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Abstract

We present mathematical sketching, a novel, pen-based, modeless
gestural interaction paradigm for mathematics problem solving.
Mathematical sketching derives from the familiar pencil-and-paper
process of drawing supporting diagrams to facilitate the formula-
tion of mathematical expressions; however, with a mathematical
sketch, users can also leverage their physical intuition by watch-
ing their hand-drawn diagrams animate in response to continuous
or discrete parameter changes in their written formulas. Diagram
animation is driven by implicit associations that are inferred, either
automatically or with gestural guidance, from mathematical expres-
sions, diagram labels, and drawing elements. The modeless nature
of mathematical sketching enables users to switch freely between
modifying diagrams or expressions and viewing animations. Math-
ematical sketching can also support computational tools for graph-
ing, manipulating and solving equations; initial feedback from a
small user group of our mathematical sketching prototype applica-
tion, MathPad2, suggests that it has the potential to be a powerful
tool for mathematical problem solving and visualization.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction Styles G.4 [Mathematics of Comput-
ing]: Mathematical Software—User Interfaces;

Keywords: pen-based interfaces, mathematical sketching, ges-
tures

1 Introduction

Diagrams and illustrations are often used to help explain math-
ematical concepts. They are commonplace in math and physics
textbooks and provide a form of physical intuition about abstract
principles [Hecht 2000; Varberg and Purcell 1992; Young 1992].
Similarly, students often draw pencil-and-paper diagrams for math
problems to help in visualizing relationships among variables, con-
stants, and functions. With the drawing as a guide, they can write
the appropriate math to solve the problem. However, such static
diagrams generally assist only in the initial formulation of mathe-
matical expressions, not in the “debugging” or analysis of those ex-
pressions. This can be a severe limitation, even for simple problems
with natural mappings to the temporal dimension, or for problems
with complex spatial relationships.

By animating sketched diagrams from changes in associated math-
ematical expressions, users can evaluate different formulations with
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Figure 1: A mathematical sketch used to explore damped harmonic
oscillation. It shows a spring and mass drawing and the necessary
equations for animating the sketch. The label inside the mass asso-
ciates the mathematics with the drawing.

their physical intuitions about motion. They can sense mismatches
between animated and expected behaviors and can often see that a
formulation is incorrect and also make better educated guesses as
to why. Alternatively, correct formulations can be explored intu-
itively, perhaps to home in on an aspect of the problem to study
with a more conventional numerical or graphing technique. It is
beyond the scope of this paper to evaluate the educational merits of
mathematical sketching; however, we are convinced that the rapid
creation of mathematical sketches can unlock a range of insight,
even for such simple formulations as the ballistic 2D motion of a
spinning football, where correlations among position, rotation and
their derivatives can be challenging to comprehend.

This paper presents MathPad2, a prototype application for creat-
ing mathematical sketches (see Figure 1). MathPad2 incorporates a
novel gestural interaction paradigm that lets users modelessly cre-
ate handwritten mathematical expressions using familiar math no-
tation and free-form diagrams, including associations between the
two, with only a stylus. We posit that because users must write
down both the math and the diagrams themselves, MathPad2 will
not only be general enough to apply to a full spectrum of problems,
but may also support deeper mathematical understanding than alter-
native approaches including professionally created interactive illus-
trations. Thus, MathPad2’s central design principle is to be broadly
applicable by enforcing the notion that as much behavior as possi-
ble be specified by user-written mathematical expressions, not by
rules or behaviors implicitly embedded in the system.

To present MathPad2 from a system’s perspective, we describe var-
ious user interface and recognition options and discuss why we
chose our current design. The next section considers related work
and is followed by sections on MathPad2’s gestural user interface
and on its visual parsing engine. We then present an example sce-
nario of how an introductory physics student might use the system.
Finally, we discuss informal feedback from a small user group and



how mathematical expression recognition and parsing accuracy af-
fects system usability.

2 Related Work

The idea of using computers to create dynamic illustrations of
mathematical concepts has a long history. One of the earliest dy-
namic illustration environments was Borning’s ThingLab, a simula-
tion laboratory environment for constructing dynamic models of ex-
periments in geometry and physics, that relied heavily on constraint
solvers and inheritance classes [Borning 1979]. Other systems
such as Interactive PhysicsTM and The Geometer’s SketchPadTM

also let the user create dynamic illustrations; these systems are all
WIMP-based (Windows, Icons, Menus, Pointers) resulting in a sig-
nificant amount of mode switching and loss of fluidity within the
interface. In addition, they do not allow the user to write handwrit-
ten mathematics to create these illustrations. Because MathPad2

uses handwritten mathematical expressions, users can leverage their
knowledge of mathematical notation in order to create mathemati-
cal sketches. Java applets that provide both interactive and dynamic
illustrations have also been developed for exploring various math-
ematical principles [Laleuf and Spalter 2001; Spalter and Simpson
2000]. However, these applets are not general, typically provide
limited control over the illustration, and rarely show the user the
mathematics behind the illustration.

One of the key contributions of the MathPad2 system is its gestural
user interface. This type of interface has been used in many dif-
ferent applications including cooperative objected-oriented design
[Damm et al. 2000], conceptual design in 2D [Gross and Do 1996]
and 3D [Igarashi et al. 1999; Zeleznik et al. 1996], musical score
creation [Forsberg et al. 1998], prototyping user interfaces [Lan-
day and Myers 1995], and whiteboard systems [Mynatt et al. 1999;
Moran et al. 1997]. While these gestural interfaces have worked
well for their particular applications, they are either modal or have
limited drawing domains. In contrast, MathPad2 strives for a mod-
eless gestural interface that allows fluid transitions among drawing
free-form shapes, writing mathematics, and performing gestural ac-
tions.

Alvarado [Alvarado 2000] and Kara [Kara et al. 2004] let the user
make sketched diagrams that are recognized as drawing primi-
tives with domain knowledge from specific disciplines and then
animated. Although these systems provide powerful illustrations
of physics and mathematical concepts, they are limited because
of their domain knowledge and because they hide the underlying
mathematical formulations from the user.

The primary focus of systems such as MathematicaTM, MapleTM,
MathCadTM, and MatlabTM has been entering mathematics for
computation, symbolic mathematics, and illustration. These tools
can create dynamic illustrations using mathematics as input. How-
ever, the mathematical notation used in these systems is one-
dimensional, requiring unconventional notation for concepts that
would be intuitive using 2D handwritten mathematics. In addition,
these systems do not let the user create diagrams in a natural pencil-
and-paper style.

Finally, a number of systems let users enter 2D handwritten mathe-
matics in the context of math recognition and parsing, such as those
found in [Zanibbi et al. 2002; Chan and Yeung 2000a; Matsakis
1999; Miller and Viola 1998]. Only a few of these systems go
beyond just exploring and developing recognition technology. For
example, Chan developed a simple pen-based calculator [Chan and
Yeung 2001] while xThink, Inc. developed MathJournalTM, a sys-
tem designed to solve equations, perform symbolic manipulation,

and make graphs. However, we are not aware of any system that
lets users make dynamic illustrations with handwritten 2D mathe-
matics.

3 MathPad2 and Mathematical Sketching

Mathematical sketching is the process of making simple illustra-
tions from a combination of handwritten 2D mathematical expres-
sions and sketched diagrams. Combining mathematical expressions
with diagram elements, called an association, is done either implic-
itly using diagram labels as input to an inferencing engine or man-
ually using a simple gestural user interface. The formulations in
the mathematical sketch of Figure 1 are written as digital ink and
converted, using our mathematical expression recognition and pars-
ing engine, for further processing into equivalent one-dimensional
string representations required by our computational back end. In-
dividual diagram elements can be associated with various mathe-
matical expressions and will behave accordingly. The user can view
the sketch results as an animation that is based on the underlying
mathematical specification.

The following three sections describe the user interface, the sketch
parser, and the animation engine of our MathPad2 system.

3.1 User Interface

An important goal of the MathPad2 prototype is to facilitate math-
ematical problem solving without imposing any interaction burden
beyond what would arise with traditional media. Since pencil-and-
paper users switch fluidly between writing equations and drawing
supporting diagrams, a modeless interface is highly desirable. Al-
though a simple free-hand drawing pen would suffice to mimic pen-
cil and paper, we want to support computational activities including
formula manipulation, diagram rectification (see section 3.2.4), and
animation. This functionality requires extending the notion of a
free-hand pen, either implicitly by parsing the user’s 2D input on
the fly or explicitly by letting the user perform gestural operations.
We chose an interface that combines both in an effort to reduce
the complexity and the ambiguities that arise in many hand-drawn
mathematical sketches – we use parsing to recognize mathematical
expressions and make associations, while we use gestures to seg-
ment expressions and perform editing operations.

The challenge for MathPad2’s gestural user interface is for its ges-
tures not to interfere with the entry of drawings or equations and
yet still be direct and natural enough to feel fluid. The following
sections describe the gestural interface summarized in Figure 2.

3.1.1 Writing Mathematical Expressions

Inking Writing mathematical expressions and diagrams in
MathPad2 is straightforward: users draw with a stylus on a Tablet
PC as they would using pencil and paper. The only complication in
writing expressions is how errant strokes are corrected. Although
the stylus can be flipped over to use its eraser, we found that a ges-
tural action not requiring flipping was both more accurate (because
of hardware characteristics of the stylus) and more convenient. We
therefore first designed a scribble erase gesture in which the user
scribbles with the pen back and forth over the ink strokes to be
deleted. The drawback of this first implementation was that it cre-
ated too many false positives, recognizing scribble erase gestures



Figure 2: Gestures for interacting with MathPad2. Gesture strokes in the first column are shown here in red for clarity. In the second column,
cyan-highlighted strokes provide association feedback (the highlighting color changes each time a new association is made), and magenta
strokes show nail and angle association/rectification feedback. Note that the first and last gesture are equivalent: the system examines the ink
strokes inside the lasso to determine whether to perform stroke grouping or recognition.



when in fact the user had intended to draw ink and not erase any-
thing. To alleviate this problem we decided on the use of a com-
pound gesture because of its relative simplicity and ease of execu-
tion. Thus our current definition of scribble erase is the same scrib-
ble stroke as before followed directly by a tap. In practice, users
found this compound gesture easy to learn, effective in eliminating
false positives, and not significantly more difficult or slower than
the simple scribble gesture.

Parsing Expressions Once mathematical expressions are drawn,
they must be parsed by the system and converted to strings for use
by a computational engine (Matlab in this case). Our initial at-
tempt, clicking on a recognize button that attempted to recognize
all math on the page, was problematic because it was hard to algo-
rithmically determine “lines of math” accurately, especially when
the expressions were closely spaced, at unusual scales or in unusual
2D arrangements. We therefore opted for a manual segmentation
alternative in which the user explicitly selects a set of strokes com-
prising a single mathematical expression by drawing a lasso. Since
in a modeless interface making a lasso cannot be distinguished from
drawing a closed curve, we needed to disambiguate the two actions.
An approach that worked well for some was to lasso lines of math
while pressing the barrel button on the stylus. However, many peo-
ple inadvertently triggered this button when trying to draw, while
others found pressing a barrel button awkward. Once again, the so-
lution was to use compound gestures – this time drawing a lasso
around a line of math followed by a tap. This modified gesture has
worked robustly within our dozen-user feedback group.

Figure 3: A written mathematical expression and a recognized one.
Even though the recognized expression is presented in the user’s
own handwriting, recognition errors are easily discernible.

Feedback Ideally, recognition would not require any feedback to the
user – the system would simply understand what the user had writ-
ten. However, due to the complexity and ambiguities of mathemati-
cal notation, it is essential that users know how MathPad2 interprets
their input expressions. We chose to show the system’s recognition
in two ways. First, a bounding box rectangle is drawn around the
user’s digital ink for each recognized expression. Second, each ink
symbol within a recognized expression is replaced with the corre-
sponding canonical version of that symbol (a training example of
the user’s own handwriting) that occupies the same bounding box
as the original stroke (see Figure 3). Our theoretical basis for this
feedback is twofold: users can generally disambiguate characters of
their own handwriting even if they are quite similar, and users often
want to preserve the look, feel, and spatial relationships of their no-
tation for reasons of esthetics, subtle information detail, and ease of
editing [Zanibbi et al. 2001]. Although we had earlier provided an
option for modifying the layout of the recognized ink to correspond
to the 2D parse relationships of the math, this was often distracting
since our implementation did not preserve all the layout subtleties
of the user’s original handwriting; nonetheless, we are currently in-
vestigating techniques for improved 2D layout constrained to the

style of the user’s input handwriting. Some users have expressed an
interest in a high-quality typeset feedback option to be used primar-
ily as an alternate view in a less technically interesting “clean-up”
phase.

Correcting Recognition Errors When users identify a recognition
error, they can correct it simply by scribble erasing the offending
symbols and rewriting them, or they can invoke a pull-down menu
of alternatives. Whenever the stylus hovers over a recognized ex-
pression, a small green button appears in the lower right corner of
its bounding box. Pressing on this button displays a menu of al-
ternate recognitions and the displayed ink is updated to reflect the
alternate expression selected.

3.1.2 Making Diagrams

Diagrams are sketched in the same way as mathematical expres-
sions except the diagrams need not be recognized. In balancing
the value of a primitives-based drawing system against the added
interaction overhead of specifying primitives, we decided that for
our initial prototype our only primitive would be unrecognized
ink strokes. We believe that a primitives-based approach not only
would require a more elaborate user interface, but would also make
it more difficult to find the source of an error since the diagram
would be in part user-specified and in part specified by the primi-
tive’s hidden rules or behaviors.

Nailing Diagram Components In reviewing a broad range of math-
ematical illustrations, we noticed that the single low-level behavior
of stretching a diagram element could be a very powerful technique.
Thus, we support the concept of “nails” to pin a diagram element
to the background or to pin a point on a diagram element to another
diagram element. If either diagram element is moved, the other
element either moves rigidly to stay attached at the nail if it has
only one nail, or stretches so that all its nails maintain their points
of attachment. Nails, although used primarily to create non-rigid
objects, can also create binary grouping relationships. We do not
currently detect or support cyclic nail relationships.

The user creates a nail by drawing a circle around the appropriate
location in the drawing and making a tap gesture inside it (the tap
disambiguates the nail gesture from a circle that is part of a draw-
ing). A nail is distinguished from a math recognition gesture (see
above) because the nail circle must intersect one or two drawing
elements but fully contain neither, whereas the math recognition
lasso must fully contain at least one stroke. The system finds and
links together all drawing elements that intersect the circle of the
nail gesture. The link is then symbolized by centering a small red
circle on the nail location.

Grouping Diagram Components Since many drawings involve cre-
ating one logical object from a set of strokes (drawing elements),
we overload the math recognition gesture to perform a grouping
operation if the lasso is drawn around diagram strokes. We use
the Microsoft Tablet PC SDK Divider API to classify the strokes
within a lasso as being either drawings or text. If the strokes are
drawings, they are grouped, otherwise they are considered to be an
expression and mathematical recognition is performed. However,
due to the complexity of this classification and the immaturity of
Microsoft’s implementation, this approach is not yet reliable and
will require further research. In the meantime, we also provide an
explicit gesture for grouping objects that can be distinguished from
a recognition gesture based on the location of the tap. If the tap falls
on the lasso, then we perform a grouping operation, otherwise we
recognize the expression.



3.1.3 Associations

The essence of a mathematical sketch comes from making associ-
ations between mathematical expressions and diagrams. Associa-
tions are made between scalar mathematical expressions and angle
arcs or one of the three special values of a diagram element, its x,
y, or rotation coordinate. After an association is made, changes in
mathematical expressions can be reflected as changes in the dia-
gram and vice versa.

Associations between mathematical expressions and drawing ele-
ments can be made both explicitly and implicitly. Implicit associ-
ations are based on the familiar variable names and constant labels
found in math and physics text illustrations. To create an implicit
association, users draw a variable name or constant value near the
intended drawing element and then use the math recognition ges-
ture to recognize the label. If the recognition gesture’s tap falls
within the gesture’s lasso, then the label is linked to the nearest
drawing primitive; otherwise, the tap location is used to specify
both the drawing element to be linked to the label and the drawing
element’s center of rotation (this point is only used for rotational
labels). When labeling an angle arc, the location of the tap on the
arc determines the active line – the line attached to the arc that will
move when the angle changes. The apex of the angle is then marked
with a green dot, and the active line is indicated with an arrowhead
on the angle arc. Note, we do not detect or support cyclical as-
sociation relationships, such as the specification of each angle in
a triangle. MathPad2 uses the recognized label and linked draw-
ing element to infer associations with other expressions on the page
(see Section 3.2.2).

For slightly more control over associations and to reduce the den-
sity of information in a diagram, associations can also be created
explicitly without using variable name labels. The user can make
an explicit association by drawing a line through a set of related
math expressions and then tapping on a drawing element. After
this line is drawn, drawing elements change color as the stylus hov-
ers over them to indicate the potential for an association. However,
this technique provides greater flexibility than the implicit associ-
ation technique in specifying the precise point of rotation because,
instead of just tapping on the drawing element (which sets the point
of rotation to be the center of the drawing element), the user can
press down on the element to select it, move the stylus, and then lift
it to the desired center of rotation, even if it is not on the drawing
element.

With both implicit and explicit associations, MathPad2 provides an
option for visualizing which drawing elements, labels and expres-
sions are associated by filling the bounding boxes of all associated
components with the same semi-transparent pastel color.

3.1.4 Using MathPad2’s ToolSet

In addition to diagram associations, MathPad2 supports a range of
computational functions on recognized mathematical expressions,
including graphing, solving, simplifying, and factoring. This set of
functions is rudimentary but gives some representative early results
on adding advanced features to the system.

Users can graph recognized functions with a simple line gesture that
begins on the function and ends at the graph’s intended location.
This line gesture is distinguished from other drawn lines by starting
within the function expression’s bounding box, being too long to be
a mathematical symbol, and having no cusps or self-intersections.
This gesture produces a movable, resizable graph widget displaying
a plot of the function (see Figure 4). Additional graph gestures
that end on this widget will overlay or replace the function being

Figure 4: Two plots created using graph gestures. Expression
bounding boxes are colored to correspond with plot lines.

graphed depending on the state of the ‘hold plot” check box found
in the upper left corner of the widget.

The graph widget uses default values for the domain of plotted
functions based on a very simple heuristic: the domain is 0...5 for
functions of t and −5...5 for functions of any other variable. We are
currently developing ways to choose better defaults based on func-
tion characteristics. In any case, users can change the domain or
range by selecting a region of the graph to zoom in on or by writing
a new value below the start and/or end of the graph and then click-
ing the update button. Optional visual feedback is provided to show
correspondences between a plot line and a mathematical expression
by coloring the line the same as the expression bounding boxes.

In addition to graphing, MathPad2 enables the user to solve equa-
tions. Users invoke the solver by making a squiggle gesture that
starts inside the bounding box of a recognized mathematical ex-
pression. The system presents the solution to the user at the end of
the squiggle gesture either as typeset symbols or ink in the user’s
handwriting style. Closely related gestures for simplifying and fac-
toring expressions are presented in Figure 2.

3.2 Sketch Parser

We have focused so far on the user interface for specifying the input
description of a mathematical sketch. We now discuss the compo-
nents that prepare a sketch for execution by recognizing expres-
sions, inferring associations, and rectifying drawings.

3.2.1 Mathematical Expression Recognition

There have been many different approaches to the recognition and
parsing of mathematical expressions [Chan and Yeung 2000b]. Af-
ter evaluating these recognition and parsing techniques and because
of the lack of publicly available systems, we decided to implement
our own custom recognizer and parsing engine. We chose a writer-
dependent system because these systems tend to be more accurate
than independent systems since the recognizer can be tailored to



a particular user’s handwriting [Connell and Jain 2002]. In addi-
tion, we could use the user’s writing samples to present recognition
results to the user in her own handwriting, so as to keep a pencil-
and-paper look and feel.

Our multistage recognizer uses three different recognition tech-
niques to form a hybrid solution [Li and Yeung 1997; Connell and
Jain 2000; Smithies et al. 1999]. The first stage is the preprocess-
ing step where ink strokes are normalized and filtered to reduce
noise and made size- and translation-invariant. In addition, domi-
nant points [Li and Yeung 1997] and their directions as well as other
statistical features are calculated for use in the classification steps.
The second stage in the recognition algorithm, coarse classification,
is used to decrease the number of possible mathematical symbol
candidates by rejecting unlikely ones and is intended to be fast and
not fully exhaustive. The coarse classification scheme uses two sep-
arate algorithms. The first uses the direction information as input
to a dynamic programming algorithm that calculates the optimal
degree of difference or similarity between two characters [Li and
Yeung 1997]. The second algorithm performs a statistical feature-
set classification based on [Smithies et al. 1999]. The results of both
classifiers are then merged using an averaging scheme normalized
by their respective standard deviations. The third stage of the rec-
ognizer is fine classification, which takes the list of mathematical
symbol candidates from the coarse classifier and uses dynamic pro-
gramming once again to determine the best possible match with the
training data [Connell and Jain 2000]. The fine classification’s dy-
namic program is similar to that used by the coarse classifier but
also uses dominant points as input, which helps detect small differ-
ences between similar mathematical symbols.

After the mathematical symbols are recognized they must be two-
dimensionally parsed in terms of exponents, subscripts, fractions,
and others constructs [Blostein and Grbavec 2001]. Therefore, us-
ing a simple grammar, our parser takes into account not only the
symbols but their bounding boxes as well. Because MatlabTM is
our computational back end, the parsing system converts the 2D
mathematical expressions into 1D Matlab specific expressions.

3.2.2 Association Inferencing System

As mentioned in section 3.1.3, implicit associations require a tech-
nique for determining the written mathematical expressions that
should be associated with a particular drawing element based on
the variable label linked to the element. An expression should be
associated with a drawing element if that expression takes part in
the computation of any variable that falls in the label family of the
drawing element’s variable label.

A label family is defined by its name, a root string. Members of the
label family are variables that include that root string and a compo-
nent subscript (e.g., x for its x-axis component) or a function spec-
ification. For example, if the user labels a drawing element φo, the
inferencing system determines the label family to be φ and finds
all mathematical expressions having members of the φ label family
on the left-hand side of the equal sign: φ , φo, φ(t), φx(t), and so
on. The inferencing system then finds all the variable names ap-
pearing on the right-hand side, determines their label families, and
then continues the search. This process terminates when there are
no more variable names to search for. Once all the related mathe-
matical expressions have been found, they are sorted to represent a
logical flow of operations that can be executed by a computational
engine (e.g., Matlab), and the implicit association is made. For ex-
ample, in Figure 1 the system would first store all of the terminal
expressions, then the expressions that are not functions of t, and
finally the time dependent functions. Note that our prototype does

not currently handle interrelated equations such as x(t) = t2y(t) and
y(t) = x(t)− t. However, in future versions of the system, we plan
to support these types of dependencies by detecting them, solving
them with our computational engine, and providing the user with
the ability to interactively select the appropriate solutions to use in
their sketches.

3.2.3 Defining Drawing Dimensions

Although an explicit Cartesian coordinate system can be created
within a mathematical sketch diagram, many diagrams contain
enough information that this can be done implicitly. MathPad2 can
infer coordinate systems in two ways: by using the initial locations
of diagram elements and by labeling linear dimensions within a di-
agram (see Figure 5).

When two different drawing elements are associated with expres-
sions so that each drawing element has a different value for one of
its coordinates (x or y), then an implicit coordinate system can be
defined. The distance along the coordinate shared between the two
drawing elements establishes a dimension for the coordinate sys-
tem, and the location of the drawing elements implies the location
of the coordinate system origin.

Figure 5: Two methods for inferring coordinate systems: the math-
ematical sketch on the left uses labeling of the ground line while
the one on the right uses initial conditions.

Alternatively, if only one drawing element is associated with math,
then the dimension of the coordinate system can still be inferred
if another drawing element is associated with a numerical la-
bel. Whenever a numerical label is applied to a drawing element,
MathPad2 analyzes the drawing element: if it is a horizontal or ver-
tical line, the corresponding x or y axis dimension is established;
otherwise, we apply the label to the best-fit line to the drawing ele-
ment and then establish the dimension of both coordinate axes.

If not enough information has been specified to define a coordinate
system implicitly, then a default coordinate system is used. Like
our graph defaults, we expect that we can improve these defaults
from inferences based on an analysis of the function characteristics
of the associated expressions.

3.2.4 Drawing Rectification

Mathematical sketches often have inherent ambiguities between
what the mathematics specifies and what the user draws: that is,
mathematical expressions often do not jibe precisely with their as-
sociated visual relationships in user drawings. Rectification is the
process of fixing the correspondence between drawings and math-
ematics so that something meaningful is displayed. For example,
a user might draw a diagram containing an angle, and then write
some math that specifies that angle numerically. The drawn angle



is unlikely to match the math description exactly and so either the
drawing must be adjusted to match the math or vice versa.

Figure 6: The effects of labeling an angle: the drawing is rectified
based on the initial value of a (in radians). The green dot shows the
rotation point and the magenta arrow indicates which part of the
drawing will rotate.

Rectification is a difficult problem tantamount to the general con-
straint satisfaction problem. However, rectification in MathPad2

is simplified since it is designed to handle only simple acyclic rela-
tionships between drawing elements and we do not check for cycles
during this process. Our current implementation demonstrates rec-
tification in the context of angle relationships. Mismatches between
numerical descriptions of angles and their diagram counterparts are
readily discernible. When an angle such as a in Figure 6 is associ-
ated with math, MathPad2 rectifies the drawing in one of two ways.
First, the angle between the two lines connected by the angle arc
is computed. Next, the system determines if a mathematical ex-
pression corresponding to the angle label already exists. If so, it
moves the active line, as determined by the angle arc, to the correct
place based on the mathematical specification. If not, it uses the
angle computed from the drawing as the numerical specification of
the angle’s value. Currently, this angle is represented internally and
used during simulation.

A similar rectification process occurs when the same coordinate of
more than two drawing elements is specified. If one or two coordi-
nates are specified, no rectification is typically necessary since the
coordinates of the elements can be used to establish dimensions of a
coordinate system (see Section 3.2.3). However, when a third draw-
ing element is added, it must be rectified to the coordinate system
defined by the previous two drawing elements. A full treatment
of the rectification issues of multi-element drawings is still under
development.

3.3 Mathematical Sketch Animation and Output

The final subsystem of MathPad2 is the animation engine. When
users create a diagram and associates it with math, they are effec-
tively drawing the initial conditions of an animation. MathPad2

defines initial conditions as the value of expressions when the vari-
able t is at its initial value, as defined by users when they write the
mathematical expression t = Tinitial ... Tf inal .1

In order to compute the animation, the animation subsystem first
checks all drawing elements with associations to see if they are an-
imatable. Animatable drawing elements are associated with func-
tions of time. Currently the system supports x and y translational
movement, rotation about a given point, and changing the value of
an arc. The system takes these animatable drawing elements and
sends their associated math to Matlab, which executes the math and
returns the results.

1In actuality, the user draws a combination of initial values (for x, y, and
rotation coordinate associations) and initial constants (for arc associations).
In typical diagrams, however, initial constants are equivalent to initial con-
ditions.

By default, MathPad2 maps all animations so that they last four sec-
onds in wall-clock time. Once again, our default is not appropriate
for many animations, and so it can be overridden by specifying the
duration as part of the time specification:

t = Tinitial ... Tf inal in Seconds.

4 An Example 2D Projectile Motion Sce-

nario

We now present a scenario for how a user, say a high school physics
student, might use MathPad2 and mathematical sketching as a tool
for better understanding mathematical concepts.

Figure 7: An ill-specified mathematical sketch for determining
whether a baseball will fly over a fence for a home run. After run-
ning the sketch, the user will clearly see the error, since the ball will
fly upward in a parabolic fashion. The remedy is shown in blue.

The student is interested in determining whether a baseball player
can hit the ball over a fence given an initial velocity and angle. She
first writes down a simple playing field as shown in Figure 7. Next
she writes down the known quantities: the initial angle ao, initial
velocity vo, and a gravitational term g. From her knowledge of
projectile motion, she then writes down the mathematics as shown
in Figure 7, labels the drawing making the required associations,
and runs the simulation.

The simulation shows the ball moving upward against gravity,
which does not look correct. The user then checks the equations
and realizes that the equation Py(t) = voyt + 1

2 gt2 has a sign error.
She scratches out the +, writes in a −, and re-recognizes the ex-
pression. She then runs the simulation again: the ball takes on the
correct motion and barely makes it over the fence.

Next she wants to see how much farther the ball will go if vo is
increased. She scratches out the current value, writes in a larger
one, and runs the simulation again. The ball does go farther but
it also stops short of the ground, which leads her to the question
“when will the ball hit the ground with these new parameters?” So,
she takes equation Py(t), sets it equal to zero, and solves it with the
squiggle gesture. Finally, she takes the second value for t, changes
the time field, runs the simulation, and finds this time value is cor-
rect for the ball to hit the ground under the new parameters.

In this scenario, the student’s understanding of the mathematical
concept is augmented not only because she could visualize the be-
havior of the mathematical system, but also because she had to write



down the mathematics in order to generate the animation. It is this
unique feature that makes MathPad2 and mathematical sketching a
powerful problem-solving tool.

5 Discussion

About a dozen users have seen and tried the MathPad2 prototype.
Their response was quite positive. Users found the gestural inter-
face easy to learn and use and commented on the fluidity of the
modeless interaction style. One user stated that he wished he had
had this software in high school. Many users asked whether they
could solve more complex problems, such as a double pendulum,
that often require open-form solutions. We believe that a much
broader class of problems, including multi-body collisions and sim-
ple ordinary and partial differential equations, could be supported
by extending mathematical sketching to handle basic programming
constructs, such as loops and conditionals. We also recognize the
desire for a macro facility that would let mathematical sketches be
saved as functions for reuse within other sketches.

The user feedback also highlighted the effect of misrecognition and
incorrect parsing on the overall usability of MathPad2. In general,
recognition and parsing errors increase in proportion to the com-
plexity of the mathematical expressions. Users could generally re-
solve errors by simply scratching out the offending symbols, re-
drawing them and then re-recognizing the expression, although in
some cases, they would need to perform this process multiple times,
since our recognition algorithms do not adjust on the basis of pre-
vious attempts.

By training the symbol recognizer for each user, symbol recogni-
tion was generally reasonably robust. However, some users did en-
counter persistent symbol-recognition errors that can be attributed
to ambiguous entry of specific pairs or groups of symbols, for in-
stance, when distinguishing between 5 and s, x and +, and c, 1, and
(. In some cases, we tried to exploit contextual knowledge to avoid
common conflicts [Lee and Wang 1995]. For example, we would
replace the 0 in l0g with an o to form log, while a 5 in 5in would be
replaced with an s to form sin. A few users chose to reduce the set
of trained symbols to improve accuracy at the cost of limiting the
scope of mathematical expressions. Other users changed the way
they drew certain symbols such as drawing a 5 with two strokes to
differentiate from a single stroke s.

We did not provide any means for the user to train the expression
parser. Instead, we used a constant set of parsing rules based on the
spatial relationships between symbol bounding boxes. As a result,
parsing performance exhibited greater per-user variance depending
on how closely the user’s natural handwriting corresponded to our
rules. Common parsing errors were to mischaracterize superscripts
when the base symbol was an ascender letter (e.g., d, b) or sub-
scripts when the base symbol was a descender letter (e.g., y, p).
Also, some users wrote rather large subscripts and superscripts,
which often resulted in parsing errors. We believe that most of
these errors can be avoided by training the parser as well as the
symbol recognizer. In other cases, parsing errors are more compli-
cated, as when a misrecognized symbol triggers a parsing error. For
example, in Figure 1, if the closing parenthesis of the exponential
is misrecognized as a 1, our parser would aggregate the cos(wt) as
a subscript of the 1. However, we believe these kinds of errors can
largely be avoided by exploiting context both within and between
expressions, for example by avoiding subscripts for integers. Last,
we need to present parsing results in a more natural way than our
1D representation, as by the technique described in [Zanibbi et al.
2001].

The current state of MathPad2’s recognition and parsing system can
be a limiting factor for some users, especially those who must ad-
just their handwriting significantly to be neat and to correspond to
our notion of the “correct” way to lay out expressions. Still, with
adequate training most users find the system usable for the domain
of mathematical sketches we currently support. To achieve broader
acceptance and to support more complex mathematical sketches,
we must continually incorporate the state of the art in mathematical
recognition and parsing techniques.

6 Conclusion

We have discussed the novel concept of mathematical sketches –
combinations of handwritten mathematics and free-hand diagrams
– that allow rapid animated visualization of mathematical formu-
lations. In addition, we described the system design issues en-
countered in creating a prototype mathematical sketching system,
MathPad2, including the design of a modeless gestural interface
and techniques for implicitly associating and rectifying diagrams
with mathematical expressions. Despite the restriction of the cur-
rent prototype to closed-form expressions, we conjecture that math-
ematical sketching can be a powerful assistant in formulating and
visualizing mathematical concepts.
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