
A Comparison of Unscented and Extended Kalman
Filtering for Estimating Quaternion Motion

Joseph J. LaViola Jr.
Brown University Technology Center

for Advanced Scientific Computing and Visualization
PO Box 1910, Providence, RI, 02912, USA

Email:jjl@cs.brown.edu

Abstract— The unscented Kalman filter is a superior alterna-
tive to the extended Kalman filter for a variety of estimation and
control problems. However, its effectiveness for improving human
motion tracking for virtual reality applications in the presence
of noisy data has been unexplored. In this paper, we present
an empirical study comparing the performance of unscented
and extended Kalman filtering for improving human head and
hand tracking. Specifically, we examine human head and hand
orientation motion signals, represented with quaternions, which
are critical for correct viewing perspectives in virtual reality. Our
experimental results and analysis indicate that unscented Kalman
filtering performs equivalently with extended Kalman filtering.
However, the additional computational overhead of the unscented
Kalman filter and quasi-linear nature of the quaternion dynamics
lead to the conclusion that the extended Kalman filter is a
better choice for estimating quaternion motion in virtual reality
applications.

Keywords: extended Kalman filtering, unscented Kalman
filtering, human motion tracking, quaternions, virtual reality

I. INTRODUCTION

Accurate human motion tracking is a critical component in
any virtual reality (VR) application [1]. Having real time head
and hand motion information enables the computer to draw
images in the correct perspective. Unfortunately, tracking sys-
tems suffer from noise and small distortions causing incorrect
viewing perspectives. To handle these imperfections, filtering
is often applied to the tracked data so the VR application can
obtain more accurate estimates of the user’s motion.

The Kalman filter (KF) is a popular choice for estimat-
ing user motion in VR applications[2][3][4]. Since position
information is linear, standard Kalman filtering can be eas-
ily applied to the tracking problem without much difficulty.
However, human pose information also contains nonlinear
orientation data, requiring a modification to the KF. The
extended Kalman filter (EKF) provides this modification by
linearizing all nonlinear models (i.e., process and measurement
models) so the traditional KF can be applied[5].

Unfortunately, the EKF has two important potential draw-
backs. First, the derivation of the Jacobian matrices, the linear
approximators to the nonlinear functions, can be complex
causing implementation difficulties. Second, these lineariza-
tions can lead to filter instability if the timestep intervals are
not sufficiently small[6].

To address these limitations, Julier and Uhlmann developed
the unscented Kalman filter (UKF)[7]. The UKF operates
on the premise that it is easier to approximate a Gaussian
distribution than it is to approximate an arbitrary nonlinear
function. Instead of linearizing using Jacobian matrices, the
UKF using a deterministic sampling approach to capture
the mean and covariance estimates with a minimal set of
sample points. The UKF is a powerful nonlinear estimation
technique and has been shown to be a superior alternative to
the EKF in a variety of applications including state estimation
for road vehicle navigation[8], parameter estimation for time
series modeling[9], and neural network training[10]. The UKF
is also effective in certain types of visual contour hand
tracking[11][12]. However, these systems dealt mostly with
tracking position and did not take orientation into account.

Although the UKF has been applied to a wide range of
estimation problems, to the best of our knowledge there has
been no attempt to use it to improve human head or hand
orientation tracking. Therefore, in this paper, we explore the
potential benefits of the UKF over the more traditional EKF
in human orientation estimation. We describe the results of an
experimental study which examines the estimation accuracy
of the EKF and UKF on both head and hand orientation
represented with quaternions. Quaternions are a common way
to represent rotations in tracking, robotics, and mechanical
engineering because they are compact and avoid gimbal
lock[13]. The results of our study indicate that, although the
EKF and UKF have equivalent performance, the additional
computational overhead of the UKF and the quasi-linear nature
of the quaternion dynamics makes the EKF a more appropriate
choice for orientation estimation in VR applications.

The remainder of this paper is organized as follows. In the
next two sections, we describe the algorithmic details of the
EKF and UKF formulations used in our study. Section IV
describes our experimental methodology and setup. Section V
presents the experimental results and discusses their signifi-
cance. Section VI concludes the paper.

II. EXTENDED KALMAN FILTERING

The extended Kalman filter is a set of mathematical equa-
tions which uses an underlying process model to make an
estimate of the current state of a system and then corrects the



estimate using any available sensor measurements. Using this
predictor-corrector mechanism, it approximates an optimal es-
timate due to the linearization of the process and measurement
models[14]. To describe all the details of the EKF is beyond
the scope of this paper. Therefore, we present a more algo-
rithmic description omitting some theoretical considerations.
More details on the EKF can be found in [15][16].

The process model we use is an orientation/angular velocity
(OV) model defined by

f =
dq

dt
=

1

2
qω, (1)

where q is the current quaternion and ω is a pure vector
quaternion representing angular velocity. We use a single EKF,
where the state vector at time k is defined by

x̂k = [qx, qy, qz, qw, ω0, ω1, ω2]
T . (2)

Given the state vector at step k − 1, we first perform the
prediction step by finding the a priori state estimate x̂−

k by
integrating equation 1 through time by ∆t (i.e., 1.0 divided
by the current sampling rate) using a 4th Order Runge-Kutta
scheme.

Then, we find the a priori estimate of the error covariance
matrix

P−

k = ΦkPk−1Φ
T
k + Qk, (3)

where Qk is the process noise covariance, Pk−1 is the a
posteriori estimate of the error covariance, and Φk is an
approximation to the fundamental matrix calculated by taking
the Taylor expansion of Φ(t) around the system dynamics
matrix

Fk,[i,j] =
∂f(i)

∂x(j)
(x̂−

k ), (4)

a Jacobian matrix which linearizes the process function f , and
then substituting ∆t for t1.

After the prediction step, the correction step calculates the
a posteriori state estimate using

x̂k = x̂−

k + Kk(zk − Hkx̂
−

k ), (5)

where Kk is the Kalman gain or blending factor and Hk is the
measurement matrix used to combine the measurement vector
zk, obtained from the tracking device, with x̂−

k . The Kalman
gain is computed using

Kk = P−

k HT
k (HkP

−

k HT
k + R)−1, (6)

where R is the measurement noise covariance, and the mea-
surement matrix is calculated using

1Note that from a theoretical perspective, the EKF calculates Fk each
time f is evaluated. In the 4th order Runge-Kutta routine, f is evaluated
8 times[17], meaning that Fk should be a product of 8 intermediate Jacobian
evaluations. In our formulation, we only evaluate Fk once from the output of
the Runge-Kutta routine. Although this approach deviates slightly from the
definition of the EKF, we find it faster, less complex, and works just as well
for our applications.

Hk,[i,j] =
∂h(i)

∂x(j)
(x−

k ), (7)

a Jacobian matrix that linearizes around the nonlinear mea-
surement function h. In our case, h is quaternion normalization
defined by

h =
q

√

q2
x + q2

y + q2
z + q2

w

(8)

for the quaternion in x̂−

k . Finally, we compute the a posteriori
estimate of the error covariance using

Pk = (I − KkHk)P−

k . (9)

Note that after we calculate the a posteriori state estimate, the
quaternion is renormalized ensuring it is on the unit sphere,
making it a valid rotation.

A. EKF Parameters and Initialization

The EKF has two parameters, Qk and R, which represent
the process noise covariance and the measurement noise
covariance. R is determined empirically and accounts for
the uncertainty in the tracking data. Setting these matrices
properly goes a long way toward making the filters robust.
We determine Qk using the continuous process noise matrix
Q̃ which assumes that the process noise always enters the
process model on the highest derivative[16]. Therefore,

Qk = Φs

∫ ∆t

0

Φ(τ)Q̃Φ(τ)
T

dt, (10)

where Φs is a scaling parameter which acts as a confidence
value for how sure we are that the process model is an accurate
description of the the true motion dynamics.

The EKF also needs to be initialized on startup. The
quaternion in the state vector at time 0 is simply set to
the first observation in the motion sequence and the angular
velocity components are set to 0. The a priori estimate of
the error covariance and the elements in the these matrices
are set to 0 for the off-diagonal entries and to relatively large
numbers in the diagonal entries. For our implementation, the
quaternion variance diagonals are set to 1 and the angular
velocity variances are set to 100.

III. UNSCENTED KALMAN FILTERING

The basic premise behind the unscented Kalman filter is
it is easier to approximate a Gaussian distribution than it
is to approximate an arbitrary nonlinear function. Instead of
linearizing using Jacobian matrices, the UKF uses a determin-
istic sampling approach to capture the mean and covariance
estimates with a minimal set of sample points[9]. As with
the EKF, we present an algorithmic description of the UKF
omitting some theoretical considerations. More details can be
found in [7][6][18].

Given the state vector at step k − 1 (we use the same state
vector as in equation 2, we compute a collection of sigma



points, stored in the columns of the L× (2L+1) sigma point
matrix Xk−1 where L is the dimension of the state vector. In
our case, L = 7 so Xk−1 is a 7 × 15 matrix. The columns of
Xk−1 are computed by

(Xk−1)0 = x̂k−1 (11)

(Xk−1)i = x̂k−1 +
(

√

(L + λ)Pk−1

)

i
, i = 1 . . . L

(Xk−1)i = x̂k−1 −

(

√

(L + λ)Pk−1

)

i−L
, i = L + 1 . . . 2L,

where
(

√

(L + λ)Pk−1

)

i
is the ith column of the matrix

square root and λ is defined by

λ = α2(L + κ) − L, (12)

where α is a scaling parameter which determines the spread
of the sigma points and κ is a secondary scaling parameter.
Note that we assume

(

√

(L + λ)Pk−1

)

i
is symmetric and

positive definite which allows us to find the square root using
a Cholesky decomposition.

Once Xk−1 computed, we perform the prediction step by
first propagating each column of Xk−1 through time by ∆t

using

(Xk)i = f((Xk−1)i), i = 0 . . . 2L, (13)

where f is differential equation defined in equation 1. In our
formulation, since L = 7, we perform 15 4th order Runge-
Kutta integrations.

With (Xk)i calculated, the a priori state estimate is

x̂−

k =
2L
∑

i=0

W
(m)
i (Xk)i, (14)

where W
(m)
i are weights defined by

W
(m)
0 =

λ

(L + λ)
(15)

W
(m)
i =

1

2(L + λ)
, i = 1 . . . 2L.

As the last part of the prediction step, we calculate the a
priori error covariance with

P−

k =

2L
∑

i=0

W
(c)
i

[

(Xk)i − x̂−

k

] [

(Xk)i − x̂−

k

]T
+ Qk, (16)

where Qk is once again the process error covariance matrix,
and the weights are defined by

W
(c)
0 =

λ

(L + λ)
+ (1 − α2 + β) (17)

W
(c)
i =

1

2(L + λ)
, i = 1 . . . 2L.

Note that β is a parameter used to incorporate any prior
knowledge about the distribution of x.

To compute the correction step, we first must transform the
columns of Xk through the measurement function. Therefore,
let

(Zk)i = h((Xk)i), i = 0 . . . 2L (18)

ẑ−k =
2L
∑

i=0

W
(m)
i (Yk)i. (19)

h is the same quaternion normalization function found in
equation 8.

With the transformed state vector ẑ−k , we compute the a
posteriori state estimate using

x̂k = x̂−

k + Kk(zk − ẑ−k ), (20)

where Kk is once again Kalman gain. In the UKF formulation,
Kk is defined by

Kk = Px̂kẑk
P−1

ẑkẑk
, (21)

where

Pẑkẑk
=

2L
∑

i=0

W
(c)
i

[

(Zk)i − ẑ−k
] [

(Zk)i − ẑ−k
]T

+R (22)

Px̂kẑk
=

2L
∑

i=0

W
(c)
i

[

(Xk)i − x̂−

k

] [

(Zk)i − ẑ−k
]T

. (23)

Note that as with the EKF, R is the measurement noise
covariance matrix. Finally, the last calculation in the correction
step is to compute the a posteriori estimate of the error
covariance given by

Pk = P−

k − KkPẑkẑk
KT

k . (24)

As with the EKF, we renormalize the state vector’s quaternion
to make sure it is on the unit sphere, making it a valid rotation.

A. UKF Parameters and Initialization

Qk, R, α, β, and κ are the five parameters used in the
UKF. We determine, R, α, β, and κ empirically and use the
formulation described in Section II.A to find Qk. More details
on our choice for determining Qk can be found in Section V.
The UKF is initialized in the same way as the EKF, using the
same values for the state vector and error covariance matrix
upon startup.

IV. EXPERIMENTAL STUDY

To compare the performance of the EKF and UKF al-
gorithms described in sections II and III, we conducted an
experiment to determine which filtering algorithm is preferable
for improving human orientation tracking in virtual reality
systems.



A. Experimental Setup

Two datasets (one head and one hand) were used in our
study to represent common orientation dynamics found in
our virtual reality applications. Each dataset consists of unit
length quaternions running about 20 seconds in length. The
orientation sequences were captured using an Intersense IS900
tracking system, a hybrid inertial/ultrasonic tracking device.
The head orientation dataset, denoted HEAD and shown in
Figure 1, is an example of a user rotating her head to
view images on three orthogonal display screens. The hand
orientation dataset, denoted by HAND and shown in Figure 2,
is an example of a user rotating his hand to navigate through
the virtual world.

0 2 4 6 8 10 12 14 16 18 20 22

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
The HEAD Dataset

Time (seconds)

qw 

qz 

qx 

qy 

Fig. 1. The four signals that make up the quaternion sequence for the HEAD
dataset. The values for each quaternion component are unitless.

In the experiment, the datasets were tested with sampling
rates of 25, 80, and 215Hz giving us three different test
scenarios for each dataset. These sampling rates were chosen
because VR tracking systems are commonly run at these rates.
We use a small Monte Carlo simulation on each test scenario
since we have random Gaussian noise added to the motion
signals, which is used to simulate jittery tracking data. A
constant value of 5e-6 was set for the random noise variance
providing noise added to the motion signals with a Gaussian
distributed range of ±1.19 degrees. All tests were run on a
AMD Athelon XP 1800+ with 512Mb of main memory.

B. Evaluation Method

To determine how well the EKF and UKF algorithms are
performing, we need comparison data. Comparing estimated
output with reported user orientations is problematic since
these records have noise and small distortions associated with
them. Thus, any comparison with the recorded data would
count tracking error with the estimation error. We obtain the
“ground truth” datasets by passing them through a zero phase
shift filter to remove high frequency noise. We determine the

0 2 4 6 8 10 12 14 16 18 20

−0.2

0

0.2

0.4

0.6

0.8

1
The HAND Dataset

Time (seconds)

qw 
qy 

qz 

qx 

Fig. 2. The four signals that make up the quaternion sequence for the HAND
dataset. The values for each quaternion component are unitless.

lowpass and highpass filter parameters by examining each
signal’s power spectrum. Depending on the particular dataset,
the lowpass/highpass pairs were anywhere between 1/3 and
2/4 Hz. This cleaning step gives us the truth datasets we
need to test against and makes it easy to add noise of known
characteristics for simulating jittery tracking data. With the
truth datasets, we can calculate the root mean square error
(RMS) for each test and take the average over the Monte Carlo
simulation runs. For truth and estimated quaternions, qti

and
qei

, RMS is defined by

RMSq =

√

√

√

√

1

n

n−1
∑

i=0

e2
i , (25)

where RMSq is in degrees and

ei =
2(180)

π
arccos ((qti

(qei
)−1)w). (26)

C. EKF and UKF Parameters

For the EKF and UKF algorithms, we needed to determine
the R and Qk covariance matrices. Since we know the
variance of the Gaussian white noise we are injecting into the
motion signals, we set the off-diagonal entries of R to 0 and
set the diagonal entries to be the value of the noise variance
value (5e-6 in this case). Thus we are making the assumption
that our measurement noise is based on the variability of a
stationary tracker. As shown in Section II.A, we calculate the
Qk matrix using equation 10 leaving Φs as our free parameter.
The search routines ran over different integer values for Φs

and we found 1 to be a good choice for the HEAD dataset
and 2 for the HAND dataset. For the UKF, we also needed
to set the α, β, and κ parameters. After running a number
of tests, we found that 1,0, and 0 were appropriate for these



parameters. See Section V for a discussion on our parameter
choices.

V. RESULTS AND DISCUSSION

Tables I and II show the RMS errors for the HEAD and
HAND datasets across the different sampling rates. These
results show that the EKF and UKF have roughly the same
error in all cases. Note that we also include the RMS error for
doing no filtering at all to show that both the EKF and UKF
improve tracking accuracy at sampling rates of 80 and 215Hz.

RMS Results for the HEAD Dataset
EKF UKF NONE

25Hz: 0.398973 0.431781 0.43614
80Hz: 0.297994 0.304475 0.4195
215Hz: 0.222815 0.228121 0.422076

TABLE I
THE RMS ERROR RESULTS (IN DEGREES) FOR THREE DIFFERENT

SAMPLING RATES ON THE HEAD DATASET. THE DATA SHOWS THE EKF
AND UKF HAVE ROUGHLY THE SAME ERROR WHEN ESTIMATING

QUATERNIONS AND IMPROVE ACCURACY OVER NO FILTERING AT ALL.

RMS Results for the HAND Dataset
EKF UKF NONE

25Hz: 0.381808 0.386876 0.400181
80Hz: 0.308092 0.302395 0.389521
215Hz: 0.226587 0.23002 0.386043

TABLE II
THE RMS ERROR RESULTS (IN DEGREES) FOR THREE DIFFERENT

SAMPLING RATES ON THE HAND DATASET. THE DATA SHOWS THE EKF
AND UKF HAVE ROUGHLY THE SAME ERROR WHEN ESTIMATING

QUATERNIONS AND IMPROVE ACCURACY OVER NO FILTERING AT ALL.

The tests that were run at 25Hz show there is only a slight
improvement in the EKF and UKF’s estimation performance
for both the HEAD and HAND datasets. These numbers
indicate that sampling rates of 25Hz are probably not high
enough for applying filtering algorithms to quaternion motion
data. However, more work is needed to verify this claim.

Figures 3 and 4 show the state errors from the EKF and
UKF filters for the quaternion components in the HEAD
dataset sampled at 80Hz. These graphs are representative of
the component wise error in our test scenarios and show that,
on a component level, the accuracy of the EKF and UKF are
roughly the same. From this data and the data in Tables I and
II, it is difficult to make a decision about which estimation
algorithm is the better choice. Therefore, we need to examine
the algorithms in greater detail.

Using the test scenarios, we recorded the running times for
each algorithm. On average, the EKF algorithm took 266.13
microseconds per estimate while the UKF algorithm took
3,294.2 microseconds per estimate. The reason the UKF algo-
rithm takes significantly longer to make an estimate is because
it has to handle all the sigma points. In our implementation, the

5 10 15 20
−0.02

−0.01

0

0.01

0.02
Qx State Error (EKF)

Time (seconds)

E
rr

or

5 10 15 20
−0.1

0

0.1
Qy State Error (EKF)

Time (seconds)

E
rr

or

5 10 15 20
−0.01

−0.005

0

0.005

0.01
Qz State Error (EKF)

Time (seconds)

E
rr

or

5 10 15 20
−0.2

0

0.2
Qw State Error (EKF)

Time (seconds)

E
rr

or

Fig. 3. State errors from the EKF for the four quaternion components in the
HEAD dataset sampled at 80Hz. The solid lines represent the errors while the
dashed lines show the 3 standard deviation bounds. The component estimates
are unitless.

5 10 15 20
−0.02

−0.01

0

0.01

0.02
Qx State Error (UKF)

Time (seconds)

E
rr

or

5 10 15 20

−0.05

0

0.05

Qy State Error (UKF)

Time (seconds)

E
rr

or

5 10 15 20
−0.01

−0.005

0

0.005

0.01
Qz State Error (UKF)

Time (seconds)

E
rr

or

5 10 15 20

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Qw State Error (UKF)

Time (seconds)

E
rr

or

Fig. 4. State errors from the UKF for the four quaternion components in the
HEAD dataset sampled at 80Hz. The solid lines represent the errors while the
dashed lines show the 3 standard deviation bounds. The component estimates
are unitless.

UKF has to perform 15 Runge-Kutta integrations to propagate
the sigma points through time while the EKF only has to
perform one integration. Even if we used Julier and Uhlmann’s
method for reducing the number of sigma points[19], we
would still need to do 8 Runge-Kutta integrations for the UKF
to only one for the EKF. If the estimation accuracy of the
UKF was better than the EKF, this additional computational
overhead would be warranted. However, since the UKF does
not give us any additional accuracy, from a running time
standpoint, the EKF seems the more appropriate estimator in
this case.

In addition to the issue of time complexity between the



EKF and UKF, we also need to examine their theoretical
performance. From [6], we know that UKF can predict the
state estimate and error covariance to 4th order accuracy while
the EKF only predicts up to 2nd order for the state estimate
and 4th order for the error covariance. However, the UKF will
make more accurate estimates only if the kurtosis and higher
order moments in the state error distributions are significant. In
our application, the magnitudes of the quaternion component
covariances are significantly less than unity (on the order
of 10−4 to 10−6 in most cases) which means the kurtosis
and higher order moments are very small. This fact is one
indication of why the UKF does not perform better than the
EKF. Additionally, this indicates why there is little, if any,
effect in UKF performance with different values for the UKF
parameters α, β, and κ. Sampling rate is another indication
why the UKF does not provide better performance when
estimating quaternion motion. In general, if the sampling rate
is sufficiently high, the quaternion dynamics behave in a quasi-
linear fashion since, with small timesteps, the integration steps
propagate the quaternions only small deviations away from the
unit sphere, making the error in linearization minimal.

Finally, one of the main advantages of the UKF is that
it does not require the calculation of Jacobian matrices. In
many applications, Jacobian matrix evaluation can be non-
trivial and lead to implementation difficulties[6]. However,
in our application, the calculation of the Jacobian matrices
is quite simple based on the structure of the process and
measurement functions (see equations 1 and 8) and quaternion
mathematics[20]. Therefore, the UKF does not provide us with
any additional benefit in this case. In fact, the simplicity of
the Jacobian calculations for the process model allowed us to
use the same method for calculating Qk in both the EKF and
UKF formulations.

Although our work has focused on head and hand orien-
tation tracking in VR applications, we hypothesize that these
results may extend to other domains, such as robotics and
underwater vehicle navigation, requiring quaternion motion
estimation with motion dynamics that behave in a quasi-
linear fashion. Such motion dynamics would have to have
the important characteristic of small angle deviations and
sampled at relatively high rates. Future work can validate this
hypothesis.

VI. CONCLUSION

In this paper, we have presented an experiment which
compares extended and unscented Kalman filtering of head
and hand orientation data represented with quaternions. Our
results indicate that, although the EKF and UKF have roughly
the same accuracy, the computational overhead of the UKF,
the simplicity of the Jacobian matrix calculations, and the
quasi-linear nature of the quaternion dynamics makes the EKF
a better choice for the task of improving tracking of noisy
quaternion signals in virtual reality applications.

ACKNOWLEDGMENTS

Special thanks to Simon Julier, Gary Bishop, Greg Welch,
John Hughes, and Andy van Dam for valuable guidance and
discussion. This work is supported in part by the NSF Graphics
and Visualization Center, IBM, the Department of Energy,
Alias/Wavefront, Microsoft, Sun Microsystems, and TACO.

REFERENCES

[1] Stanney, Kay M. Handbook of Virtual Environments: Design, Implemen-
tation, Applications, Lawrence Erlbaum Associates, 2002.

[2] Azuma, Ronald and Gary Bishop. Improving Static and Dynamic
Registration in a See-Through HMD. In Proceedings of SIGGRAPH’94,
197-204, 1994.

[3] Foxlin, Eric. Inertial Head-Tracker Sensor Fusion by a Complementary
Separate-Bias Kalman Filter. In Proceedings of the Virtual Reality
Annual International Symposium ’96, 185-194, 1996.

[4] Welch, Greg, and Gary Bishop. SCAAT: Incremental Tracking with
Incomplete Information, In Proceedings of SIGGRAPH’97, ACM Press,
333-344, 1997.

[5] Sorenson, H. W. Kalman Filtering: Theory and Application, IEEE Press,
1985.

[6] Julier, Simon J., Jeffery K. Uhlmann, and Hugh F. Durrant-Whyte. A
New Approach for Filtering Nonlinear Systems.In Proceedings of the
1995 American Control Conference, 1628-1632, 1995.

[7] Julier, Simon J. and Jeffery K. Uhlmann. A New Extension of
the Kalman Filter to Nonlinear Systems. In The Proceedings of
AeroSense: The 11th International Symposium on Aerospace/Defense
Sensing,Simulation and Controls, Multi Sensor Fusion, Tracking and
Resource Management II, SPIE, 1997.

[8] Julier, Simon J. and H. F. Durrant-Whyte. Navigation and Parameter
Estimation of High Speed Road Vehicles. In Robotics and Automation
Conference, 101-105, 1995.

[9] Wan, E. A., and R. van der Merwe. The Unscented Kalman Filter for
Nonlinear Estimation. In Proceedings of Symposium 2000 on Adaptive
Systems for Signal Processing, Communication and Control(AS-SPCC),
IEEE Press, 2000.

[10] van der Merwe, R. and E. A. Wan, Efficient Derivative-Free Kalman
Filters for Online Learning, In European Symposium on Artificial Neural
Networks (ESANN), Bruges, Belgium, 2001.

[11] Peihua, Li and Tianwen Zhang. Unscented Kalman Filter for Visual
Curve Tracking. In Proceedings of Statistical Methods in Video Pro-
cessing, June, 2002.

[12] Stenger, B., P. R. S. Mendonça, and R. Cipolla. Model-Based Hand
Tracking Using an Unscented Kalman Filter. In Proceedings of the
British Machine Vision Conference, 63-72, September 2001.

[13] Grassia, F. Sebastian. Practical Parameterization of Rotations Using the
Exponential Map. In Journal of Graphics Tools, 3(3):29-48, 1998.

[14] Welch, Greg and Gary Bishop. An Introduction to the Kalman Filter.
Technical Report TR 95-041, Department of Computer Science, Univer-
sity of North Carolina at Chapel Hill, 1995.

[15] Maybeck, Peter S. Stochastic models, estimation, and control. Volume
1, Academic Press, 1979.

[16] Zarachan, Paul and Howard Musoff. Fundamentals of Kalman Filtering:
A Practical Approach. Progress in Astronautics and Aeronautics, Volume
190, American Institute of Aeronautics and Astronautics, Inc., 2000.

[17] Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William
T. Vetterling. Numerical Recipes in C: The Art of Scientific Computing,
2nd Edition, Cambridge University Press, 1993.

[18] Wan, E. A., and R. van der Merwe. The Unscented Kalman Filter,
In Kalman Filtering and Neural Networks, S. Haykin (ed.), Wiley
Publishing, 2001.

[19] Julier, Simon J., and Jeffrey K. Uhlmann. Reduced Sigma Point Filters
for the Propagation of Means and Covariances Through Nonlinear Trans-
formations. In Proceedings of the 2002 American Control Conference,
887-892, 2002.

[20] Shoemake, Ken. Animating Rotations with Quaternion Curves. In Pro-
ceedings of SIGGRAPH 85, ACM Press, 245-254, 1985.


