tracked dynamic stereo (Z = −4.984, p < 0.005) over static
stereo when no close object was present. Eye-tracked dy-
namic stereo was preferred over static (Z = −4.166, p <
0.005) and dynamic stereo (Z = −4.140, p < 0.005) when
a close object was present.

Except for minor eye strain, none of the participants, except
two, noticed any symptoms (headache, dizziness, or nausea)
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Question Friedman’s test
Q1 (SP) χ2(5) = 125.178, p < 0.0005

Q2 (DP) χ2(5) = 109.428, p < 0.0005

Q3 (RE) χ2(5) = 89.285, p < 0.0005

Q4 (GH) χ2(5) = 39.255, p < 0.0005

Q5 (DT) χ2(5) = 32.772, p < 0.0005

Q6 (TP) χ2(5) = 11.399, p < 0.05

Q7 (PF) χ2(5) = 96.247, p < 0.0005

Table 7. Results of Friedman’s test for post-questionnaire likert scale
data.

from viewing the scenes in stereoscopic 3D. Two of our par-
ticipants were very sensitive to stereoscopic 3D and experi-
enced minor headache by the end of the experiment.

DISCUSSION
We found significant performance differences between differ-
ent stereo modes. Average error magnitude was significantly
lower for both dynamic stereo algorithms in case of the depth
ranking task. Average accuracy was significantly higher for
both dynamic stereo modes in the case of the relative depth
judgment task and the path tracing task. Both our dynamic
stereo algorithms chose ideal stereo parameters for objects at
different depths leading to better depth discrimination abil-
ity even at farther distances. Consequently, we were able to
accept our first hypothesis H1.

Significant differences between the task response time were
found based on the stereo mode for the path tracing task. In
the case of the depth ranking task and the relative depth judg-
ment task, the tasks were very simple and required a user to
focus on the target objects to judge their depth. Therefore,
the response times in all the stereo modes were very similar.
In the case of the path tracing task, the scene was more com-
plex requiring a thorough analysis of the scene to determine if
there was a path of length two between the highlighted node
or not. Thus, the response time for the path tracing task was
higher than the response times for the other two tasks. In
addition, the response time for the path tracing task was sig-
nificantly lower for both dynamic stereo modes compared to
static stereo. Based on all these findings, we were not able to
accept our second hypothesis H2.

We found some significant differences based on the combined
effect of stereo mode and object mode. In case of the depth
ranking task and relative depth judgment task, the perfor-
mance of non-eye-tracked dynamic stereo was significantly
reduced when a close object was present compared to when
the close object was absent. The presence of a close object

limits depth perception for our dynamic stereo algorithm. The
dynamic stereo algorithm calculates ideal stereo parameters
based on the distance of the closest object. Therefore, the
presence of an object within a few meters of the camera leads
to a very low value of separation and convergence thereby
limiting depth perception. For the depth ranking task and
the relative depth task, the judgment of depth is very critical.
Thus, the performance is greatly reduced when a close ob-
ject is present. In the case of the path tracing task, judgment
of depth helps to perform the task faster but is not critical to
the task. One can still trace a path without stereo with good
accuracy but it will take longer than when stereo is present.
Therefore, we did not see any change in accuracy but higher
response time when a close object was present for this task.

When we looked at each object mode separately, there were
some interesting findings. For all the tasks, the performance
of dynamic stereo and eye-tracked dynamic stereo was very
close when there was no close object. Therefore, we were
able to accept our third hypothesis (H3). However, the perfor-
mance of dynamic stereo was very close to static stereo when
a close object was present. As we mentioned earlier, the pres-
ence of a close object limits depth perception of our dynamic
stereo algorithm and it produces stereo images which are very
similar to that of a static stereo with a close object. How-
ever, our eye-tracked dynamic stereo could adjust parameters
based on a user’s gaze direction. Its performance is not af-
fected by the presence of a close object. Consequently, we
were able to accept our third and fourth hypothesis (H3 and
H4).

Surprisingly, in case of the path tracing task, the response
time was not significantly different for the eye-tracked dy-
namic stereo as we expected. The main reason was the fact
that the nearby object was rendered very close to the nodes in
screen space (but never occluding any node) and when a user
is looking at the nodes (which are much farther away than the
close object), it leads to a large disparity for the close object.
In case of the eye-tracked dynamic stereo, we tried to miti-
gate the effects of large disparity for a close object by making
it partially transparent when the user is not looking at it. It
worked quite well for the depth ranking task and the relative
depth judgment task because the targets were away from the
close object in screen space. However, it was distracting in
case of path tracing task due to its vicinity from the rendered
nodes in screen space, leading to more response time than
expected.



Post-questionnaire data revealed that participants preferred
dynamic stereo over static stereo. As we expected, partic-
ipants rated both dynamic algorithms to have higher stereo
perception and depth perception when no close object was
present. When a close object was present, eye-tracked stereo
was rated to have higher stereo perception and depth percep-
tion. Participants preferred both dynamic stereo algorithms
when there was no close object present. Participants preferred
eye-tracked dynamic stereo over the other two stereo modes
when a close object was present. Based on these findings,
we were not able to accept our fifth hypothesis H5. For all
the tasks, the scenes presented were optimized for a better
3D viewing experience and the total exposure time was short
(within 60 minutes). Consequently, participants did not feel
any negative symptoms from viewing the scenes in stereo-
scopic 3D.

Our experiments did not include any test cases to see how
our algorithm will behave when a close object suddenly ap-
pears or disappears. However, our algorithms could be easily
modified to handle such cases. When a close object suddenly
appears, the stereo parameters should be changed (at a fast
rate to avoid discomfort) such that the close object is in fo-
cus. When a close object suddenly disappears, the parame-
ters should be gradually changed based on the depth of the
remaining objects in the scene.

Our results seem promising for future stereoscopic 3D appli-
cations (especially for video games). In scenarios where eye
tracking is not available, dynamic stereo could be utilized to
choose ideal stereo parameters for video games which don’t
have any close objects (e.g. strategy games). Eye-tracked
dynamic stereo could be very useful for first person shooter
(FPS) games. FPS games have a close object (e.g., a gun)
in front of the camera and this limits depth perception for
farther enemies. Eye-tracked dynamic stereo could help in-
crease depth perception when the user is not looking at the
close object.

There are a few factors that could have affected our results.
The values of the stereo parameters (see Table 2) for different
distances were experimentally estimated using several pilot
studies. These values worked for our experimental setup but
other values in the vicinity could also be used and may lead
to somewhat different results. However, we believe that the
affect would be minor. The stereo display we used was opti-
mized for usage with Nvidia 3D vision glasses and produced
comfortable 3D images with minimal ghosting. Our dynamic
stereo algorithms may not work for a stereo display with more
ghosting. In addition, our algorithms were optimized for 3D
viewing from a close distance and different stereo parameters
may be required for dynamic stereo on a setup with a huge
display and a larger viewing distance. Most participants in
our user study were males and this gender imbalance could
have a minor effect on our results. We would also like to
mention that the use of dynamic stereo would change the ge-
ometry of the scene (e.g. an increase in separation makes
the world seem smaller and/or the observer feel larger) and
may not be a good idea in situations where scale is of critical
importance such as in case of industrial design applications.
Moreover, our experiment was controlled in order to study the

effects of only stereo mode changes and practitioners should
be aware of this fact before using our results directly for any
stereoscopic application.

CONCLUSION AND FUTURE WORK
We presented an in-depth study which explored dynamic
stereo parameter adjustments for enhanced depth discrimina-
tion ability. We presented two stereo rendering algorithms
to dynamically adjust the stereo parameters (separation and
convergence). The first algorithms selects ideal stereo param-
eters based on depth of the closest object and the second al-
gorithm selects ideal stereo parameters based on the depth
of the object looked at (obtained from eye tracking data).
A within subjects experiment was conducted that used three
depth judgment tasks: depth ranking, relative depth judg-
ment, and path tracing, to evaluate the performance of our
algorithms. Our results show that dynamic stereo parameters
provide enhanced depth discrimination compared to static pa-
rameters and were preferred by our participants over the tradi-
tional fixed parameter approach. Furthermore, we found that
the dynamic stereo algorithm without eye-tracking performed
similarly to the static stereo with fixed parameters when there
was a object within 4 meters of the camera. However, eye-
tracked dynamic stereo had similar performance in both cases
with or without a close object in the vicinity of the camera.

In our experiment, we estimated the rate of stereo parameter
change based on some pilot studies. Although, it was a rough
estimate, it worked quite well for our experiments but a thor-
ough study to calculate the best parameter change rate is still
required. We would like to explore this in the future. We
fixed the position of the user in our test scenes. In the future,
we would like to explore dynamic stereo algorithms for video
games or 3D applications where a user is allowed to move in
the 3D virtual environment. Dynamic stereo might interact
with other depth/perceptual cues and would be an interesting
research direction for future. We used transparency to avoid
any discomfort caused by a closer object when the user is
looking at farther objects. Although this affect is artificial but
it worked quite well for our purpose. In real world, our eyes
blur closer objects when we are focusing on farther objects.
Therefore, depth of field blurring would be an ideal choice
instead of transparency. It will be interesting to explore this
direction in the future.
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