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This paper describes initial validation of a theoretical framework to support research on the visualization of 
uncertainty. Two experiments replicated and extended this framework, illustrating how the manipulation of 
task complexity produces differences in performance. Additionally, using a combinatory metric of work-
load and performance, this framework provides a new metric for assessing uncertainty visualization. We 
describe how this work acts as a theoretical scaffold for examining differing forms of visualizations of un-
certainty by providing a means for systematic variations in task context. 
 

INTRODUCTION 
 
Uncertainty in decision-making continues to be a pressing 

challenge for operators in complex environments because of 
the ambiguous and abstract nature of the parameters making 
up the decision context. In developing decision aids, cognitive 
engineers must operationalize these parameters and determine 
how to best present that information. Visualization of uncer-
tainty has consistently been used as a means of helping opera-
tors make more informed decisions. Much research has gone 
into the study of visualizing uncertainty (Andrienko et al., 
2010; Bisantz et al., 2011; Sedig & Parsons, 2013) and exam-
ining uncertainty visualization methods (Kehrer & Hauser, 
2013; Kirschenbaum et al., 2013; MacEachren et al., 2005; 
Pham et al., 2009; Sanyal et al., 2009). Despite gains in under-
standing the visualization of uncertainty, an important gap 
remains in how environmental complexity, termed task com-
plexity, alters the decision context, in addition to the complexi-
ty produced by uncertain information itself. 

Understanding this interaction would provide insight, not 
only to decision-making, but also on visualization efficacy, a 
concept objectively quantifiable through the assessment of 
workload and decision accuracy. We present a theoretical 
framework to operationalize concepts capturing aspects of task 
complexity relevant to uncertainty. Our theory-grounded ap-
proach enables cognitive engineers to consistently evaluate 
how system manipulations will function in varied settings.  

We operationalize task context using variations in com-
plexity. These parameters readily lend themselves to manipu-
lations in visualization research. Complexity represents an 
information rich environment containing multiple forms of 
data, requiring assimilation and integration. We use Wood’s 
(1986) model of complexity as it provides a set of orthogonal 
dimensions enabling operationalization of task complexity. 
We varied decision scenarios along component and coordina-
tive complexity dimensions. Component complexity addresses 
the number of distinct acts and/or cues an individual must pro-
cess. Coordinative complexity concerns the degree to which 
integration of task variables must occur for task completion. In 
sum, we distinguish between tasks varying in complexity (i.e., 
differing numbers of variables and levels of integration; see 
Wood, 1986), and how these interact with each other and the 
amount of uncertainty. 

In addition to traditional performance metrics, we used 
unique assessments of workload and performance. We lever-
aged developments in Cognitive Load Theory (CLT) and 

gains in understanding human information processing as well 
as its interaction with complex systems (e.g., Paas et al., 
2003). CLT attends to how the inherent complexity of a given 
domain can alter workload. For example, when dealing with 
multiple forms of complex data, the quantity may overwhelm 
the human information processing system. Further, the nature 
or quality of those elements can vary such that they require 
either a high or low degree of integration themselves; thus, 
additionally influencing cognitive load. 

We also leveraged the concept of cognitive efficiency, a 
metric evolving out of measures of instructional efficiency. 
This describes the relationship between a learner or operator’s 
subjective assessment of workload and their overall task per-
formance (Fiore et al., 2006; Paas & Van Merrienboer, 1993). 
A cognitive efficiency measure standardizes measures of per-
formance and workload and computes the difference between 
scores. Positive scores indicate that relative performance was 
greater than relative workload and suggests that some inter-
vention led to more efficient cognitive processing. Negative 
scores indicate relative performance was less than relative 
workload, meaning that some intervention was not efficient. 
Johnston et al. (2013) found that decision support augmented 
with graphical displays, produced higher cognitive efficiency 
scores when compared to those not using such displays. We 
utilized the Fiore et al. (2006) and Johnston et al. (2013) “cog-
nitive efficiency” metric to determine how task context affects 
workload and performance.  

In sum, our framework incorporates both operational var-
iations as well as measurement diagnostics. Ultimately, our 
goal is to provide cognitive engineering research with a solid 
foundation on which to test variations in visualization to de-
termine how task context may influence the efficacy of visual-
izations. To that end, we now detail our general hypotheses 
and two experiments developed to test this framework. 
  
Hypotheses  

We focused on how task complexity variations influence 
performance and cognitive efficiency. Thus, we hypothesized 
that trials with the highest complexity (high component/high 
coordinative), would produce the lowest performance and 
lower cognitive efficiency, relative to other items. Similarly, 
test trials with the lowest complexity (low component/low 
coordinative), we hypothesized, would produce the highest 
performance and greater cognitive efficiency, relative to other 
items. 
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GENERAL METHOD 
 
Materials 

Each trial consisted of a decision between two side-by-side 
grids that represented abstractions of different map regions. 
The decision was to judge which grid displayed more uncer-
tainty. Trials were categorized as either easy or difficult judg-
ments. Judgment difficulty was established by assigning as-
cending point values to each symbol, dependent upon the 
amount of uncertainty being visualized. Each grid was scored 
and difficulty was determined by comparing the difference in 
scores between the two side-by-side grids. Problem grids with 
a greater difference in point values were classified as easy 
(e.g., 8 versus 16 points) and those with similar values were 
classified as hard (e.g., 8 versus 10 points). In brief, when 
there was little difference between grids as to the ‘amount’ of 
uncertainty represented, the judgment as to which was ‘more’ 
uncertain, was classified as a hard decision (and vice versa). 
Amazon’s Mechanical Turk (AMT) and Qualtrics, an online 
experiment platform, were used to collect data from partici-
pants. 

  
Procedure 

First, participants were redirected from AMT to the exper-
iments on Qualtrics. Following informed consent, participants 
completed a series of background items (not reported here due 
to space constraints). Participants were provided with the de-
tails of the experimental scenario and an explanation of the 
task they were expected to complete. Following this, a short 
training session, with feedback, functioned as a tutorial to in-
troduce the judgment task and the visualizations used. On each 
trial, participants were given up to 60 seconds to determine 
which of the side-by-side grids showed greater uncertainty. If 
no response was given, the trial auto-advanced. After making 
each judgment, respondents were asked to rate judgment diffi-
culty on a 7-point Likert scale to assess cognitive workload. 
  

EXPERIMENT ONE 
 

We adopted a set of discrete symbols developed by 
MacEachren et al. (2012) in their study of visual semiotics. 
We focused on two elements of uncertainty examined with 
their typology – space and time. Our purpose here was not to 
test the efficacy of a particular form of visualization and its 
superiority in conveying uncertainty. Rather, our purpose was 
to test the utility of our theoretical framework as a methodolo-
gy for varying task complexity. From this, any form of uncer-
tainty visualization can be systematically tested to ascertain its 
efficacy when complexity varies. This experimental task asked 
participants to compare two abstract map regions and deter-
mine which had the greatest amount of spatial location uncer-
tainty and/or temporal information uncertainty.  

 

Method 
 

Participants 
Eighty participants were recruited (28 female, 51 male, 1 

other, and Mage = 31.88). The majority of participants were 
Caucasian (n = 56), located in the USA (n = 76), and reported 
English as their first language. All participants were compen-

sated with a base payment of $3.00. To incentivize perfor-
mance, a bonus was awarded based on participants’ points 
earned. Each correct judgment was worth one point, and $0.10 
was awarded for every 20 points earned. The experiment took 
approximately 30 minutes. 
  
Design 

Independent Variables. This experiment used a within-
subjects design with two independent variables, the type of 
visualization and task complexity. The types of visualizations 
were divided into spatial and temporal. Spatial location un-
certainty indicated the degree of uncertainty that an object is 
in a given location and is represented by a solid circle (see 
Figure 1). Each solid circle has varying amounts of fuzziness 
around the edges to reflect levels of uncertainty. Temporal 
information uncertainty, represented by open circles, is an 
indication of the degree of uncertainty that an object is some-
where at a given time. Each open circle has a horizontal, or-
ange dashed “timeline” in the middle, and a vertical, black line 
to indicate a point in time. A longer rectangle across the time-
line indicates greater uncertainty around the time point repre-
sented by the black line. These uncertainty types were ma-
nipulated within our task complexity framework. 
  

 
Figure 1. Experiment 1 Stimuli by Condition. 

  
Complexity was divided into coordinative complexity and 

component complexity. Both types of complexity have two 
levels (low, high). Component complexity involves the num-
ber of items a decision maker must evaluate. In our study, low 
component complexity stimuli utilized map grids with only six 
symbols each and high component complexity stimuli utilized 
map grids with twelve symbols each. Coordinative complexity 
involves the degree to which the items in a decision context 
must be ‘integrated’ by the decision maker. In our study, low 
coordinative complexity stimuli involved only spatial or only 
temporal visualizations whereas high coordinative complexity 
stimuli used combined visualizations requiring uncertainty 
judgments that integrate both spatial and temporal symbols on 
the same map grid.  

As shown in Figure 1, each quadrant illustrates what 
would be one of the uncertainty judgments presented in a trial 
where uncertainty is compared in the side-by-side grids. Note 
that the low coordinative quadrants show grid comparisons 
that were either all temporal (top left) or all spatial (top right), 
and the high coordinative show grid comparisons requiring an 
integration of spatial and temporal uncertainty visualizations. 
Blocks were organized by levels of complexity to form four 
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experimental conditions: low component/low coordinative 
(LL), high component/low coordinative (HL), low compo-
nent/high coordinative (LH), and high component/high coor-
dinative (HH). Low coordinative blocks (four blocks) con-
tained 12 judgments whereas high coordinative blocks (two 
blocks) had 24 judgments, for a total of 96 judgments. The 
presentation of blocks and problem grids were randomized 
and counter-balanced between participants. 

Dependent Variables. The dependent variables reported 
are the accuracy of judgments based upon the percent correct 
(performance) and cognitive efficiency (CE) score. CE is de-
rived by taking standardized workload scores and combining 
them with standardized performance scores. As described in 
Fiore et al. (2006), such scores can be represented as the per-
pendicular distance from a line representing a level of zero 
efficiency (CE = [zp – zw]/√2). Because these are standardized 
scores, this results in positive and negative values that hover 
around a mean of 0. Positive scores indicate cognitive effi-
ciency in that there is relatively better performance in propor-
tion to reported workload, whereas negative scores indicate 
cognitive inefficiency (i.e., relative performance is less than 
relative workload). Due to space limitations, we only report a 
portion of the data from this experiment. 

 

Results 
  

Performance Accuracy. A repeated-measures ANOVA 
compared the effects of component complexity, coordinative 
complexity, and judgment difficulty on participants’ perfor-
mance accuracy across the LL, LH, HL, and HH conditions. 
Mauchly’s test of Sphericity was met. Participant performance 
by experimental condition is illustrated in Figure 2. 

 

  
Figure 2. Experiment 1 Participant Performance by Condition. 
  

First, there was a significant main effect of coordinative 
complexity on performance accuracy, F(1, 78) = 22.26, p < 
.0001, ηp

2 = .222, observed power = .997. Participants per-
formed better in low coordinative (M = .94, SE = .01) as op-
posed to high coordinative complexity conditions (M = .91, SE 
= .01). Second, there was a significant main effect of judgment 
difficulty on performance accuracy, F(1, 78) = 69.56, p < 
.0001, ηp

2 = .471, observed power = 1.00. Participants per-
formed better on easy judgments (M = .95, SE = .01), where 

the side-by-side grids had a greater degree of difference in 
uncertainty, as opposed to hard judgments (M = .89, SE = .02), 
where the side-by-side grids were very similar in uncertainty. 

Third, there was a significant interaction between compo-
nent complexity and judgment difficulty, F(1, 78) = 3.83, p = 
.05, ηp

2 = .047, observed power = .489. The difference in per-
formance between easy and hard judgments was larger in the 
low component complexity (M = .96, SE = .01 versus M = .89, 
SE = .02), than the high component complexity conditions (M 
= .95, SE = .01 versus M = .90, SE = .02). Last, there was a 
significant interaction between coordinative complexity and 
judgment difficulty, F(1, 78) = 15.75, p < .0001, ηp

2 = .168, 
observed power = .975. Participants performed equally well 
on easy judgments in both low (M = .96, SE = .01) and high 
coordinative complexity conditions (M = .95, SE = .01), but 
the difference was larger between hard judgments in the low 
(M = .92, SE = .01) and high (M = .87, SE = .02) coordinative 
complexity conditions. There were no other significant results. 

Cognitive Efficiency. A repeated-measures ANOVA com-
pared the effects of component complexity, coordinative com-
plexity, and judgment difficulty on participants’ cognitive 
efficiency (CE) scores across the LL, LH, HL, and HH condi-
tions (see Figure 3). Cognitive efficiency was calculated as 
described earlier. Mauchly’s test of Sphericity was met. 

  

 
Figure 3. Experiment 1 CE Scores across Conditions. 

 
First, there was a significant main effect of component 

complexity on CE scores, F(1, 79) = 5.91, p < .05, ηp
2 = .070, 

observed power = .671. Overall, CE scores were highest in 
low component (M = .09, SE = .137) as opposed to high com-
ponent complexity conditions (M = -.08, SE = .14). Second, 
there was a significant main effect of coordinative complexity 
on CE scores, F(1, 79) = 59.80, p < .0001, ηp

2 = .431, ob-
served power = 1.00. Overall, CE scores were highest in low 
coordinative (M = .29, SE = .14) as opposed to high coordina-
tive complexity conditions (M = -.27, SE = .14). This can be 
generally viewed when comparing the left and right sides of 
Figure 3. Overall, for the low coordinative trials, CE scores 
were either positive, meaning performance was high relative 
to workload, or near zero, meaning relatively equal perfor-
mance and workload. For the high coordinative trials, CE 
scores were, on average, largely negative, meaning perfor-

Proceedings of the Human Factors and Ergonomics Society 2017 Annual Meeting 1195



mance was lower relative to workload. Third, there was also a 
significant main effect of judgment difficulty on CE scores, 
F(1, 79) = 220, p < .0001, ηp

2 = .736, observed power = 1.00. 
CE scores were higher on easy judgments (M = .36, SE = .13) 
than hard judgments (M = -.34, SE = .14). 

Fourth, there was a significant interaction effect between 
component complexity and judgment difficulty, F(1, 79) = 
4.27, p < .05, ηp

2 = .051, observed power = .533. CE scores on 
easy judgments were positive for both low component (M = 
.48, SE = .13) and high component complexity (M = .23, SE = 
.14), with a large difference between them. But, for hard 
judgments, CE scores were negative on both low coordinative 
(M = -.30, SE = .15) and high coordinative (M = -.38, SE = 
.15) and more closely equal to each other.  

 Lastly, there was also a significant interaction between 
coordinative complexity and judgment difficulty, F(1, 79) = 
13.00, p < .01, ηp

2 = .141, observed power = .945. CE scores 
were positive and highest on easy judgments in both low (M = 
.57, SE = .13) and high coordinative complexity conditions (M 
= .14, SE = .14). For the hard judgments, CE scores were neg-
ative, with low coordinative near zero (M = -.003, SE = .141). 
But, the greatest cognitive inefficiency was found with high 
coordinative complexity (M = -.68, SE = .15). As such, the 
greatest difference in CE was between easy judgments that 
were low in coordinative complexity (indicating very cogni-
tively efficient responses) and hard judgments that were high 
in coordinative complexity (indicating very cognitively ineffi-
cient responses). There were no other significant results. 
 

EXPERIMENT TWO 
 

Experiment two was designed as a follow-up to experi-
ment one, replicating and extending the test of our complexity 
framework. Specifically, the visualization symbols in this 
study progressed from more abstract to more ecologically val-
id. Participants were asked to identify the map region pos-
sessing the greatest amount of uncertainty in relation to the 
probability that an area on the map grid, containing a boat, 
would be potentially affected by hurricane force winds. 

  

Method 
  

Participants 
One hundred participants were recruited through Ama-

zon’s Mechanical Turk (51 female, 49 male). Ages ranged 
from 18 to 61 years (Mage = 34.60 years). The majority were 
Caucasian (n = 70) and located in the United States (n = 90). 
All participants, except three, reported English as their first 
language. Participants were compensated as in the first exper-
iment, and participation also took approximately 30 minutes. 

 
Design 

Independent Variables. This experiment also used a with-
in-subjects design with two independent variables (type of 
visualization and task complexity). The types of visualizations 
were divided into two categories, intensity and integrated. 
Both intensity and integrated symbol visualizations were 
judged on their degree of uncertainty using the concept of col-
or shades. Uncertainty was illustrated by the varying shades of 
red within the symbols (lower uncertainty shown by darker 

shades; higher uncertainty by lighter shades). Located within 
each image, there was a small gray icon meant to represent a 
boat. In the intensity visualizations, the boat remains in the 
same location between symbols varying in levels of uncertain-
ty across map grids. However, the integrated visualizations 
introduce changes in location of the boat between symbols 
varying in levels of uncertainty dependent upon color shade. 

As in Experiment 1, complexity was divided into coordina-
tive and component complexity, each having two levels. Low 
component complexity map-grids contained six symbols each 
and high component complexity map grids contained twelve. 
Low coordinative complexity conditions involved only map 
grids with intensity symbols whereas high coordinative com-
plexity map grids used the integrated symbols. This required 
integrating both boat location within the symbol and shade 
surrounding the boat. Blocks were organized by levels of 
complexity, forming four experimental conditions as in Exper-
iment 1 (LL, LH, HL, HH). Each block contained 12 judg-
ments (total 48). The presentation of blocks and problem grids 
were randomized and counter-balanced between participants. 
See Figure 4 for an example of the stimuli by condition; each 
quadrant represents what would be one of the two map grids 
presented in a trial for the uncertainty judgment. 

 Dependent Variables. The dependent variables examined 
in this study were the same as those in experiment one. 
   

 
Figure 4. Experiment 2 Stimuli by Condition. 
  

Results 
  
Performance Accuracy. A repeated-measures ANOVA 

compared the effects of component complexity, coordinative 
complexity, and judgment difficulty on performance accuracy 
across the LL, LH, HL, and HH conditions. Mauchly’s test of 
Sphericity was met. First, there was a significant main effect 
of coordinative complexity on performance accuracy, F(1, 98) 
= 36.49, p < .0001, ηp

2 = .271, observed power = 1.00. Partici-
pants performed better in low coordinative (M = .94, SE = .01) 
as opposed to the high coordinative complexity condition (M = 
.91, SE = .01). Second, there was also a significant main effect 
of judgment difficulty on participants’ performance accuracy, 
F(1, 98) = 30.84, p < .0001, ηp

2 = .239, observed power = 
1.00. Participants performed better on easy judgments (M = 
.95, SE = .01) than hard judgments (M = .89, SE = .025). 
There were no other significant results. 

Cognitive Efficiency. A repeated-measures ANOVA com-
pared the effects of component complexity, coordinative com-
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plexity, and judgment difficulty on participants’ cognitive 
efficiency (CE) scores across conditions (see Figure 5). Mau-
chly’s test of Sphericity was met. First, there was a significant 
main effect of coordinative complexity on CE scores, F(1, 98) 
= 66.70, p < .0001, ηp

2 = .405, observed power = 1.00. Partici-
pants’ CE scores were higher in low coordinative (M = 1.20, 
SE = .311) as opposed to high coordinative complexity condi-
tions (M = -1.26, SE = .371). Second, there was also a signifi-
cant main effect of judgment difficulty on CE scores, F(1, 98) 
= 101.13, p < .0001, ηp

2 = .508, observed power = 1.00. Par-
ticipants’ CE scores were higher on easy judgments (M = .410, 
SE = .315) than hard judgments (M = -.470, SE = .306). 

  

 
Figure 5. Experiment 2 CE Scores Across Conditions. 
  

Lastly, there was a significant interaction between coordi-
native complexity and judgment difficulty, F(1, 98) = 6.18, p 
< .05, ηp

2 = .059, observed power = .692. CE scores were posi-
tive and highest for low coordinative in both easy (M = 1.53, 
SE = .31) and hard judgments (M = .86, SE = .32). For high 
coordinative, CE scores were negative, for both easy (M = -
.71, SE = .39) and hard judgments (M = -1.80, SE = .37). 
Again, the greatest difference in CE was between easy judg-
ments that were low in coordinative complexity (indicating 
cognitively efficient responses) and hard judgments that were 
high in coordinative complexity (indicating cognitively ineffi-
cient responses). There were no other significant results. 

  

DISCUSSION 
  

We presented initial testing of a theoretical framework 
meant to support research on uncertainty visualization. Two 
experiments replicated and extended how task complexity can 
be manipulated. Using a combinatory metric of workload and 
performance, we demonstrate how to utilize a synergistic 
combination of measurement approaches. Cognitive efficiency 
provides a single metric combining subjective assessments of 
cognitive load with actual performance. As such, across two 
different forms of stimuli, similar patterns of performance and 
cognitive efficiency were found.  

This framework provides an innovative level of diagnos-
ticity for evaluating visualization manipulations. Our broader 
context for this involves the operational environment where 

decision makers are faced with variations of uncertainty in 
determination of “courses of action” (COA). As such, we pro-
pose a theoretical scaffold for examining factors influencing 
COA selection with differing visualizations. We add methodo-
logical value to such research by illustrating how to systemati-
cally vary task context. In sum, this framework details a set of 
orthogonal dimensions and metrics that present an elegant 
means of operationalizing and assessing task complexity. 
From this, research in cognitive engineering has a solid foun-
dation on which to test variations in visualizations to deter-
mine how task context may influence their efficacy. With 
these, cognitive engineers can enhance understanding of how 
visualizations impact COA selection through context varia-
tions that alter the complexity of the decision environment.  
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