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ABSTRACT 

 

As low cost commercial video game sensors emerge, realistic full body interactions available in the household can 

also be utilized to support low cost dismounted Soldier training applications.  These sensors, such as the Microsoft 

Kinect, are designed to work with users directly facing them.  However, in an environment designed to train a team, 

larger spaces are necessary along with the freedom to maneuver and turn in all directions. These interactions are not 

reliably supported with the standard household video game configuration.  In this paper, the use of multiple Kinects 

configured around a large area is examined, giving multiple Soldiers freedom of mobility and 360 degrees turning 

while wearing a Head Mounted Display.  Skeletal recognition algorithms are shown within the Microsoft Kinect 

Software Development Kit that can be merged using commercially available tools and advanced fusion algorithms 

to produce better quality representations of users in the real world within a virtual environment.  While one Kinect 

will often lose tracking of parts of a user, this paper shows that several Kinects coupled with inference algorithms 

can produce a much better tracked representation as users move around.  Furthermore, the use of depth images along 

with the skeletal representations was examined to optimize fusion algorithms when bandwidth is available.  Finally, 

it is shown how these techniques are capable of taking several skeletal representations in the virtual scene and 

merging them together to form a virtual representation of a single user. This system expands the viability of low cost 

commercial solutions to Soldier training in complex virtual environments. 
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INTRODUCTION 

 

Low cost, non-obtrusive solutions for Soldier training 

have been shown feasible by adapting commercial 

products to complex problems (Williamson, et al., 

2011).  However, these off the shelf items are often 

built for simple applications. For example, in 

traditional video games, a user is always looking 

forward toward a television screen the tracking device 

is typically attached to.  For dismounted Soldier 

training, however, Soldiers may wear a Head Mounted 

Display and view the simulation as they naturally turn 

within a training area. 

 

With the Microsoft Kinect, the restriction to facing 

forward creates an unnatural user interface.  It is a 

problem that can be resolved by adding more sensors in 

the area so the natural movements to control an avatar 

can be achieved so that the mantra “train as we fight” is 

ensured. 

 

In this paper we discuss the RealEdge Fusion System, 

shown in Figure 1, which is a key piece to the next 

iteration of our RealEdge Prototype.  The previous 

iteration showed the capability to solve locomotion and 

navigation problems with low cost solutions 

(Williamson, et al, 2011), but lacked an efficient 360 

degree turning system.  These techniques still remain 

well within the realm of low cost by only adding a few 

additional Kinect sensors and laptops to connect to 

them.  The laptops used in the system perform some 

simple analysis of the Kinect data, then feed skeleton 

representations of the user to a centralized fusion 

server.  

 

Two variations to fuse the data are examined.  In the 

first approach, the orientation-less design does not 

require any gestures or extra equipment to determine 

the orientation of the user.  It works under many 

scenarios, but the data is not at its highest fidelity for 

all scenarios of movements within the training area. 

 

 

 

 

 

 

 
Figure 1:  Example of Fusion System in the Unity 

scene.  Each capsule represents a Kinect camera in 

the lab and the spheres represent skeleton joints. 

 

In the second approach, it is assumed that the Soldier is 

holding a weapon that faces toward the direction they 

are facing.  This results in better data fusion and 

orientation determination without adding any 

technology beyond the Kinects.  However, the user is 

required to maintain their hands in front of their chest. 

 

A test was designed for both approaches that showed 

the advantages of the fusion solution over the use of a 

single Kinect.  As a user moved within a complete 

circle, our data shows the single Kinect losing tracking 

of key joints to the skeletal representation, while the 

fusion system remains steady in the expected data. 

 

These fusion systems not only provide a Soldier full 

freedom of orientation within the training area’s range, 

but also higher fidelity data as the multiple Kinects can 

be used to correct any failed data coming from any one 

individual sensor. 

 

For this paper, four Kinect cameras are used.  The 

Kinect, made by Microsoft, is a commercial video 

game device containing a Red-Green-Blue (RGB) 

camera and two 3D sensors.  This creates two images, 

an RGB image, and a depth image.  The Microsoft 

Kinect for Windows Software Development Kit (SDK) 

(Microsoft, 2012) was used, which takes the Kinect 

Data from the sensor and provides skeletal 

representations of all recognized users, RGB images, 

and depth images.  In the RealEdge Fusion system 

skeletal representations were made use of as this was 
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used in the previous RealEdge prototype for gesture 

recognition. 

 

For the fusion system, the Unity 3D game engine 

(Unity, 2011), primarily used for video game 

development was selected as the virtual environment 

for the system.  It provides a virtual environment that 

conveniently maps virtual unit space to meters.  This 

was ideal for the RealEdge Fusion system as the Kinect 

SDK’s skeletal representations are also in meter units.  

This allows the fusion system to place the joints of a 

Soldier within a 3D scene and align them in the virtual 

world.  These virtual representations of the Kinect data 

can then be used for easy fusing, since all four 

representations are within the same coordinate system.   

 

In the next section, work related to Soldier training and 

data fusion is discussed.  Section three discusses the 

system built and the fusion iterations.  Section four 

describes tests performed on the fusion systems, 

presents data from these tests and discusses the 

evaluation of the techniques.  In section five the 

conclusions of this work and a discussion of future 

work is presented. 

 

RELATED WORK 

 

Virtual environments have been useful for Soldier 

training, for showing the capability to be trained to 

follow routes (Witmer, Bailey, and Knerr, 1995) and in 

later training iterations (Knerr, et al., 2003). However, 

the costs for high fidelity virtual systems can be very 

high, ranging up to hundreds of thousands of dollars 

(Knerr, 2006).  As shown in the previous RealEdge 

prototype (Williamson, et al., 2011), solutions can be 

found that allow a Soldier training environment with 

non-obtrusive and low cost commercial solutions.  We 

maintain these philosophies throughout this paper as 

well. 

 

The concept of data fusion for military applications is 

not unique.  As explained in (Hall and Llinas, 1997), 

data fusion has useful applications to the Department 

of Defense in the fields of ocean surveillance, air-to-air 

and surface-to-air defense, battlefield intelligence, 

target acquisition, and strategic warning and defense.  

Typically, the need for data fusion is for multiple 

sensors with multiple specialties to combine their data 

into an image of the scene better than their individual 

pieces; a system with a natural analogy to how the 

human brain combines information from the multiple 

senses (Varshney, 1997).  The process model for multi-

sensor data fusion includes pre-processing, data 

alignment and correlation, object aggregation, force 

estimation, and performance evaluation (Hall and 

Llinas, 1997).  In the RealEdge Fusion system, since 

the same type of sensor is used, several issues to data 

fusion do not apply.  Instead, the focus was on data 

alignment and object correlation. 

Ever since the Nintendo Wii Remote’s application 

programming interface became available (Peek, 2008), 

it has shown the capability of commercial devices to be 

used for virtual environments (Lee, 2008) (Shirai, 

Geslin and Richir, 2007) (Wingrave, et al., 2010).  This 

has resulted in the creation of other 3D user interface 

devices, including the Playstation Move (Sony, 2011) 

and the Microsoft Kinect (Microsoft, 2012).  In the past 

few years, the Kinect has been shown to be vital to 

various areas of research, from real time traffic sign 

recognition (Par and Tosun, 2012) to the exploration of 

medical data (Gallo, Platicelli and Ciampi, 2011). 

 

Furthermore, the concept of using multiple Kinects to 

fuse data has emerged in the research community, 

especially in the Kinect Fusion system (Izadi, et al., 

2011).  Their focus was on refining the depth images of 

multiple Kinects to reconstruct an entire scene in a 

virtual environment and interact with the scene.  In this 

paper, the focus relied on fusing the actual skeletal 

representations rather than the depth images, as this 

representation has been shown useful to gesture 

recognition.  There is also research on the use of 

multiples Kinects having depth images combined and 

used with Hidden Markov Models to track dynamic 

objects within a static scene (Dubois, Dib and 

Charpillet, 2011). 

 

Previous research shows that the fusion of multiple 

sensors to create a single understanding of a scene has 

been performed for years with success.  Furthermore, 

fusion of depth image data with the Kinect has been 

emerging into the research community.  It is with this 

knowledge that the RealEdge Fusion system was 

created, capable of fusing skeletal representations from 

four Kinects into a single understanding of the scene. 

 

REALEDGE Fusion 

 

System Setup 

 

The fusion system was composed of three Dell 

Inspirion N7110 laptop computers and four Kinect 

cameras attached to generic camera tripods.  The 

tripods were chosen as they provided stability, 

adjustability to various Soldier’s heights, and angle 

markings to know precisely the direction of the sensor.  

A Dell Precision T3500 desktop was used as the fusion 

system and the connecting point for one of the Kinect 

cameras.  Multiple computers had to be used as, at the 

time the fusion system was started, the Kinect SDK did 

not allow multiple Kinects to perform skeletal 

recognition on the same PC. 
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Figure 2:  Example of a Kinect attached to a camera 

tripod. 

 

The streaming software was run on each laptop and the 

fusion system.  The software would connect to the 

Kinect sensor via the SDK, and as skeleton and depth 

image data was received it would perform basic 

analysis on the data before streaming a custom 

structure to the fusion system via Transmission Control 

Protocol, as seen in Figure 3.  The custom structure 

was a refactoring of the skeleton representation along 

with pre-analyzed data.  There was also the capability 

to request a depth image frame to display, though this 

was used only for debugging. 

USB

USB

USB

USB

Ethernet

Ethernet

Ethernet

HDMI

 
Figure 3:  Architectural diagram of lab setup 

showing three Kinects going to laptops and one 

going to the central server, all transmitting via 

ethernet. 

 

Pre-Distribution Data Analysis 

 

Before the data was transmitted to the fusion server, 

the streaming system was tasked with analyzing the 

skeleton and depth data from the SDK in order to 

determine some level of confidence in the joint 

systems.  The SDK provides means to transform 

skeletal coordinates back to the depth image, and to 

transform depth pixels into the skeletal coordinate 

system.   

 

In a first iteration, it was found that the depth image 

could be sliced to contain just the pixels containing a 

user, by performing coordinate transformations of 

joints to pixels and subtracting the background (pixels 

far away).  Each pixel could then be taken and 

translated to the skeletal coordinate system to find the 

closest skeletal joint near it.  This allowed the depth 

image to be segmented to each joint.  Ultimately, this 

process limited the laptop’s ability to process frames at 

the Kinect’s 30 frames-per-second, so it was excluded 

from the final RealEdge Fusion system.  It did, 

however, show future potential for analyzing each 

joint’s depth pixels to verify the skeletal representation. 

 

In the end, a joint confidence system was created off of 

whether the joint was classified as tracked (1.0), 

inferred (0.5), or not-tracked (0.0) by the SDK.  An 

analysis was then performed where the skeleton joint 

was transformed to the depth image coordinates, and 

then the image’s pixel was translated back to skeletal 

coordinates.  If the distance between the original 

skeleton joint provided by the system and the one 

provided via translating from the depth pixel was large, 

adjustments would be made to the confidence in that 

joint slightly.  Because more analysis is necessary for 

this technique and cause for this variation, the 

adjustments to the confidence were not largely based 

off of it; just enough to suggest an irregularity was 

seen. 

 

Once the confidence for each joint was determined, the 

streaming software would then create a custom 

structure filled with the skeletal representation and 

confidence values.  This structure was then serialized 

and streamed to the fusion system. 

 

In the Fusion system, Unity 3D was used to recreate 

the physical lab setup in the virtual world.  Four Kinect 

representations were placed and oriented in relation to 

the real world cameras (measurements taken in 

meters).  Then, as the data was received, the Kinect 

representations would create skeletal structures made 

of spheres naturally projected at the offsets given 

originally by the Kinect SDK.  Since the orientations 

and measurements matched real world configurations, 

the four skeletal structures in Unity overlapped each 

other, as seen in Figure 4.  Though not included in this 

paper, potentially multiple users could be recognized 

by this system, as skeletal representations near each 

other very likely represent the same person. 
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Figure 4:  The 3D Unity scene with each Kinect’s 

skeletal representation shown as spheres in blue, 

which are overlapping naturally within the scene. 

 

Orientation-less Data Fusion 

 

The first goal was to create a fusion system that 

worked for all scenarios and did not require the user to 

have any special equipment or gestures to configure.  

This was named the orientation-less data fusion 

approach and went through three iterations. 

 

The first iteration of the orientation-less system was 

used primarily to illustrate the challenges that would be 

encountered.  The orientation-less system simply took 

the joint data from every Kinect, and if over a certain 

confidence level (0.75), it would perform a weighted 

average of the joint’s position as shown in 

 

     
           

      

 
(1) 

 

where     is the averaged position of the joint j,      is 

the weight of joint j from Kinect i and      is the 

position of joint j from Kinect i. 

 

This iteration showed an immediate issue between the 

representation of left and right between the sensors.  

The Kinect SDK assumes the user is facing the sensor, 

so the Kinects behind the user would swap left and 

right joints.  This means when computing the position 

of the right hand joint in the virtual representation, the 

position would actually be of the left hand in the data. 

 

To resolve this came the second iteration, which did 

not combine the joints in (1) based on their 

representation in the skeletal structure, but instead 

looked at the position of the spheres representations in 

Unity.  Since the skeletal representations were very 

near each other, iterations through each joint from the 

first Kinect sensor was used as the basis, then all 

spheres in the Unity scene near the reference one were 

found and used to perfect the tracking of that joint. 

 

This worked in practice, except if joints came too near 

each other.  For example, if the user crossed their arms 

or put their hands on their hips, this would cause the 

joints to get confused with the torso joint or hip joints 

and shift erratically. 

 

The third iteration attempted to resolve the left-right 

issue by just swapping all of the joints for two of the 

Kinects, considered behind the user at startup.  Though 

while facing the Kinects, their data would still be 

swapped, this was determined to be fine as the 

originally front-facing Kinects would now be swapping 

as they are looking at the back of the user.  The goal 

was to have consistency between the Kinects. 

 

A voting system was then implemented, which went 

through each joint and looked for the maximum 

number of Kinects to agree on a position.  Then the 

weighted average between these close positions was 

used.  The idea  was that it was commonly seen that 

two to three Kinects were in agreement, with the other 

two being vastly apart or admitting they were inferring 

the joint’s location.  By looking for this agreement 

adjustments could be made using that joint’s location. 

 

This iteration gave a reliable skeleton capable of 

gesture recognition.  However, joints would still shift 

in certain locations of the training area, caused 

primarily by the wrong two Kinects agreeing over the 

correct one.  While these issues were rare, it was 

finally concluded to attempt an orientation based 

design. 

 

Orientation Based Data Fusion 

 

In this approach, the context of a Soldier in training 

was used and it was assumed that a weapon would be 

in their hands aiming in the direction they desire to 

face.  While not true for all scenarios, it did present an 

opportunity to determine the orientation of the user and 

perfect the fusion system. 

 

The hands were examined of each skeletal 

representation, looking for the ones most forward from 

the torso as determined in 

                 
 
             

 
 

(2) 

where    is the distance from the hand h and the torso 

c considering only the x,z plane,      is the x position of 

the hand joint,      is the z position of the hand joint 
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and      and      are the similar positions of the torso 

joint. 

 

Using only hands farther away from the chest, in the 

event that one has returned to the belt or to perform 

some other gesture, the orientation could then be 

determined from the hand to chest with the arctangent 

function.  Furthermore, the hand joint’s confidence had 

to be over a set amount (0.75) to be considered.  With 

an orientation reported from the arctangent function, 

the angle was remapped to the [0,360] degree range.  If 

the Kinect could not determine orientation because of 

low confidence in hands, a -1 value was returned and 

checked for. 

 

With each Kinect calculating an orientation value, a 

simple voting method was used to find two or more 

Kinects agreeing on an orientation and used it.  Initial 

tests showed this data to be highly accurate to mapping 

to where the weapon was pointing.  Each Kinect was 

then hardcoded to the angular range it is best suited to 

detect based on its location within the lab.  With these 

two pieces of data, the system was able to detect the 

two best Kinects for detecting the user, to which it then 

used a weighted average formula similar to (1) to 

determine the position of each joint of the user. 

 

This system showed high fidelity and range of 

movement through the entire set of tests.  Satisfied 

with the high fidelity of this fused data, it was decided 

to analyze the systems in comparison with a single 

Kinect.    

 

EVALUATION 

 

To evaluate the techniques of this system, the position 

of a user’s arms were tracked as they moved within a 

complete circle standing at the center of the recognition 

area.  For all data collection the arms were held up in a 

straight line, perpendicular to the main axis of the 

body.  This allowed the Y position of each arm joint to 

stay relatively stable as the user made the full circle.  

The X and Z plane would change in accordance to 

making a circle. 

 

All data recorded was based on the virtual scene’s 

coordinate system so that there was consistency among 

all of the Kinects.  Each Kinect and fusion system’s 

data was recorded for both orientation-less and 

orientation based systems.  The voting method was 

used for the orientation-less system. 

 

Shown in Figure 5 and Figure 6 are examples of the 

two fusion approaches for a particular joint’s Y value 

as the user turned in a full circle.  The fusion approach 

line has been enlarged for illustration.  Most Kinects by 

themselves are able to keep a steady track of the joints, 

except for when view of the user is lost.  When this 

occurs, drastic jumps in the data can be seen.  Both 

fusion approaches show a steady line, able to interpret 

through any sudden jumps in the data. 

 
Figure 5:  Orientation-Less Fusion System Example 

 

 
Figure 6:  Orientation Based Fusion System 

Example 

 

 

 The relative error for each system was also evaluated 

by using the average height recorded for the elbow, 

wrist, and hand joints as an estimation to the 

measurement.  In Tables 1 and 2, the maximum errors 

present are shown, which demonstrate the single 

Kinect systems jumping largely as the joints are lost in 

sight and no longer inferred, while the Fusion system 

shows a significantly smaller amount of error.  In some 

scenarios, as seen in Table 2, Kinect 2, the inference 

algorithms of the Kinect can come through and 

estimate the joint while not maintaining visibility.  In 

these tables the numbers 5, 6, and 7 represent the 

elbow, write and hand joints of one arm with 9, 10, and 

11 being the same joints for the other arm.  All of these 

calculations come from the Y position of the joint. 
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Table 1:  Orientation-Less Fusion System Max 

Relative Error 

 

5.y 6.y 7.y 9.y 10.y 11.y 

K1 0.362 0.1720 0.199 0.4003 0.2973 0.3070 

K2 0.1054 0.0736 0.0761 0.0736 0.1219 0.1486 

K3 0.3073 0.2922 0.2368 0.2453 0.512 0.6006 

K4 0.3254 0.4551 0.4661 0.4584 0.4741 0.4562 

Fusion 0.0683 0.0532 0.0722 0.0973 0.1025 0.1318 

 

Table 2:  Orientation Based Fusion System Max 

Relative Error 

 

5.y 6.y 7.y 9.y 10.y 11.y 

K1 0.3462 0.4151 0.3992 0.3744 0.2349 0.1661 

K2 0.1618 0.0698 0.0763 0.1935 0.1187 0.1131 

K3 0.1912 0.4199 0.4365 0.192 0.4668 0.5604 

K4 0.2358 0.4406 0.533 0.0965 0.0969 0.0842 

Fusion 0.1596 0.0929 0.1338 0.1933 0.0984 0.0977 

 

While the orientation based and orientation-less 

techniques look very similar in these tests, in practice 

with a user performing quick movements to random 

spots, the orientation based approach is visually seen to 

track them better than the orientation-less solution.  

This data does show, however, that even without 

knowing the orientation of the user, data can still be 

fused successfully for several scenarios. 

 

CONCLUSION AND FUTURE WORK 

 

A solution for fusing skeletal representation data from 

multiple Kinects to provide complete coverage of a 

user was successfully demonstrated.  Where a single 

Kinect would fail to see a user at certain angles, both of 

the systems discussed in this paper show capability of 

being able to do so.  The fused skeletal representation 

is capable of being used in simulation training for 

gesture recognition and navigation needs, as though it 

came from an original single Kinect. 

 

There is still work to be done to perfect such a system.  

As mentioned previously, computational requirements 

prevented analyzing the depth pixels for every joint in 

order to determine high fidelity confidence in the 

Kinect’s representation.  In future work, the 30 frames 

per second constraint can be placed aside to perform 

analysis and see what data is present, and then 

optimizations to performance can be reintroduced. 

 

The possibility to track multiple users by using the 

proximity of their skeletal systems in the virtual scene 

was also stated; however, this work was not discussed 

in this paper.  In the future it will be shown that this 

can be done simply and easily with the Unity system.  

Finally, the fused skeletal representation needs to be 

placed back into a training environment so that gesture 

recognition can be utilized in a 360 degree 

environment. 

 

While there remains much work, these techniques 

present a viable low cost solution for a commercial 

product constraint of only working when the Soldier is 

facing forward.  The researchers were able to continue 

using the same product and perform data fusion in 

order to create a reliable single representation of the 

Soldier.  Furthermore, capability was shown to track 

the Soldier’s orientation with no additional equipment 

than the weapon they would already be holding during 

training. 
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