
AgileSLAM: A Localization Approach for Agile Head Movements in
Augmented Reality

Brian M. Williamson*

University of Central Florida
Andres Vargas†

University of Central Florida
Pat Garrity‡

Army Research Laboratory
Robert Sottilare§

Army Research Laboratory

Joseph J. LaViola Jr. ¶

University of Central Florida

ABSTRACT

Realistic augmented reality systems require both accurate localiza-
tion of the user and a mapping of the environment. In a markerless
environment this is often done with SLAM algorithms which, for
localization, pick out features in the environment and compare how
they have changed from keyframe to current frame. However, human
head agility, such as seen in video gaming tasks or training exercises,
poses a problem; fast rotations will cause all previously tracked
features to no longer be within the field of view and the system will
struggle to localize accurately. In this paper we present an approach
that is capable of tracking a human head’s agile movements by using
an array of RGB-D sensors and a reconstruction of this sensor data
into 360 degrees of features that is fed into our SLAM algorithm.
We run an experiment with pre-recorded agile movement scenarios
that demonstrate the accuracy of our system. We also compare our
approach against single sensor algorithms and show a significant
improvement (up to 15 to 20 times better accuracy) in localization.
The development of our sensor array and SLAM algorithm creates a
novel approach to accurately localize extremely agile human head
movements.

Index Terms: Human-centered computing—Human Computer
Interaction—Interaction Paradigms—Mixed / Augmented Real-
ity; Computing Methodologies—Artificial Intelligence—Computer
Vision—Tracking

1 INTRODUCTION

Accurate markerless head tracking in augmented reality (AR) is
a known difficult problem when compared to head tracking in a
pre-mapped space [1, 2]. In several cases [6, 25], visual Simultane-
ous Localization and Mapping (SLAM) algorithms developed for
robotics provide an adequate starting point for this form of head
tracking. However, when considering agile human head movements
that are expected in a highly physical task, the existing algorithms
lose tracking. This is especially true for large rotational motions
as features that were being tracked become lost [22]. These large
rotations can be expected of a head mounted system being used in a
video game or training exercise that requires extreme movements,
such as a first person shooter style game.

Our goal is to develop a hardware system coupled with a SLAM
algorithm that can achieve accurate localization and dense mapping
while being subject to extreme human head movements. In this
paper we focus on the localization problem to provide a proof of
concept that our approach produces improved results. We process the

*e-mail: brian.m.williamson@knights.ucf.edu
†e-mail: andres.vargas@knights.ucf.edu
‡e-mail: patrick.j.garrity4.civ@mail.mil
§e-mail: robert.a.sottilare.civ@mail.mil
¶e-mail: jjl@cs.ucf.edu

feed of an RGB-D sensor array containing four cameras arranged
in a square pattern. The sensor array was chosen over a single
omni-directional camera so that accurate and dense depth data could
be made available to our SLAM algorithm. We extract features
from the array of imagery and reconstruct them into their world
coordinates to determine a pose estimate since the last keyframe.
We hypothesize that by using a 360-degree (horizontal) field of view
sensor array, we can significantly reduce localization errors during
extreme movements.

To demonstrate the accuracy of our approach we ran an exper-
iment comparing the pose estimate from our system to truth data
gathered from a marker based tracking system. We also ran the same
motions through existing single sensor SLAM algorithms to show
the difficulty of tracking extreme head movements, especially when
there are high bursts of angular velocity.

While our SLAM algorithm will continued to be iterated upon,
the localization method that we detail still provides valuable novel
research. The following are the contributions of this paper:

• An approach to convert the feed from an array of RGB-D
sensors to a localization system that provides accurate pose
estimates.

• The creation of a data set that includes extreme agile move-
ments.

• A demonstration of the accuracy of our hardware and software
system against the data set we recorded.

2 RELATED WORK

Many problems exist within augmented reality research, some of
which are the need for accurate tracking, the necessity of environ-
ment mapping and the stability of the devices used [1]. For tracking,
many techniques have been previously presented with high accuracy
being observed via SLAM algorithms in a marker-less environment.

2.1 SLAM Development
The SLAM problem in robotics aims to determine an efficient
method for a mobile robot to both map its surroundings and know
its location. Two key algorithms that were developed to solve the
problem are the extended Kalman filter (EKF-SLAM) and the Rao-
Blackwellized particle filter (FastSLAM) [12]. Initially the focus
was on the use of advanced robotic hardware such as LIDAR and
range finders, but recent advances in computer vision resulted in
the development of vision based SLAM algorithms. These systems
began by constructing sparse landmark based maps and determining
pose estimates from the feature changes [10]. To keep the hard-
ware requirements minimal, researchers developed monocular based
SLAM algorithms that operated on sparse maps in a system called
MonoSLAM [11]. In addition, progress was made in improving
tracking accuracy as usage of these algorithms were beginning in
the augmented reality research space [25]. In [21] researchers devel-
oped parallel tracking methods, which have high accuracy in a small
area. These visual algorithms relied on evolving feature extraction

25

2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)

DOI 10.1109/ISMAR-Adjunct.2018.00025



using advancements in computer vision. Commonly used examples
are SIFT [23], the optimized version SURF [3] and an alternative
method, ORB [31].

The use of SLAM algorithms has a long history of real time
tracking. In [25], researchers attempted to determine the depth of
a feature from a monocular image by mapping imaginary particles
along a line toward the object and re-weighting the particles as more
information comes in. The active wearable would use this estimate
for mapping and relocalization. In [8] researchers recognized that a
human wearing a camera poses a much more difficult problem than a
robot using one, due to the agility of the user. They attempted to use
the parallel tracking and mapping method [21] to generate several
maps that the system uses in an augmented reality application which
showed some improvement, but overall localization failed when
mapping a large scale environment.

Over time, several promising SLAM applications have emerged
for both augmented reality and robotics usage. In [13] a RGB-D
sensor was incorporated to create a highly accurate point cloud along
with improved accuracy to the localization methods. [14] developed
a dense tracking system for monocular sensors using methods de-
scribed in DTAM [29] which has been shown to solve motion blur
issues while tracking. In [27] PTAM [21] was expanded to incorpo-
rate ORB features along with several other modern advancements in
computer vision, which in the next iteration [28] added RGB-D and
stereo sensors.

2.2 Omni-Directional SLAM Research
The use of an omni-directional sensor with a SLAM algorithm is not
in itself novel. In [7] LSD-SLAM is modified to incorporate a wide
angle camera which provides improved results in their localization
experiments and the creation of semi-dense point clouds. They test
with hand held motions and show great accuracy as they map a
room, but their demonstrated recordings reveal slow methodical
movements rather than the fast extreme ones in our problem domain.
In [24] a pair of omni-directional cameras are used to create stereo
depth maps where the images overlap. While some localization
takes place it is not shown how well the system works over a range
of motions. [32] and [26] both made great usage of dense omni-
directional RGB-D sensors for autonomous vehicles, but the motions
they were primarily concerned with were mimicking a vehicle rather
than human agility. [26] contained a sensor array most similar to
our own, but it was designed with a large distance between the
stereo cameras as it was intended for vehicular mounting rather
than the human head. We note two primary differences between
these research projects and our own. First, the sensor arrays were
either very large or were only creating map points at regions of
overlap, which were relatively sparse. Second, they focused on
either slow methodical movements used in environment mapping,
or the movements expected of a robot or vehicle, which did not
have high angular velocities. To the best of our knowledge we
present the first usage of an RGB-D sensor array designed for the
human head that can track highly agile human head movements
while simultaneously generating a dense 360-degree point cloud
with each frame.

3 AGILESLAM DESIGN

Our system design is built around an array of RGB-D sensors ar-
ranged into a square pattern. The individual sensors provide both
an RGB frame from which features may be extracted along with a
pixel aligned depth frame which can translate the feature to accurate
world coordinates.

We did not expect our sensor array to provide perfect coverage,
as may be seen with an omni-directional camera, and intrinsic blind
spots were not considered detrimental to our localization attempts.
If the localization approach is accurate, the blind spots in the envi-
ronment map will be naturally filled in as the user moves around the

(a) Features Unaligned (b) Features Aligned

Figure 1: An example of feature points placed into world coordinates
relative to the sensor array and the result of the optimal rotation and
translation calculations. Green points are the current frame, red points
are the keyframe.

room. We create two separate images by concatenating the sensor
feeds. The first image is a composition of the RGB frames and the
second is the matching composition of depth data.

For each frame we run SURF [3] to detect unique features then
convert each feature’s pixel coordinate to its world coordinate rel-
ative to an individual sensor. The conversion is trivial for the Z
value, which is given in the depth data. X and Y coordinates can be
determined using projection equations that multiply the point by a
matrix containing the focal and central points of the camera. If a
feature’s depth value could not be determined by the sensor it was
immediately discarded.

We also run the frames through a Laplacian filter and take the
standard deviation to estimate the blurriness of the image [5]. This
presents us with a single number representing the variance within
the image, which is lower for blurrier images than clear ones. If
no keyframe has been set then the initial frame is evaluated by the
number of features present and blurriness value and set as the first
keyframe if it qualifies.

If a keyframe is present we match the SURF features between the
current color image and the keyframe’s composite RGB image. The
matching features are then given their world coordinates relative to
the sensor array. Because the imagery is composed by concatenation,
the horizontal pixel coordinate of a feature also determines the
transformation applied to its world coordinate by multiplying by a
transformation matrix based on

f (u) =


0 < u < w, Forward Sensor

w < u < 2w, 90 Degree Sensor
2w < u < 3w, 180 Degree Sensor
3w < u < 4w, 270 Degree Sensor

(1)

where u is the horizontal pixel coordinate of the feature and w is
the width of a single sensor image. This process outputs two sets of
features whose points are relative to the sensor array’s center, one
from the keyframe’s coordinates and one from the current frame.

In order to select the best matches and reduce the number of
points we run the sets through RANSAC [15] and cull the outliers.
Because the features were determined to be quality matches and the
world coordinates have a high degree of accuracy due to the sensor
depth feed, we find the localization problem reduced to two sets of
data points which differ by the change in rotation and translation of
the sensor array. We use the Kabsch algorithm [19] to determine
the optimal rotation matrix and translation vector. We calculate the
centroid of each data set with

centroid =
1
N

N

∑
i=1

~X (2)

where ~X is a 3D point from the dataset of N points. The covariance

26



matrix H is then constructed with

H =
N

∑
i=1

(~X i
c f − centroidc f )(~X i

k f − centroidk f )
T (3)

where ~Xc f is the 3D point from the current frame’s set of points
and ~Xk f is the 3D point from the key frame’s set of points. The co-
variance matrix is decomposed using singular value decomposition
(SVD) [16] and the final rotation and translation are calculated with

[U,S,V ] = SV D(H)

R =VUT

t =−R× centroidc f + centroidk f

(4)

where U, S and V are matrices from the H decomposition and R and
t are the optimal rotation and translation. This composes our pose
estimate of the current frame in relation to the keyframe as shown in
Fig. 1(a) and Fig. 1(b).

We then evaluate the state of the frame to produce a recommen-
dation regarding the pose estimate. If our analysis determines the
frame to be blurry, or there are very few matching features after
running the RANSAC algorithm, it is recommended to reject the
pose. If the number of matching features are low, but the imagery
has consistently not been blurry, a new keyframe is established. This
method of evaluation is simplistic and will be expanded upon in
future iterations, but served its purpose for our localization experi-
ments.

With the user’s pose estimated, the entire RGB frame is combined
with the depth data to produce a point cloud. Similar to the trans-
formations used in Equation 1, each point’s frame of reference is
transformed from relative to an individual sensor to relative to the
sensor array. This allows for every frame to produce a 360-degree
(horizontal) dense point cloud. If a point is not near another one, it
is added to the mapping of the environment.

4 EXPERIMENTAL SETUP

With the localization system developed we proceeded to test our
hypothesis regarding accuracy and to create baseline metrics for
our system in regard to extreme head movements. We designed an
experiment involving agile movements with a focus on large rotation
deltas. For our sensor array we used four ZED stereo cameras which
produce aligned RGB and depth images using two stereo sensors. In
our evaluation the depth imagery was more accurate at a distance
(greater than two meters) than up close, which is ideal for room-
wide SLAM applications. The sensor allows for multiple resolution
configurations, however the lowest resolution (672x376) was used to
ensure the single USB controller could maintain four simultaneous
streams. Furthermore the lower resolution option provided a larger
horizontal field of view (~90 degrees) which was also ideal for
achieving as much coverage as possible with only four sensors.

4.1 Apparatus
The rig used in our experiment contained four full sized ZED cam-
eras along with a Kinect and HTC Vive tracker, which when com-
bined was larger and heavier than we desired of a head mounted
system. A lighter weight version of the ZED sensor is now available
that provides the same camera specification as the full sized camera,
but this was not available at the time of our experiment. As such,
we mounted all of the sensors to a platform (shown in Fig. 2) to be
held close to the head. While this was not worn on our head during
the experiment, it still allowed for agile motions that simulated the
problem we wanted to evaluate.

As movements were performed point cloud data was retrieved
from the ZED SDK and recorded to the hard drive. This pre-recorded
data afforded us the ability to use the same data through iterations

(a) Front View (b) Side View

Figure 2: Sensor setup for experimentation.

of algorithm development. For truth data a HTC Vive Tracker was
placed at the center of the rig and recorded alongside ZED frame
data. We created a recording tool that synchronized the Vive pose
data to the four ZED sensor images.

We also compared our approach to existing and readily available
single sensor SLAM algorithms. For this portion of the experiment
we attached a Microsoft Kinect to the front of our rig so that RGB
and depth data could be provided to these algorithms following the
same motions as our sensor array. The Kinect was chosen as it
is a familiar commercial sensor that was used in RGB-D SLAM’s
own evaluation [33] and produced RGB imagery of a comparable
resolution (640x480) to what the ZED was set to. This provided
us with confidence that any localization errors experienced by the
single sensor SLAM algorithms would not be caused by our sensor
choice, but rather the motions we were performing. Similar to the
ZED sensor array data, the RGB and depth frames from the Kinect
were saved to a hard drive to be streamed to the algorithms and
compared to the corresponding truth data. A checkerboard recording
was taken with the Kinect to retrieve the intrinsic camera parameters:
the focal point, principal point and distortion parameters.

The SLAM systems chosen for comparison were LSD-SLAM
[14], a monocular dense feature tracking system and RGB-D SLAM
[13] a sparse feature RGB-D tracking system. These were chosen
based on the availability of the source code and results from internal
testing which showed promising accuracy given slow methodical
movements. The algorithms were run on an Ubuntu virtual machine
with the robot operating system (ROS) [30].

4.2 Data Sets
We recorded seven data sets used for frame of reference calibration
to the truth data and five data sets to simulate agile head movements.1
The average length of the recordings were 10-20 seconds depending
on the movements performed. The data sets are described in Table 1
with the top portion going over the calibration data sets and bottom
portion going through the extreme agility data sets.

For calibration scenarios, the sensors were moved in a slow me-
thodic manner similar to a cautious user slowly mapping an envi-
ronmnt. The agile simulation scenarios moved in speeds that would
be seen of the human head engaged in extreme, but realistic move-
ments, such as in a first person shooter video game task. Table 2
provides the average velocity and angular velocity for every scenario.
Averages were accumulated as the sensor moved via a simple high
pass filter which excluded periods in which it was stationary. As can
be seen, calibration scenarios moved at a slow pace with an average
angular velocity near 14 degrees per second and an average velocity
of 0.1 meters per second. Agile scenarios had a much higher speed
with an average angular velocity of 210 degrees per second and an
average velocity of 1 meter per second. While these orientation
changes may appear excessive, the human head can move at burst

1Available for download at http://www.eecs.ucf.edu/isuelab/downloads.php.

27



Table 1: Descriptions of data sets recorded.

Data Set Name Description

Translation Movement only on a single axis (x,y,z).
Rotation Angular movement only on a single axis

(x, y, z).
Look and Forward Turn 90 degrees and move forward.

Turn and Duck Simultaneously turn 90 degrees and duck
down.

180 Fast Turn Quickly turn around 180 degres. Turn
back.

Eye Track Simulate head movements of a user track-
ing a moving object with their eyes.

Indiscriminate Movements Simulate fast rotation and position
changes similar to what may be seen in
a first person shooter.

Flag Movement Extreme movements that go beyond head
agility. Simulate a hand held device be-
ing rotated and translated.

(a) Angular Rate of Change Comparison

(b) Translation Rate of Change Comparison

Figure 3: Examples of the rate of change between calibration data
sets and extreme movement data sets.

speeds of up to 780 degrees per second [17]. Fig. 3(a) and Fig. 3(b)
help to visualize the difference between slow methodical movements
and the agile movements from our problem domain. The agile data
sets that we recorded are meant to push the SLAM algorithms to a
worse case scenario.

4.3 Design

Each algorithm was set up to receive a frame from its expected
sensor and as much time as needed to calculate a pose estimate. We
did not concern ourselves with the speed of any algorithm as we
are focusing on overall accuracy and assume that better hardware
can account for real time performance needs. For RGB-D SLAM
and LSD-SLAM, Kinect frames, along with intrinsic parameters,
were read from the hard drive and sent to the virtual machine via
a local TCP connection. A client tool and ROS node built for this
experiment received the data and published it to the ROS topics that
the algorithms were configured to listen to. The only changes made
to LSD-SLAM and RGB-D SLAM source code was to publish pose
estimates back to a ROS topic. This topic was subscribed to by our
client tool which would send the pose estimate to our data server for

Table 2: Average velocity and angular velocity of sensor array for each
data set.

Scenario Velocity (m/s) Angular Velocity (deg/s)

Forward 0.118453 14.66209
Sideways 0.105685 13.04024

Up 0.112185 12.97311
Look and Forward 0.100345 14.98031

Yaw 0.096846 18.35225
Pitch 0.117617 12.52419
Roll 0.138613 15.63995

180 Fast Turn 0.190872 325.6126
Eye Track 0.741853 170.3189

Flag 1.183397 207.1455
Turn and Duck 1.171908 149.7151
Indiscriminate 1.055420 198.8264

comparison to the truth data. AgileSLAM was incorporated directly
into the data server and did not require this process.

Once an algorithm provided its pose estimate, we compared it to
truth data recorded with that frame. Error was accumulated into a
root mean square error (RMSE) calculation to be evaluated once the
data set was completed. Error between quaternions was determined
by

Qe = Qd ∗Q−1
t

θ = 2∗acos(Qe.w)
(5)

where Qd is the quaternion from the pose estimate and Qt is the
truth orientation. The position errors were calculated as the distance
between the truth data and pose estimate in meters. After we deter-
mined the error for that frame, the next frame was streamed to the
algorithm.

The truth data had a frame of reference based on the location of
the markers that the system relied upon, while the SLAM algorithms
would begin at a frame of reference relative to where the system was
when the algorithm started. We performed a rotation and translation
of the truth data to transition its frame of reference from the marker’s
positions to its own starting point. The calibration scenarios were
then used to make sure movements on a particular axis had the same
meaning between the SLAM algorithms and the truth data.

5 RESULTS

The error experienced by each SLAM algorithm through our scenar-
ios can be seen in Table 3 and Table 4. As expected the errors during
the calibration scenarios were low and this allowed them to be used
to verify the frame of reference alignment between the algorithm’s
pose estimate and truth data.

For the single sensor SLAM algorithms, the agile movement
scenarios had a large amount of error if tracking was maintained at
all. If a system lost frames, but was able to resume tracking, the error
that may have been applied during lost tracking was not applied
to the average. For position error we see relatively low RMSE
values for all of the SLAM algorithms during calibration, with
AgileSLAM’s maximum RMSE at 0.16 meters, RGB-D SLAM at
0.90 meters and LSD-SLAM at 0.20 meters. As rotation changes and
features became lost, this error increased. For AgileSLAM, it is most
noticeable with roll and pitch as the sensor array has a limited vertical
field of view. With the agile simulations, AgileSLAM maintained
a low position error, while RGB-D SLAM and LSD-SLAM had
very large errors. AgileSLAM had a peak of 0.32 meters during
the scenario Indiscriminate Movements. By comparison RGB-D
SLAM had an average error of 2.9 meters during that scenario and
LSD-SLAM lost tracking. RGB-D SLAM and LSD-SLAM’s error
peaked with the eye tracking scenario with errors of 5.12 meters and

28



Table 3: RMS Error Distance in Meters. X indicates tracking was lost
for >40% of frames and was not counted.

Scenario AgileSLAM RGB-D SLAM LSD-SLAM

Forward 0.0547 0.0852 0.1460
Sideways 0.0461 0.1585 0.1600

Up 0.0531 0.0868 0.1630
Look and Forward 0.0989 0.8163 X

Yaw 0.0549 0.3617 0.1700
Pitch 0.1690 0.8993 0.2000
Roll 0.1369 0.1768 0.0897

180 Fast Turn 0.0933 2.0988 0.8330
Eye Track 0.1396 5.1240 3.7804

Flag 0.2884 4.9099 X
Turn and Duck 0.0661 2.3348 0.6443
Indiscriminate 0.3207 2.9017 X

Table 4: RMS Error Rotation in Degrees. X indicates tracking was lost
for >40% of frames and was not counted.

Scenario AgileSLAM RGB-D SLAM LSD-SLAM

Forward 2.4908 2.2355 2.767
Sideways 2.4778 2.5646 3.042

Up 3.6471 4.8335 6.868
Look and Forward 4.7664 11.142 X

Yaw 6.2878 11.519 14.44
Pitch 17.393 23.343 18.98
Roll 14.872 16.586 13.40

180 Fast Turn 4.6179 95.911 101.97
Eye Track 11.454 95.325 132.67

Flag 24.131 83.151 X
Turn and Duck 2.3032 41.005 65.744
Indiscriminate 16.093 79.097 X

3.53 meters respectively. To compare, AgileSLAM had an average
position error of 0.13 meters during the same scenario.

For rotation error similar results are seen. AgileSLAM had a
peak orientation error of 17 degrees during calibration and RGB-
D SLAM peaked at 23 degrees. LSD-SLAM had relatively low
orientation errors during calibration, but lost tracking during the
look and forward scenario, which was not expected. While the
calibration data set moved slowly, LSD-SLAM appeared to struggle
with tracking when the yaw movement brought a large featureless
television into the frame. With the agile simulations, AgileSLAM
maintains a low orientation error with a peak of 24 degrees during
another worse case scenario, the flag movement scenario. RGB-D
SLAM and LSD-SLAM show very high errors in almost every agile
data set with tracking being lost by LSD-SLAM in the two more
difficult scenarios, Flag and Indiscriminate Movements.

It should be stressed that the data recorded involved extreme
movements that LSD-SLAM and RGB-D SLAM were not designed
for. Furthermore, the lab environment used contained large black
television screens which can cause difficulties with vision based
localization. Our results are intended to show the difficulty of the
problem domain and its worse case scenarios more than showing
limitations of existing algorithm performance.

6 DISCUSSION AND FUTURE WORK

In this paper we have shown the creation of a SLAM system de-
signed to work with a RGB-D sensor array that provides improved
localization and dense environment mapping during extreme head
movements. We also constructed an experiment to show the accu-
racy of our system in regard to these movements and compared our
results with existing single sensor algorithms.

We see that our sensor array and SLAM algorithm, AgileSLAM,

Figure 4: Percentage of error improvement between AgileSLAM and
the next best single sensor SLAM algorithm.

was able to maintain a significantly lower error in both rotation and
position during calibration and agile movement scenarios over a sin-
gle sensor system. Fig. 4 illustrates the percentage of improvement
in the error seen for both orientation and position estimates compared
to the next best single sensor prediction. This is expected as the
sensor array is capable of maintaining view of features even if some
areas are not ideal or have changed quickly between frames. This
supports our hypothesis that accurate localization can be achieved
by the usage of multiple sensor feeds and provides us with promise
in moving forward in the research.

6.1 Limitations
Our initial prototype of AgileSLAM was able to demonstrate an
improvement in localization during extreme movements, however, it
still had a peak RMSE of 0.3 meters and 24 degrees, which would
be jarring to an augmented reality experience. During calibration of
pitch and roll, we also saw angular errors of 16 degrees, which show
the limitation of the sensor array’s vertical field of view. We believe
the introduction of a linear motion model to be used when frames
are rejected and an IMU could greatly reduce these errors.

AgileSLAM also did not run in real time during the experiments.
We believe there are optimizations that can be implemented, such as
offloading data processing to the GPU and culling unnecessary steps
given a frame’s evaluation. Also better hardware can be utilized to
significantly lower processing time.

Our algorithm is in its initial stage and there is the possibility that
as it grows in complexity to accommodate versatility, localization
results may change. However, we do not believe they will become
significantly worse, or degrade to the equivalent of a single sensor
system.

We also note that our sensor array proved to be slightly too large
for an actual head mount. This was partially because of our incor-
poration of a truth tracker and a Kinect sensor for the experiments
we ran, but the full sized Zed cameras created a significant weight
at 0.7kg and a perimeter of 0.7m. Future iterations can make use
of a stripped down version of this sensor, the Zed Mini, without
sacrificing any of the other technical specs. With the Zed Mini the
system would weigh 0.25kg and have a perimeter of 0.5m.

6.2 Future Work
The system as it stands is in its preliminary stages, but represents
novel development and a proof of concept to solve extreme agile
movement scenarios. In future iterations we plan on the implementa-
tion of lessons learned from other SLAM algorithms [9,13,14,20,27]
which would include using bag of visual words [34] for keyframe
re-localization and loop closure [18].

We are also looking to integrate better frame evaluation alongside
linear motion models for when a frame cannot provide an accurate
estimate. As points are integrated into the mesh, they may also be
evaluated to provide corrections to the original pose estimate via
methods such as iterative closest point [4]. We also intend to examine

29



the system with less sensors in different configurations, such as three
sensors arranged into a triangle or two sensors forming a spearhead.
Lowering the number of sensors needed would both lower the weight
and allow for higher image resolutions to be streamed. The use of
four sensors will function as our baseline, best case configuration,
to which these other configurations can be evaluated against. We
would also like to compare against other omni-directional SLAM
systems, such as [7] and [32]. Such future comparisons would also
modify algorithms as needed to match the hardware we are using
for a direct comparison, rather than making use of different sensors
such as the Kinect.

6.3 Conclusion
Our initial step has shown promise in greatly reducing localization
errors during agile movements. Given this, we believe that proceed-
ing forward will result in a system that can track natural human head
movements with accuracy in the centimeter range. AgileSLAM will
have future iterations, but it has already shown promise in solving
the localization problem while undergoing extreme movements.

ACKNOWLEDGMENTS

This work is supported in part by NSF Award IIS-1638060, Lock-
heed Martin, Office of Naval Research Award ONRBAA15001, and
Army RDECOM Award W911QX13C0052.

REFERENCES

[1] R. T. Azuma. A survey of augmented reality. Presence: Teleoperators
and virtual environments, 6(4):355–385, 1997.

[2] M. Bajura and U. Neumann. Dynamic registration correction in video-
based augmented reality systems. IEEE Computer Graphics and Ap-
plications, 15(5):52–60, Sep 1995. doi: 10.1109/38.403828

[3] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features.
In ECCV, pp. 404–417, 2006.

[4] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In
Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611,
pp. 586–607. International Society for Optics and Photonics, 1992.

[5] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact
image code. In Readings in Computer Vision, pp. 671–679. Elsevier,
1987.

[6] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and
M. Ivkovic. Augmented reality technologies, systems and applications.
Multimedia Tools and Applications, 51(1):341–377, 2011. doi: 10.
1007/s11042-010-0660-6

[7] D. Caruso, J. Engel, and D. Cremers. Large-scale direct slam for
omnidirectional cameras. In Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, pp. 141–148. IEEE, 2015.

[8] R. Castle, G. Klein, and D. W. Murray. Video-rate localization in
multiple maps for wearable augmented reality. In 2008 12th IEEE
International Symposium on Wearable Computers, pp. 15–22, Sept
2008. doi: 10.1109/ISWC.2008.4911577

[9] A. J. Davison and D. W. Murray. Mobile robot localisation using active
vision, pp. 809–825. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998. doi: 10.1007/BFb0054781

[10] A. J. Davison and D. W. Murray. Simultaneous localization and map-
building using active vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):865–880, Jul 2002. doi: 10.1109/
TPAMI.2002.1017615

[11] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam:
Real-time single camera slam. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(6):1052–1067, June 2007. doi: 10.1109/
TPAMI.2007.1049

[12] H. Durrant-Whyte and T. Bailey. Simultaneous localization and map-
ping: part i. IEEE robotics & automation magazine, 13(2):99–110,
2006.

[13] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard.
An evaluation of the rgb-d slam system. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 1691–1696, May
2012. doi: 10.1109/ICRA.2012.6225199

[14] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-Scale Direct
Monocular SLAM, pp. 834–849. Springer International Publishing,
Cham, 2014. doi: 10.1007/978-3-319-10605-2 54

[15] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, June 1981.
doi: 10.1145/358669.358692

[16] G. H. Golub and C. Reinsch. Singular value decomposition and least
squares solutions. Numerische mathematik, 14(5):403–420, 1970.

[17] G. E. Grossman, R. J. Leigh, L. Abel, D. J. Lanska, and S. Thurston.
Frequency and velocity of rotational head perturbations during loco-
motion. Experimental brain research, 70(3):470–476, 1988.

[18] B. K. Horn. Closed-form solution of absolute orientation using unit
quaternions. JOSA A, 4(4):629–642, 1987.

[19] W. Kabsch. A solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography, 32(5):922–923, 1976.

[20] O. Khler, V. Adrian Prisacariu, C. Yuheng Ren, X. Sun, P. Torr, and
D. Murray. Very high frame rate volumetric integration of depth images
on mobile devices. IEEE transactions on visualization and computer
graphics, 21(11):12411250, November 2015. doi: 10.1109/tvcg.2015.
2459891

[21] G. Klein and D. Murray. Parallel tracking and mapping for small ar
workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th
IEEE and ACM International Symposium on, pp. 225–234, Nov 2007.
doi: 10.1109/ISMAR.2007.4538852

[22] J. J. LaViola Jr, B. M. Williamson, R. Sottilare, and P. Garrity. Ana-
lyzing slam algorithm performance for tracking in augmented reality
systems. In Proceedings of the Interservice/Industry Training, Simula-
tion, and Education Conference (I/ITSEC), 2017.

[23] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004. doi: 10
.1023/B:VISI.0000029664.99615.94

[24] C. Ma, L. Shi, H. Huang, and M. Yan. 3d reconstruction from full-view
fisheye camera. arXiv preprint arXiv:1506.06273, 2015.

[25] W. W. Mayol, A. J. Davison, B. J. Tordoff, and D. W. Murray. Applying
active vision and slam to wearables. In Robotics Research. The Eleventh
International Symposium, pp. 325–334. Springer, 2005.

[26] M. Meilland, A. I. Comport, and P. Rives. Dense omnidirectional rgb-d
mapping of large-scale outdoor environments for real-time localization
and autonomous navigation. Journal of Field Robotics, 32(4):474–503,
2015.

[27] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards. Orb-slam: A versatile
and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, Oct 2015. doi: 10.1109/TRO.2015.2463671

[28] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions
on Robotics, 33(5):1255–1262, 2017.

[29] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense
tracking and mapping in real-time. In Computer Vision (ICCV), 2011
IEEE International Conference on, pp. 2320–2327. IEEE, 2011.

[30] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, vol. 3, p. 5. Kobe,
Japan, 2009.

[31] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An effi-
cient alternative to sift or surf. In 2011 International Conference on
Computer Vision, pp. 2564–2571, Nov 2011. doi: 10.1109/ICCV.2011.
6126544

[32] D. Scaramuzza and R. Siegwart. Appearance-guided monocular omni-
directional visual odometry for outdoor ground vehicles. IEEE trans-
actions on robotics, 24(5):1015–1026, 2008.

[33] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 573–
580, Oct 2012. doi: 10.1109/IROS.2012.6385773

[34] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo. Evaluating bag-
of-visual-words representations in scene classification. In Proceedings
of the international workshop on Workshop on multimedia information
retrieval, pp. 197–206. ACM, 2007.

30


