
The Bespoke 3DUI XNA Framework: A Low-Cost Platform for Prototyping
3D Spatial Interfaces in Video Games

Paul D. Varcholik* Joseph J. LaViola Jr.† Charles Hughes‡

Media Convergence Laboratory School of Electrical Engineering School of Electrical Engineering
Institute for Simulation & Training and Computer Science and Computer Science

University of Central Florida University of Central Florida University of Central Florida

Abstract

This paper presents the Bespoke 3DUI XNA Framework, an
open-source software platform for research in 3D user interaction.
The Bespoke 3DUI XNA Framework distinguishes itself from
other platforms, in that it provides 3D user interface machinery in
a game development framework. This combination leverages low-
cost, widely available game technologies, enabling researchers to
investigate 3DUI techniques, and providing game developers a
foundation for prototyping 3DUIs in commercial video games.

The paper explores the functionality and utility of the
software library and describes how researchers and game makers
can leverage the platform to investigate 3D user interfaces in the
context of prototypical interactive experiences.

Keywords: 3DUI, user interface, framework, game development

1 Introduction
3D user interfaces [Bowman 2004] give users the ability to
spatially interact with 3D virtual worlds because they provide nat-
ural mappings from human movement to interface controls. These
interfaces, common in virtual and augmented reality applications,
give users, rich, immersive, and interactive experiences that can
mimic the real world or provide magical, larger than life interac-
tion metaphors [Katzourin 2006].

With the latest generation of video game hardware, 3D user
interfaces are emerging as the gaming interaction paradigm of the
future. The popularity of devices such as the Sony Eye-Toy, the
Nintendo Wii, and 3D DLP HDTV are making it possible for
gamers to interface with video games using 3D spatial input, and
for developers to leverage concepts from virtual and augmented
reality such as head tracking and stereoscopic vision. However,
developing software for these interfaces can be a daunting process
for newcomers due to hardware inaccessibility and a lack of 3DUI
software tools. Thus, investigators must overcome a number of
technical challenges to develop a 3DUI platform before they can
begin research in this area.

Through an extensive literature review, and collaboration with
3DUI experts, we have compiled a set of requirements necessary
for a 3DUI research platform. These requirements can be
categorized into three areas: 1) high-level non-functional
requirements; 2) primary components essential for basic 3DUI
research; and 3) secondary elements necessary for longer-term
research efforts. These categories include:

* pvarchol@ist.ucf.edu
† jjl@cs.ucf.edu
‡ceh@cs.ucf.edu

High-Level Non-Functional Requirements
• Commercial-off-the-shelf (COTS) hardware
• Open-source software
• Modern programming language, accessible to

novice software developers
• Broad application
• Extensibility

Primary Components

• 2D/3D graphics rendering
• 6DOF head tracking
• 3D motion controller (ala Nintendo Wiimote)
• Stereoscopic rendering

Secondary Components

• Scene management
• Content pipeline with support for common scene

elements (e.g. 3D models, animation, terrain)
• 3D audio
• Network support (e.g. multiplayer services)
• 2D/3D Gesture recognition
• Physics
• Motion tracking (of multiple, non-head points (e.g.

hands, body or object)
• Chroma-key extraction
• Head-mounted displays
• 2D UI widgets (e.g. menus, buttons)
• Recording user experience
• Cross-platform communication

Notably, the requirements call for a generic platform for

creating virtual environment but with a specific set of
technologies for interacting with those worlds. In short, these
requirements describe a game engine geared toward the input
devices and displays involved in 3DUI development.

This paper presents the Bespoke 3DUI XNA Framework, an
extensible, open-source software library developed to meet many
of these requirements, thereby enabling the rapid creation of
sophisticated 3DUIs. A detailed discussion is provided on design
decisions, compatible hardware, software architecture and the
employment of the framework.

The work presented has been adopted by a number of
university colleagues, members of the open-source community,
and as the development platform for a graduate course in 3DUIs
at the University of Central Florida. This paper discusses
feedback obtained from users of the framework as insight into the
usefulness of the system.

2 Related Work
The idea of providing an open-source framework for supporting
3D spatial interaction research and development is not new.
There have been many different software frameworks and
toolkits, such as the SVE toolkit [Kessler et al. 2000], VR Juggler

[Bierbaum et al. 2001], DIVERSE [Kelso et al. 2003],
Studierstube [Schmalstieg et al. 2002], ARToolKit [Kato 1999],
and the VARU Framework [Irawati et al. 2008], that aid in
developing spatial 3D interfaces. However, these frameworks and
toolkits were designed with more conventional VR and AR
applications in mind. Thus, they lack the video game specific
development tools that the Bespoke 3DUI XNA Framework
provides.

There are several open source game toolkits available that
make it easier to build video games by providing important
infrastructure components such as 3D rendering, asset
management, sound, event handling, scene graph support, and
physics simulation. Examples of these types of toolkits include
the Microsoft XNA Game Studio [Microsoft 2009], Panda3D
[Goslin 2004], and Delta3D [Delta3D 2009]. Although these
game development environments provide sophisticated tools and
support for developing video games, they generally do not focus
on 3DUI and virtual reality-based games.

One development framework that is closest in spirit to the
Bespoke 3DUI XNA Framework is Goblin XNA [Oda 2007].
Goblin XNA is a framework for research on 3D user interfaces,
including mobile augmented reality and virtual reality, with an
emphasis on games. It is written in C# and based on the Microsoft
XNA platform [Microsoft 2009]. Goblin XNA has many
similarities to the Bespoke 3DUI XNA Framework in terms of
using XNA as its underlying platform and supporting head
tracking and 3D spatial interfaces. However, Goblin XNA is
primarily focused on augmented reality games while the Bespoke
3DUI XNA Framework targets virtual reality-based games using
3D TVs and monitors and 3D motion controllers. To the best of
our knowledge, the Bespoke 3DUI XNA Framework is one of the
first development environments to provide comprehensive support
for both 3D spatial interfaces and video game creation.

3 The Bespoke 3DUI XNA Framework
The Bespoke 3DUI XNA Framework is organized as a collection
of .NET assemblies, application samples, and documentation; and
is packaged within a Windows installer for easy distribution and
inclusion of third-party dependencies. The Framework is written
in the C# programming language and targets the .NET 3.0
Framework and .NET 2.0 runtime. As the name implies, the
Bespoke 3DUI XNA Framework is built on top of the Microsoft
XNA platform. XNA is a set of software libraries, tools, and
community resources “focused on enabling game developers to be
successful on Microsoft gaming platforms” [Microsoft 2009]. We
chose C# and XNA to match our requirement of a system that
utilized a modern programming language, and one accessible to
novice software developers. We have anecdotal evidence, from
many years of instruction on software development, that C# does
indeed meet the criteria of a modern language that is approachable
by novice programmers; and yet the environment is powerful
enough to support real-time interactive simulation and games.
Moreover, since XNA’s initial release in December 2006,
thousands of games have been created with the platform;
including commercial games that have been released on
Microsoft’s Xbox LIVE Arcade service [Fristrom 2008]. We can
confidently state that the XNA platform delivers a solid
development environment for students and hobbyists as well as
for professional game makers.

The Bespoke 3DUI XNA Framework is an open-source
product, distributed with a complete set of source code and a
significant number of application samples.

For non-3DUI-specific game development, the Bespoke 3DUI
XNA Framework has no hardware requirements beyond those of
XNA (which are primarily concerned with a graphics card that
supports 3D acceleration and pixel shaders). When developing

3DUI applications, the Framework supports particular hardware
for stereoscopic rendering, 6DOF head tracking, and 3D motion
control. Figure 1 pictures a development workstation and typical
hardware employed for creating games and 3DUIs with the
Bespoke 3DUI XNA Framework. The specific hardware
components and their corresponding Framework elements are
described in the sections below.

Figure 1: Development workstation

3.1 Stereoscopic Rendering
For stereoscopic rendering, we targeted the 3D DLP HDTV
technology from Texas Instruments [Texas Instruments 2009].
This technology, incorporated into television sets by Mitsubishi
and Samsung, generates independent views for the left and right
eyes. The television is optically synchronized with a pair of
shutter glasses worn by the viewer, and supplies images at 60Hz
per eye (equivalent to 120Hz). To present the viewer with a 3D
image, the video source must supply the television with an image
stream following Texas Instrument’s 3D Image Format
[Hutchison 2008]. This format calls for the left and right eye
images to be masked with alternate checkerboard patterns and
then combined into a single image before transmission to the
television. The 3D DLP technology correspondingly samples the
interleaved image, reconstructing the left and right eye images for
subsequent display.

The Bespoke 3DUI XNA Framework supports the 3D DLP
HDTV technology through:

1. A stereoscopic camera component
2. Independent render targets
3. Shader-based image masking

The stereoscopic camera component defines the concept of a

left and right eye to correctly present the virtual camera’s view
and projection matrices from the corresponding perspective. The
eyes are separated by a user-configurable interpupillary distance.
Rendering a complete frame in 3D requires that the scene be
drawn twice: first from one eye’s perspective and then the other.
Each perspective is rendered, not directly to the screen, but to
independent render targets whose outputs are bitmaps that are fed
to the image masking process. The image masking is offloaded to
the graphics processing unit (GPU) with a simple pixel shader
written in the High-Level Shader Language (HLSL) and using the
shader model 3.0 specification. The masking shader interleaves
the left and right eye images and presents the final image to the
display.

By implementing render targets and shader-based image
masking, the Bespoke 3DUI XNA Framework is able to transform
any scene into 3D. The masking process runs at 800 to 200 fps for
resolutions of 800 by 600 to 1920 by 1080, respectively, thereby
having only negligible influence on overall frame rates.

There are a number of other considerations when rendering to
this technology. First, the PC must connect to the television using
an HDMI or DVI video cable. This is required, because the
resolution must be 1920 by 1080 (1080p) to render in 3D.
Additionally, video drivers must be configured so that they do not
scale the display, nor should an application scale the image (e.g.
by embedding the game in a resizable window). Any scaling will
misalign the masking during the television’s sampling and image
reconstitution. Therefore, applications must run in full-screen
mode.

At the Interactive Systems and User Experiences Lab
(IS&UE) at the University of Central Florida, we have employed
ten Samsung 50” 3D DLP HDTVs with Shutter Glasses from
TriDef (pictured in Figure 1). Each television costs approximately
$1,500 with an additional $200 for a 2-pack of 3D shutter glasses,
software, and IR sync cable/emitter.

3.2 Head Tracking
Head tracking refers to the ability to track the position and
orientation of the user’s head [Bowman 2004]. This information
can be used as input, commonly as a means to manipulate the
virtual camera. We have adopted a commercial-off-the-shelf,
6DOF optical head tracking solution from Natural Point called the
TrackIR [Natural Point 2008]. Pictured in Figure 2, the TrackIR
mounts atop the display and detects a triangular array of infrared
points within a 46 ̊ field of view. The IR points can be actively
transmitted to the TrackIR, or the TrackIR can emit IR for use
with a retro-reflective clip. The device operates at 120fps.

Figure 2: NaturalPoint TrackIR and retro-reflective clip

[Natural Point 2008]

The TrackIR is programmatically accessible through a
Component Object Model (COM) assembly provided free of
charge from Natural Point. COM components can be accessed
through the .NET Interop service and treated as native code
elements by the Bespoke 3DUI XNA Framework. To make the
device accessible to XNA, a small wrapper class encapsulates the
functionality and makes the TrackIR behave similarly to the
native XNA keyboard, mouse, and gamepad input devices.
Additionally, the Bespoke 3DUI XNA Framework provides a
virtual camera that is bound to the TrackIR input; giving game
developers an instant option for a first-person, head-tracked
camera. The framework also exposes a user-configurable
sensitivity value for non-isomorphic mapping.

The TrackIR is sold for ~$130, making it a fairly low-cost
solution for 6DOF head tracking.

3.3 3D Motion Controller
With the recent popularity of the Nintendo Wii, 3D motion
control has garnered considerable attention from simulation and
game developers. Game makers now have strong commercial
motivation to explore spatial interaction, and can do so cost
effectively with commercial-off-the-shelf input devices such as
the Nintendo Wiimote.

Though initially designed for use on the Nintendo Wii, the
Wiimote has been adapted for use on the PC. The Wiimote
connects to the PC using the Bluetooth communication protocol

and transmits data at 100fps. The device includes accelerometers
for detecting forces applied to three axes (illustrated in Figure 3).

Figure 3: Nintendo Wiimote [Troillard 2008]

The open-source community has embraced the Wiimote,

having reverse engineered the messaging protocol, and has
provided a number of software libraries for PC-to-Wiimote
communication. We have adopted one of these libraries, Brian
Peek’s Managed Wiimote Library [Peek 2009], for use with the
Bespoke 3DUI XNA Framework. Brian Peek’s library is a
general-purpose package that allows a Wiimote to be accessed by
any .NET assembly, not simply XNA. The Bespoke 3DUI
Framework wraps the Wiimote functionality and makes it
available in a manner consistent with other XNA input devices.

The Wiimote also includes seven input buttons, a digital
directional pad, a speaker, vibration system, and an infrared
camera, all of which are accessible through the Wiimote
components incorporated into the Bespoke 3DUI XNA
Framework. The Wiimote data is associated with a player
enumeration for supporting up to four simultaneous Wiimotes;
and the 3-axis accelerometer data is augmented with timestamp
information for use with the gesture recognition system (described
further in the next section) [Varcholik 2008].

While the Wiimote is a very capable and inexpensive spatial
input device, it has a few limitations. First, the Wiimote is
incapable of providing directionality with the accelerometers
alone. For example, if one were to place the Wiimote upright on a
table, in its natural position with the buttons facing the ceiling, the
accelerometers alone could not detect the angle of rotation around
the vertical axis. Likewise, the accelerometers cannot detect if the
Wiimote is closer to or farther away from the user. In other words,
the Wiimote’s accelerometers cannot detect specific pointing
angles or distance. This is where the Wiimote’s infrared camera
comes into play. With two neighboring IR source points, the
Wiimote can determine distance from the IR source and relative
orientation.

Another consideration is that the device must be in motion for
the accelerometers to be used for gesture recognition. While it is
possible to create one non-moving gesture per orientation, a
gesture recognition system would not be able to disambiguate
static poses.

In summary, the data collected from the Wiimote’s
accelerometers corresponds to forces applied to three axes:
longitudinal roll (motion along the X-axis), pitch (motion along
the Y-axis), and the upright/upside-down orientation of the
Wiimote (vertical motion along the Z-axis). The Wiimote is a
relative motion device, in that there is no innate sense of absolute
position in space. To root the Wiimote, at least with respect to
distance and directionality, the IR camera must be employed.
However, the developer must consider the strong likelihood of
camera occlusion, particularly when using the Wiimote as a full
3D motion input device.

3.4 Gesture Recognition
One of the key features of the Bespoke 3DUI XNA Framework is
the gesture recognition system; a machine-learning platform that
enables game makers to create an arbitrary set of 3D gestures and
map them to gameplay elements.

The recognition system is separated into two primary
components: the trainer and the classifier. The training component
collects accelerometer data from the Nintendo Wiimote and
associates the data with a user-defined label identifying the
gesture. A gesture sample is the accelerometer data collected
between the press and release of the Wiimote’s B button (the
trigger button). Any number of samples can be used to train a
gesture, but our experimentation shows good accuracy (> 94%)
with as few as ten samples per gesture [Varcholik 2008]. A set of
29 features is used to linearly separate the gestures in the set.
These features are extensions of work by Rubine [1991] on 2D
symbol recognition, and are further described in [Varcholik
2008]. Trained gestures can be serialized for reuse. Notably, no
computed feature or weighting information is stored during
serialization – only the accelerometer data. This allows for
alternate machine learning algorithms without invalidating
previously trained gestures.

The classification component records an unlabeled sample
and attempts to match it against a trained gesture. Classification
can be accomplished in 10ms or less, even on modest computing
hardware (our development machine was a laptop with a 1.8Hhz
Intel Core2 Duo and 2GB of RAM).

The gesture recognition system supports both one- and two-
handed gestures. For two-handed gestures, the user can train the
data simultaneously, utilizing the same B button start/stop
mechanic for each hand.

The system uses a linear classifier to make its recognition
decisions. We have also experimented with an AdaBoost
implementation [Freund and Schapire 1997], and an artificial
neural network (ANN) evolved using NeuroEvolution of
Augmenting Topologies (NEAT) [Stanley and Miikkulainen
2002]. Our unpublished experiments show slightly better accuracy
for AdaBoost over the linear classifier, but at the expense of
higher training cost. The ANN implementation, with the topology
and node weights evolved using NEAT, had the worst accuracy
and highest training cost. The experiment was conducted using
three gesture sets and with two sample sizes per set. We
hypothesize that the ANN/NEAT implementation performed
poorly because of the small amount of training data (ten and
twenty samples per gesture). These results are preliminary and not
rigorously analyzed so we cannot draw any formal conclusions.
Informally, we note that the linear classifier, included with the
Bespoke 3DUI XNA framework, can train in almost real-time
with ten gestures in the set and ten samples per gesture; and can
classify in real time with accuracy greater than 94%.

We have employed this system for computer mediated,
human-to-human communication [Varcholik 2008] and for
human-robot communication [Varcholik 2008]. The recognition
system has also been extended to support 2D symbol recognition
for multi-touch surface interaction [Varcholik 2009].

3.4 Game Engine Features
What is distinct about the Bespoke 3DUI XNA Framework is that
it provides 3D user interface machinery in a game development
framework. This combination enables academic researchers to
investigate 3DUI techniques while leveraging game technologies,
and provides game developers a foundation for prototyping
3DUIs in commercial video games. Thus far we’ve discussed
some of the 3DUI specific functionality of the framework. In this
section, we describe some components of the library that are
commonly found in game engines.

As previously stated, the Microsoft XNA platform is a set of
software libraries and tools designed to enable the creation of
games on Microsoft gaming platforms. The software libraries
support 2D/3D graphics rendering, 3D sound, multi-player
networking, an extensible content pipeline, and include a
comprehensive set of game-related helper classes. However, XNA
should not be classified as an actual game engine. A game engine
generally includes higher-level constructs such as scene
management, object interaction, animation, graphical user
interfaces, and artificial intelligence. Often, a game engine
provides rendering through a graphics API such as Direct3D or
OpenGL. A game engine is commonly considered middleware in
that it sits between the rendering platform and the game code
itself. XNA is built atop Microsoft DirectX, and in this respect
acts as middleware between a game and the rendering system.
However, XNA remains fairly low-level in the functionality that it
provides, and is thus better compared to OpenGL than to games
engines such as id Software’s Quake III [id Software 2009] or
Epic Games’ Unreal [Epic Games 2008].

The Bespoke 3DUI XNA Framework extends the XNA
platform to provide game engine features including those listed in
Table 1.

Feature Description

Virtual Cameras An abstraction of the View and Projection
matrices required for rendering, coupled
with specialized attributes (e.g. chase
camera, stereoscopic camera, orthographic
camera).

Input Devices Componentized abstractions of input
devices including: mouse; keyboard;
gamepad; Wiimote; and the TrackIR,
which generally provide frame-to-frame
history for relative tracking.

Actors Scene object abstractions for dynamic and
non-dynamic objects that generally have an
associated 3D model.

Animation Animated actor.
Menus & GUI 2D elements for game state transitions and

in-game graphical user interfaces (e.g.
buttons, fonts/strings, and menus).

Scene Loading XML serialization of scene elements (e.g.
actors, cameras, UI elements) for non-
programmatic scene population. Allows for
in-game scene reloading.

Scene Management An abstraction of the active scene that
provides an entry and access point for
game objects. Encapsulates the primary
render and update threads.

Particle System 3D particles for producing effects (e.g.
explosions, smoke, projectiles)

Terrain 2D texture tiling over a height map
Skybox 5-sided texture mapped cube for scene

background – floor removed.
Post Processing Effects system applied after the scene has

been rendered but before final display.
Common effects: bloom, god rays, blur

Windows Forms Allows an XNA application to be
embedded within a Windows Form.

World Editor Enables the dynamic compilation of XNA
assets for WYSIWYG scene creation and
asset previewing.

Cross-platform
Communication

Generic network communication
mechanism useful for serializing input
device data to remote clients.

Table 1: Game engine features

A few of these components are particularly noteworthy: the
scene management system, the world editor, and the cross-
platform communication component. The scene management
system provides an organizational element that is otherwise
absent from XNA. Specifically, the scene manager acts as a
collection point for all of the objects in the game and triggers the
rendering of and interaction between those objects. Scene objects
are actors, 2D UI elements, terrain, sky boxes, and sprites. These
elements are added to the scene management system
programmatically or via the XML scene loader. Scene objects can
be disabled so that they are not considered during the update and
render threads, or can be made invisible so that they are updated
but not rendered.

The world editor, pictured in Figure 4, is a WYSIWYG scene
creation tool built on top of the Bespoke 3DUI XNA Framework.
As such, the editor uses the same rendering system as games
authored using the framework. This is essential for accurately
previewing the look of a 3D model as it will appear in-game. The
scene author first populates a content library – a categorized list of
source assets that can be compiled into game-ready content.
Source assets come from a digital content creation (DCC) package
in a format that generally contains more information about the
asset than can be used in-game. Compiling the source asset into a
game-ready format means that we process the asset through the
XNA content pipeline, extracting only that information that is
useful at runtime and writing it into a usable format. Ordinarily,
XNA asset compilation is performed along with source code.
Moving this process to the world editor allows the user to compile
large sets of assets out-of-band. Content libraries can be serialized
and loaded into the world editor for easy reuse.

Once an asset is included in the content library and compiled,
it can be added to a scene. Scene objects can be selected through a
mouse click, or through a categorized scene explorer window.
Once selected, objects can be transformed through chorded
keyboard-mouse movements in a manner similar to popular 3D
modeling packages such as 3D Studio Max or Maya. An object’s
attributes can also be manipulated through a Visual Studio-like
properties window. Indeed, the world editor borrows heavily from
the dockable window scheme of Visual Studio. Scene’s can be
serialized to an XML document for in-game loading.

Figure 4: World Editor

The last game engine feature, discussed in more depth, is

cross-platform communication. XNA supports the PC, Xbox 360,
and the Microsoft Zune. The Bespoke 3DUI XNA Framework
extends support to non-Microsoft environments such as MacOS or
Linux through the Bespoke Open Sound Control (OSC) Library
[Bespoke Software 2008]. OSC is an open, lightweight, message-
based protocol that enables, for example, input device data to be

transmitted over the network. The Bespoke OSC implementation
uses UDP/IP as the transport protocol, and includes support for
unicast, broadcast, and multicast. A remote application, therefore,
need only support the OSC protocol and network communication
via UDP; and need not be hosted on a Microsoft operating system
or written in C#. Applications of the Bespoke 3DUI XNA
Framework can use this mechanism for transmitting Wiimote and
head-tracking data to remote clients.

As a final note on hardware and operating systems we note
that, while XNA supports the Xbox 360 and Microsoft Zune, only
subsets of the .NET Framework Class Library (FCL) are available
on those platforms. Additionally, of the three XNA-supported
platforms, only the PC is capable of accessing external hardware.
As such, the Bespoke 3DUI XNA Framework must operate on a
PC in order to support devices such as the Nintendo Wiimote and
the NaturalPoint TrackIR.

4 Case Studies
The Bespoke 3DUI XNA Framework has been utilized as the
development platform for a graduate course in 3DUIs at the
University of Central Florida. In the context of that course, a
number of students have published papers on games and
techniques developed using the Framework. This section
discusses two of these projects, pictured in Figure 5: RealDance
[Charbonneau 2009] and an exploration of menu techniques using
a 3D game input device (the Nintendo Wiimote) [Chertoff 2009].
These projects, and several others, were demonstrated at the 2008
Microsoft Faculty Summit [Microsoft 2008].

Figure 5: Projects created with the Framework:

RealDance (left), Menu Techniques (right)

RealDance, is a rhythm and dance game in the spirit of games
like Dance Revolution and Guitar Hero. The user is equipped with
four Nintendo Wiimotes strapped to the arms and legs. A green
icon signals a punch, and a purple icon a kick; with the icons
displayed on the left or right side of the screen to indicate which
arm/hand to use. A video of the song is played in the background
and scoring is based on how accurately the user matches his
motions with the song. In addition to the game itself, the two
student developers designed a song creation system to associate
motion icons with a song, and created adjustable straps to secure
the Wiimotes to the arms and legs. They also employed a novel
menu navigation system, using gesture recognition, whereby the
user punches to the left and right to move through the menu, and
claps their hands to make a selection. The game includes four
popular songs with motion tracks that vary in difficulty.

The Menu Techniques project examined the efficacy of linear
versus radial menus when using a 3D spatial input device such as
the Nintendo Wiimote. To this end, the two-student development
team created a simple game environment that asked the user to
uncover a hidden artifact through the successive selection and
application of digging “tools” accessed through a hierarchical

menu. The students ran a within-subjects experiment with twenty
subjects to compare their menu techniques.

These case studies represent both the entertainment and the
research capacity of the Bespoke 3DUI XNA Framework. Note
that each project was developed in approximately four weeks (the
amount of time each two-person group had for their final project
in the 3DUI course).

5 Framework Evaluation
As of this writing, the Bespoke 3DUI XNA Framework has been
publicly available for roughly sixteen months and is in its fourth
major revision. These revisions have been created in direct
response to feedback we have received on the Framework.
Specifically, we have solicited feedback from the students of the
two semesters of the 3DUI course and we have created an online
survey for collecting feedback from external adopters. This
feedback is presented here informally, but generally states that the
Framework is useful, interesting, and easy to use. Figure 6 shows
the aggregated feedback, of eighteen respondents, to a seven-level
Likert scale concerning their overall reaction to the Framework.

Figure 6: Feedback responses

Other questions allowed for free-form responses on the

strengths and weaknesses of the Framework and what users would
like to see added. In general, users of the Framework thought that
the platform provided many of the common components that are
required for game development; and that having the Framework
let developers concentrate on their game/research instead of the
underlying technology of a game engine. Indeed, comments on
the strengths of the Framework overwhelmingly support the
contention that this platform helps users to quickly get games up-
and-running.

Feedback on the weaknesses of the system revealed two major
themes: sparse documentation, and the lack of a physics system.
Documentation is provided through a Microsoft help file (.chm)
and a variety of code samples. The negative feedback indicates
the need for more effort in documenting the system and providing
more detailed tutorials. Indeed, many of the feedback respondents
requested cookbook-style tutorials that would quickly demonstrate
the use of a common feature.

A physics system is a game engine component that simulates
Newtonian physics and interactions between game objects. XNA
does not provide a native physics system, and this is absent from
the Bespoke 3DUI XNA Framework as well. Simple bounding
sphere collision detection is included in the Framework, but more
sophisticated collision detection and dynamic simulation is left to
the user to implement. This is a focus for future work on the
system.

6 Conclusions and Future Work
With the latest generation of video game hardware, 3D user inter-
faces are emerging as the gaming interaction paradigm of the
future. Researchers and game makers require tools to enable the
development of interesting 3DUI techniques. Many commercial

and open-source video game creation packages exist as do several
3DUI frameworks. However, there are few development
platforms that combine 3D user interface machinery in a game
development framework. The Bespoke 3DUI XNA Framework
provides this combination and enables academic researchers to
investigate 3DUI techniques while leveraging game technologies,
and provides game developers a foundation for prototyping
3DUIs in commercial video games.

This paper has described the Framework: its organization,
3DUI functionality, and game engine features; and the
requirements that drove the development of the system. We have
discussed a graduate course in 3DUI that has adopted the
Framework, and have detailed two student-created projects that
have used the Framework for entertainment and 3DUI research.
Furthermore, we have informally presented an evaluation of the
Framework that has revealed strengths and weaknesses of the
system, and has provided direction for future work.

Future work on the Framework will include improved
documentation and tutorials, and will integrate a full-fledged
physics system for collision detection and dynamic simulation.
Additionally, the Framework does not satisfy all of the
requirements that we identified for a 3DUI game development
research platform. In particular, we intend to add support for
augmented reality research through chroma-key extraction, head-
mounted displays, and fiducial tracking. We will also add the
ability to record the user’s experience during a simulation, and
include support for hand and body motion tracking. Finally, we
will add support for the Wii Balance Board and the upcoming
WiiMotion Plus – hardware peripherals that offer even more
options for exploring user interfaces and gameplay mechanics.

The Bespoke 3DUI XNA Framework is available for
download at http://www.bespokesoftware.org/3DUI.

7 Acknowledgements
This work is supported in part by IARPA, SAIC, and by the
National Science Foundation under award number DRL0638977.

References

BESPOKE SOFTWARE 2008. The Bespoke Open Sound Control
Library. Available from:
http://www.bespokesoftware.org/osc/.

BIERBAUM, A, JUST, C., HARTLINK, P., MEINERT, K., BAKER, A.

And CRUZ-NEIRA, C. 2001. VR Juggler: a virtual platform for
virtual reality application development. In Virtual Reality,
2001. Proceedings. IEEE, 89-96.

BOWMAN, D. KRUIJFF, E., LAVIOLA, J. And POUPYREV, I. 2004.

3D User Interfaces: Theory and Practice. Addison Wesley.

CHARBONNEAU, E. MILLER, A. WINGRAVE, C. AND LAVIOLA, J.

2009. RealDance: An Exploration of 3D Spatial Interfaces for
Dancing Games. In Proceedings of the IEEE Symposium on
3D User Interfaces, 2009.

CHERTOFF, D. BYERS, R. AND LAVIOLA, J. 2009. An Exploration

of Menu Techniques using a 3D Game Input Device. In
Proceedings of the Foundations of Digital Games, 2009.

DELTA3D 2009. Delta3D: Open Source Gaming & Simulation
Engine. Available from: http://www.delta3d.org/.

EPIC GAMES 2008. Unreal Technology. Available from:

http://www.unrealtechnology.com/.

FRUEND, Y. AND SCHAPIRE, R.E. 1997. A Decision-Theoretic

Generalization of On-Line Learning and an Application to
Boosting. Journal of Computer and System Sciences 55, 119-
139.

FRISTROM, J. 2008. Postmortem: Torpex Games' Schizoid.

Available from:
http://www.gamasutra.com/view/feature/3796/postmortem_to
rpex_games_schizoid.php.

GOSLIN, M., MINE, M. 2004. The Panda3D Graphics Engine.

Computer 37, 112-114.

HUTCHISON, D. 2008. Introducing DLP 3-D TV. Available from:

http://dlp.com/downloads/Introducing%20DLP%203D%20H
DTV%20Whitepaper.pdf.

ID SOFTWARE 2009. id Technology Licensing. Available from:

http://www.idsoftware.com/business/technology/.

IRAWATI, S. SANGCHUL, A., JINWOOK, K. AND HEEDONG, K. 2008.

VARU Framework: Enabling Rapid Prototyping of VR, AR
and Ubiquitous Applications. In Virtual Reality Conference,
2008. VR '08. IEEE, 201-208.

KATO, H., BILLINGHURST, M. 1999. Marker Tracking and HMD

Calibration for a Video-Based Augmented Reality
Conferencing System. In Proceedings of the 2nd IEEE and
ACM International Workshop on Augmented Reality, San
Francisco, CA, 1999, 85-94.

KATZOURIN, M., IGNATOFF, D., QUIRK, L,. LAVIOLA, J., JENKINS,

O. 2006. Swordplay: Innovating Game Development through
VR. In Proceedings of the IEEE computer graphics and
applications, Nov./Dec. 2006, 15-19.

KELSO, J. SATTERFIELD, S.G., ARSENAULT, L.E., KETCHAN, P.M.,

AND FRIZ, R.D. 2003. DIVERSE: A Framework for Building
Extensible and Reconfigurable Device-Independent Virtual
Environments and Distributed Asynchronous Simulations.
Presence: Teleoperators & Virtual Environments 12, 19-36.

KESSLER, G.D., BOWMAN, D.A., AND HODGES, L.F. 2000. The

Simple Virtual Environment Library: An Extensible
Framework for Building VE Applications. Presence:
Teleoperators & Virtual Environments 9, 187-208.

MICROSOFT 2008. Microsoft Research Faculty Summit 2008:
DemoFest. Available from: http://research.microsoft.com/en-
us/um/redmond/events/fs2008/demofest.aspx.

MICROSOFT 2009. XNA Developer Center. Available from:
http://msdn.microsoft.com/en-us/xna/default.aspx.

NATURAL POINT 2008. TrackIR: 6DOF Head Tracking. Available

from: http://www.naturalpoint.com/trackir/.

ODA, O., LISTER, L., WHITE, S., FEINER, S. 2007. Developing an

augmented reality racing game. In Proceedings of the
Proceedings of the 2nd international conference on
INtelligent TEchnologies for interactive enterTAINment,
Cancun, Mexico, 2007 ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

PEEK, B. 2009. Managed Libary for Nintendo's Wiimote.

Available from: http://www.codeplex.com/WiimoteLib.

RUBINE, D. 1991. Specifying gestures by example. In
International Conference on Computer Graphics and
Interactive Techniques, 329-337.

SCHMALSTIEG, D., FUHRMANN, A., HESINA, G., SZALAVARI, Z.,

ENCARNASALO, L.M., GERVAUTZ, M. AND PURGATHOFER, W.
2002. The Studierstube Augmented Reality Project. Presence:
Teleoperators & Virtual Environments 11, 33-54.

STANLEY, K.O. AND MIIKKULAINEN, R. 2002. Evolving Neural

Networks through Augmenting Topologies. Evolutionary
Computation 10, 99-127.

TEXAS INSTRUMENTS 2009. 3D TV - DLP HDTV. Available from:

http://www.dlp.com/hdtv/3-d_dlp_hdtv.aspx.

TROILLARD, C. 2008. Wiimote Image. Available from:
http://www.osculator.net/wiki/uploads/Main/pry-wiimote.gif.

VARCHOLIK, P., BARBER, D., NICHOLSON, D. 2008. Interactions

and Training with Unmanned Systems and the Nintendo
Wiimote. In Proceedings of the 2008 Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC
'08), 2008.

VARCHOLIK, P., LAVIOLA, J., NICHOLSON, D. 2009. TACTUS: A

Hardware and Software Testbed for Research in Multi-Touch
Interaction. In Proceedings of the Human-Computer
Interaction International (HCI International), San Diego, CA,
2009.

VARCHOLIK, P., MERLO, J. 2008. Gestural Communication with

Accelerometer-based Input Devices and Tactile Displays. In
Proceedings of the 26th Army Science Conference, Orlando,
FL, 2008.

