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Abstract

Address re-mapping techniques in so-called active memory
systems have been shown to dramatically increase the perfor-
mance of applications with poor cache and/or communication
behavior on shared memory multiprocessors. However, these
systems require custom hardware in the memory controller for
cache line assembly/disassembly, address translation between
re-mapped and normal addresses, and coherence logic. In
this paper we make the important observation that on a tradi-
tional flexible distributed shared memory (DSM) multiproces-
sor node, equipped with a coherence protocol thread context
as in SMTp or a simple dedicated in-order protocol process-
ing core as in a CMP, the address re-mapping techniques can
be implemented in software running on the protocol thread or
core without custom hardware in the memory controller while
delivering high performance. We implement the active mem-
ory address re-mapping techniques of parallel reduction and
matrix transpose (two popular kernels in scientific, multime-
dia, and data mining applications) on these systems, outline
the novel coherence protocol extensions needed to make them
run efficiently in software protocols, and evaluate these proto-
cols on four different DSM multiprocessor architectures with
multi-threaded and/or dual-core nodes. The proposed proto-
col extensions yield speedup of 1.45 for parallel reduction and
1.29 for matrix transpose on a 16-node DSM multiprocessor
when compared to non-active memory baseline systems and
achieve performance comparable to the existing active mem-
ory architectures that rely on custom hardware in the memory
controller.

1 Introduction
Active memory (AM) techniques [16] use address re-

mapping [33] in conjunction with cache coherence protocol
extensions to significantly improve the performance of a num-
ber of popular scientific computing kernels on uniprocessors
as well as shared memory multiprocessors. Traditionally, such
systems have relied on customized hardware support for car-
rying out address translation and dynamic assembly of cache
lines in the memory controller. Such support not only makes
the system architecture complex, but also introduces barriers
to adoption of such systems in commodity multiprocessors.
In this paper we show that it is possible to retain most of the
performance of traditional active memory systems while elim-
inating all custom hardware support from the memory con-
troller. As in the previously proposed active memory sys-
tems [16], we maintain the flexibility of adding new active

memory techniques without additional hardware support by
executing the cache coherence protocols in the form of soft-
ware handlers. Although single-threaded as well as multi-
threaded applications enjoy significant performance improve-
ment from the AM techniques, in this paper we evaluate our
proposal on a 16-node distributed shared memory (DSM) mul-
tiprocessor with nodes capable of running one or two applica-
tion threads, thereby allowing us to experiment with 16- and
32-way threaded parallel applications. The nodes are kept co-
herent via a directory-based write-invalidate bitvector protocol
extended suitably from the SGI Origin 2000 [18]. We explore
four different architectures of flexible directory controllers rel-
evant to today’s multi-core and multi-threaded systems. These
include dual-core processors with a dedicated coherence pro-
tocol processing core and multi-threaded processors with a
dedicated protocol thread context as in SMTp [4]. Each of
these architectures may or may not use custom hardware in the
memory controller for address re-mapping. In this work, these
architectures with custom address re-mapping hardware serve
as the baseline and we show how to leverage the flexible proto-
col processing support already present in these DSM multipro-
cessors to deconstruct the custom hardware while continuing
to deliver performance comparable to the baseline.

We focus on two AM techniques, namely, matrix transpose
and parallel reduction which were evaluated in the past pro-
posals of AM techniques on DSM multiprocessors, and show
how to carry out a generic set of operations required by the
AM techniques without any custom hardware support in the
memory controller. A detailed evaluation based on execution-
driven simulation shows that executing our cache coherence
protocols on a hardware thread-context in SMTp achieves a
speedup of 1.45 for parallel reduction and 1.29 for transpose
compared to a non-AM design that does not use address re-
mapping across seven 16-way threaded scientific computing
benchmarks. We present a thorough comparison of perfor-
mance across a set of viable architectures and show how the
system scales to 32 threads. Two major contributions of this
paper are as follows.

� We present the first implementation of AM techniques
on flexible hardware DSM multiprocessors that do not
require custom address re-mapping hardware support in
the memory controller.

� We evaluate our proposal on four different flexible
directory controller architectures relevant to today’s
multi-core and multi-threaded nodes.

In the rest of this section we briefly introduce the AM tech-



niques that have already been developed and the custom mem-
ory controller that has been employed in the past. We also
present a brief discussion on the four different flexible direc-
tory controller architectures that we evaluate. In Section 2 we
present our new AM protocol that does not rely on any custom
hardware support in the memory controller and discuss poten-
tial area and peak power savings that result from removal of
the address re-mapping hardware. Sections 3 and 4 present
our simulation results. We discuss previous work in Section 5
and conclude in Section 6.

1.1 Active Memory Techniques and the AMDU
We first present a discussion on the parallel reduction and

matrix transpose AM techniques and then identify the hard-
ware support needed by these operations. Parallel reduction
maps a set of items to a single item with some underlying op-
eration. Consider an example of reducing every column of a
matrix � to a single element, thereby obtaining a single vector
� at the end of the computation. The size of the matrix � is
� �� and there are � processors. A simple parallel code is
shown below which carries out a block-row decomposition of
the matrix. The value � is the identity element under the oper-
ation � (e.g. 0 is the identity for addition and 1 is the identity
for multiplication). In an actual implementation the � and �
loops would be interchanged to get better cache behavior.

/* Privatized reduction phase of pid */
for j = 0 to N-1

private x[pid][j] = e;
for i = pid*(N/P) to (pid+1)*(N/P)-1

private x[pid][j] =
private x[pid][j]�A[i][j];

BARRIER

/* Merge phase of pid */
for j = pid*(N/P) to (pid+1)*(N/P)-1

for i = 0 to P-1
x[j] = x[j]�private x[i][j];

BARRIER
Subsequent uses of x

The reduction phase does not have any remote memory ac-
cesses because we can map ���	
�� � in local physical mem-
ory. However, the merge phase assigns mutually exclusive in-
dex sets of the result vector to each processor and suffers from
a large number of remote misses due to an inherently all-to-all
communication pattern. The AM technique completely elimi-
nates the merge phase. The transformed code is shown below.

/* Active Memory initialization phase */
x’ = AMInstall(x, N, sizeof(long long));

/* Reduction phase */
for j = 0 to N-1

for i = pid*(N/P) to (pid+1)*(N/P)-1
x’[pid][j] = x’[pid][j]�A[i][j];

BARRIER
Subsequent uses of x

The AMInstall function belongs to the AM library ker-
nel and informs the coherence layer of the starting virtual ad-
dress of �, its size, and the size of its elements via a series
of uncached stores. The need for these three pieces of infor-
mation will become clear in the following discussion. The
AMInstall function also returns the starting virtual address
of a “shadow space” large enough to hold a re-mapped vector
�� belonging to each thread (thus the re-mapped area in virtual
memory is � times the size of �). At this point this function
also establishes the virtual to physical mapping of this shadow

vector. One unique property of AM is that the re-mapped vec-
tor is not backed by physical memory and hence the name
“shadow vector”. All the shadow physical pages of the vec-
tor �� are made contiguous. This is easy to achieve because
there is no concept of page replacement in the shadow area
and hence no fragmentation. The shadow physical space is
identified by the upper few bits of the physical address. For ex-
ample, if in a 32-bit physical address space only 1 GB memory
is installed, the upper two bits of the physical address can be
used to identify four different address spaces, of which three
are shadow spaces not backed by physical memory. The per-
thread vector �� belongs to one such space and therefore, the
starting physical address of �� is a pre-defined constant. A
per-thread shadow vector is needed because a single global
shadow vector used in [16] introduces a coherence problem
for modern shared cache architectures (i.e. SMT and CMP).
The thread � performs the privatized reduction phase only to
the shadow vector �����. When a dirty cache block belonging
to the shadow space is evicted it is first sent to the home node
of the cache block as usual. There the custom memory con-
troller carries out the merge operation by computing the actual
physical address corresponding to the evicted shadow cache
block with the help of the three pieces of information obtained
from AMInstall and stores the result in the actual location
of vector � in physical memory [9]. For example, correspond-
ing to a requested shadow physical address ��, the virtual ad-
dress of � would be ���

� 
� �  � where 
� is the pre-defined
starting address of the shadow physical area and  is the start-
ing virtual address of �. Notice that � � 
�� is a constant
and hence can be pre-computed when AMInstall executes.
Computing the physical address of � from this virtual address
requires a TLB in the memory controller, in addition to the
virtual address computation logic. Further, the memory con-
troller should be equipped with the merge hardware, e.g., an
adder if addition is the underlying operation or a multiplier if
multiplication is the underlying operation. The active memory
data unit (AMDU) [16] integrates this custom support in the
memory controller. Figure 1 shows how a shadow writeback
is handled in the AMDU with seven major steps marked. The
AM technique can save processor busy time by eliminating the
merge phase, and remote memory access time since the write-
backs are not in the critical path of execution. However, the
shadow vector (��) and the actual vector (�) should be kept
coherent through cache coherence protocol extensions [16].
For example, a request for a cache block belonging to � must
retrieve the corresponding re-mapped cache blocks belonging
to �� from all owners (that are not evicted and hence marked
in the directory entry), merge them one after another with the
resident memory block with the help of the custom memory
controller, and send the reply containing the final result. No-
tice that potentially there can be � owners of a shadow cache
block.

Unlike parallel reduction, in matrix transpose the perfor-
mance bottleneck results from poor cache utilization due to a
matrix column walk. Consider a matrix � stored in memory
in row-major order. An application accesses the matrix � first
row-wise, and then column-wise. The size of the matrix � is
��� and the application is parallelized on � processors. An
example code is given here.

/* Row-wise access phase */
for i = pid*(N/P) to (pid+1)*(N/P)-1

for j = 0 to N-1
sum += A[i][j];
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Figure 1. AM-assisted parallel reduction.

BARRIER
Transpose(A, A’); /* �

�
� �

� */
BARRIER

/* Column-wise access phase */
for i = pid*(N/P) to (pid+1)*(N/P)-1

for j = 0 to N-1
sum += A’[i][j];

BARRIER
Transpose(A’, A);
BARRIER

Though tiling the transpose phase reduces the number of
cache misses and prefetching further reduces the cache miss
latency in the critical path, this software transpose technique
still has some overhead. Whenever we change the access pat-
tern from row-wise to column-wise or vice versa, we need to
perform the transpose phase, which costs processor busy time,
memory access time and synchronization time (in the barri-
ers). Especially, the remote memory accesses during the trans-
pose phase become a bottleneck. The AM-transformed code
eliminates the transpose phase and off-loads it to the AMDU,
as shown below.
/* Active Memory initialization phase */
A’ = AMInstall(A, N, N, sizeof(Complex));

/* Row-wise access phase */
for i = pid*(N/P) to (pid+1)*(N/P)-1

for j = 0 to N-1
sum += A[i][j];

BARRIER

/* Column-wise access phase */
for i = pid*(N/P) to (pid+1)*(N/P)-1

for j = 0 to N-1
sum += A’[i][j];

BARRIER

As proposed in [33], the AM technique allocates �� in
a shadow space ��. The shadow matrix �� is not backed
by any real physical memory. Instead, it is composed by
the memory controller on the fly by maintaining the invari-
ant �������� � �������. For example, on a read request (shown
as GET in Figure 2) from ��, the memory controller com-
poses the shadow cache block by gathering a number of ele-
ments from a column segment of �. To compute the virtual
addresses of these words in �, it uses information such as the
starting virtual address of �, the matrix dimensions and the
element size provided via the one-time AMInstall library
call. Further, for each word, one TLB lookup is needed to
translate the virtual address to the corresponding physical ad-
dress (for large-sized rows each word in the column segment
will belong not only to a different cache block, but also to a
different page). Thus, the matrix transpose is carried out by
the memory controller, not by the main processor, removing
the software transpose overhead and eliminating a large num-
ber of cache misses. Note that the initialization phase does

not perform a matrix transpose. It only communicates the in-
formation used to compose the shadow matrix ��. In sum-
mary, as in parallel reduction, the memory controller should
be able to compute the corresponding physical addresses of
the words in the original matrix � and dynamically assemble
the requested cache block of shadow matrix ��. This dynamic
cache line assembly/disassembly was also implemented in the
AMDU [16] in the form of a three-stage pipeline where the
first stage computes the virtual addresses of the cache blocks
of � containing the corresponding words in a column seg-
ment, the second stage performs the TLB lookup for each of
these virtual addresses, and the third stage computes the di-
rectory addresses and initiates the directory and data memory
accesses. As in parallel reduction, here also the directory pro-
tocol extensions [16] should maintain the coherence between
� and ��.
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Figure 2. AM-assisted matrix transpose.

In summary, there are three basic operations offered by the
custom-designed AMDU for these two AM techniques. These
are shadow address to physical address translation (achieved
by TLB hardware in the AMDU), dynamic cache line assem-
bly and disassembly (achieved by issuing word, double-word,
or quad-word read/write requests to the SDRAM banks), and
the merge operation (achieved by the merge hardware embed-
ded in the AMDU). These operations are done in a highly effi-
cient manner by the hardwired AMDU pipeline [16], shown
in Figure 3. The coherence protocol fills the base address
buffer and initiates the AMDU pipeline. Each buffer con-
tains 16 registers because in our simulated system a 128-
byte shadow cache block can potentially be assembled from
double words (64 bits) of 16 different physical cache blocks
e.g., in matrix transpose. Therefore, 16 different base ad-
dresses, virtual addresses, physical addresses, directory ad-
dresses, and physical double words from application memory
will be needed to assemble a shadow cache block. The central
contribution of this paper (Section 2) is that we show how to
move this custom support from hardware to coherence proto-
col software and continue to deliver most of the performance
achieved by the AMDU.

1.2 Flexible Directory Controller Architecture

Flexible AM clusters employ directory controllers that can
execute any cache coherence protocol. This makes introduc-
tion of new AM techniques easy. We exploit this flexibility
to move the hardwired AMDU functionality to software pro-
tocol. With the removal of the AMDU, our AM cluster ar-
chitecture has become even more flexible in terms of accom-
modating new techniques. In this section we briefly discuss
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the four flexible directory controller architectures that we ex-
amine. The exact architectural parameters are presented in
Section 3. The fundamental requirement of a flexible direc-
tory controller is the ability to execute the coherence proto-
col in software [1, 17, 19, 21]. Therefore, the design varies
depending on the position and the make of this execution en-
gine. In the first design we use an on-die protocol core with
single-level private instruction and data caches. In the sec-
ond design we allow this protocol core to share the outermost
level of the main core’s cache (in our experiments it is the
L2 cache), but remove its private data cache. This design en-
joys a significant area and energy advantage over the first one
because there is no extra hardware dedicated to the protocol
caches. In the third design we augment the second design
with a private L1 data cache for the protocol core. Finally,
we consider the SMTp design [4] where the coherence pro-
tocol runs on a hardware thread context of the main core and
eliminates the protocol core entirely. In this design the proto-
col thread shares most of the pipeline resources, including the
cache hierarchy, with the application threads running in the
same core. However, to avoid deadlock situations the proto-
col thread does require some nominal reserved resources [4].
The SMTp design is probably the most attractive one in terms
of metrics such as performance per transistor, but the protocol
core design may be easier to validate depending on the com-
plexity of the core. All these four architectures are shown in
Figure 4. Each of these architectures may optionally have a
custom designed AMDU (shown dotted in the figure).

To clarify the discussion in the next section, we would like
to mention that in all these architectures the memory controller
receives physical addresses from the processor side and hands
them over to the coherence protocol. Depending on the ad-
dress space the coherence protocol takes appropriate actions
e.g., for shadow space addresses it invokes the AM protocol.
For the requests from the protocol thread, instead of invok-
ing the coherence protocol recursively, the memory controller
strips off the address space bits and sends the address to ei-
ther the SDRAM banks or appropriate devices in the case of
protocol-initiated memory-mapped I/O requests.
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application thread and PT denotes the directory proto-
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an SMT core. (A) PCPL1: Protocol Core with Private L1
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2 Deconstructing the AMDU
This section details our contribution of eliminating the

AMDU hardware. We present novel extensions to the ex-
isting directory-based AM protocols [16] for carrying out
address translation, merge operation, and dynamic assem-
bly/disassembly of cache blocks. The virtual address calcu-
lation, shown in Figure 3, involves one conditional shift and
one 32-bit add operation, and therefore, can be trivially done
in coherence protocol software. Same applies to the directory
address calculation which involves a constant amount shift fol-
lowed by a 40-bit addition.

2.1 Parallel Reduction

In the AM parallel reduction technique, existing AM clus-
ters require two pieces of hardware support. The first is an
embedded TLB in the memory controller. To replace the TLB
with appropriate extensions in protocol software we have two
design options. The first option is to maintain a direct-mapped
translation table in the protocol data area entirely managed by
the protocol software. Each entry of the table has a valid bit,
a tag, the translation, and the access control bits. The TLB
hit/miss is determined by the protocol software by examining
the valid bit and the tag field and on a miss, it issues a page
table entry request to the SDRAM interface (or invokes the
hardware page walker if one is implemented). The page table
base address is statically allocated in a general purpose reg-
ister of the protocol core/thread and is loaded with the cor-
rect value by the operating system when the application is
launched. We implement this design in our experiments, al-



though it introduces one extra complexity in the virtual mem-
ory management layer of the operating system. The operating
system when modifying virtual to physical translations (due to
swap or migration), in addition to shooting down the TLBs and
flushing the caches, must now invalidate the potentially stale
translations residing in the protocol’s soft TLB area. For the
sake of completeness, we mention one alternative. It is possi-
ble to allow the protocol thread in SMTp to directly access the
data TLB of the core. However, this design either interferes
with the functioning of the application threads or requires an
extra port in an already performance-critical TLB design. Fur-
thermore, this design puts heavy pressure on the data TLB and
may re-introduce the poor TLB behavior in some of the AM
techniques such as transpose. Since sharing a TLB among
multiple cores is not very attractive due to floor-planning is-
sues in a planar single-die architecture, we do not consider it
in the rest of the paper.

We found moving the merge operation to protocol software
much more challenging than the address translation support.
The merge operation is invoked by the coherence protocol
on the home node when it receives a writeback from shadow
space or an intervention reply for shadow space (this interven-
tion is usually generated by a normal space request on find-
ing the corresponding shadow block dirty). The coherence
protocol needs to read the memory-resident cache block in a
memory buffer (MYB), merge it with the cache block in the
message buffer (MEB) that comes with the writeback or in-
tervention reply, and write the merge result back to memory.
This process was shown in Figure 1 for the case of a shadow
writeback. All data buffers are cache block sized. However,
the protocol core/thread can load/store at most 64 bits of data
between a data buffer and its register file. Let us assume that
the L2 cache block size is 128 bytes and the reduction grain
is 64 bits. A naı̈ve software implementation would read 64-
bit data at a time from two buffers into two registers, merge
them into a register, and write this register back to one of the
buffers. Finally, the result buffer is written back to memory. If
the protocol load/store operations between data buffer and reg-
ister file are uncached, this algorithm will require 32 uncached
loads between MYB/MEB and register file, 16 merge instruc-
tions (add, multiply, etc.), and 16 uncached stores from regis-
ter file to result buffer. Since uncached loads take a long time
to complete, a large number of such instructions can severely
hurt performance. We note that in the highly pipelined AMDU
datapath this whole process would take only 16 cycles with
one cycle per merge (assuming a simple merge operation like
addition).

Allowing the already memory mapped data buffer pool to
be cached in the protocol core’s cache or in the shared cache
of the protocol thread enables the use of cached load/store
instructions, which are fast and can even be issued specula-
tively. For example, suppose the data buffer storage starts
at the physical address 0x8000. Each data buffer holds 128
bytes of data (one cache block). Therefore, data buffer zero
starts at address 0x8000 and extends up to 0x807f, data buffer
one starts at 0x8080 and extends up to 0x80ff, etc. MEB and
MYB are two of these buffers allocated from the buffer pool.
The load to the first 64 bits of a data buffer (MYB or MEB)
would miss in the cache and bring the entire cache block into
the cache. We store the results of the merge back to the cache
block containing MYB. At the end of the merge operation the
protocol flushes the result block back to MYB buffer by is-

suing a writeback invalidate instruction similar to that in the
MIPS R10000 [20] and then issues an uncached instruction to
write the entire buffer contents back to the proper memory ad-
dress where the MYB was loaded from originally. Note that
we also need to invalidate the cache block holding the contents
of MEB to make sure that during the next merge operation the
protocol core/thread sees new data at this buffer address. For
this purpose we use the invalidate instruction similar to that
in the MIPS R10000. We note that the writeback invalidate
as well as the invalidate instructions of the MIPS R10000 are
allowed to be executed only in the privileged mode. How-
ever, since the coherence protocol software is provided by
the designer and the user cannot download arbitrary protocol
software in the protected protocol code/data area, we can al-
low this trusted protocol software to execute in the privileged
mode.

The aforementioned design offers some benefits by elim-
inating a large number of slow uncached operations, but it
still suffers from the problem that we cannot retain the merge
results in the cache for reuse by multiple merge operations.
Note that there could be multiple shadow blocks mapped to
the same normal cache block and owned by different threads
at the same time (each thread locally accumulates its por-
tion). Therefore, a straight-forward optimization would be to
directly bring the memory block to cache, instead of going
through MYB, when the first merge operation to this block
is invoked, and to not flush the block back to memory at the
end of each merge operation. The coherence protocol can
find out from the directory state when the last merge opera-
tion is executed for a cache block (the directory maintains an
owner vector of the shadow block as in the original AM re-
duction protocol [16]), and only at that time does it issue a
writeback to main memory. However, in this case we can-
not cache the block at the original application space address
because that would create a new coherence problem in the
shared cache of SMTp or the protocol core in the PCSL2 and
PCSL2PL1 configurations. The application may generate this
address while merges are in progress and get a wrong interme-
diate value from the cache. To solve this problem, we cache
the block at a different shadow address space. For example,
if the result is being generated for application cache block ad-
dress 0x2345680, we cache it at address 0xc2345680 where
the bits [31:30] represent the address space (application ad-
dress space is 0 while result block space is 3). Note that this
does not require any extra hardware support because the proto-
col software itself generates the load/store instructions for the
cache block and therefore, can issue the appropriate shadow
addresses for loading the physical blocks. When the local
memory controller receives such an address, it strips off the
address space bits (as the request is generated by the protocol
thread) and issues the cache block read request to SDRAM.
At the end of all merges to a cache block the protocol writes
back the block by issuing a writeback invalidate instruction.
As we have already mentioned, on receiving this writeback,
the memory controller strips off the space bits and sends the
write request to the SDRAM banks. This design does increase
cache pressure, but overall, we found it to deliver excellent
performance.

In summary, we have introduced three orthogonal design
options for moving the merge operation to protocol software,
namely, caching (C) or not caching (U) MEB during a merge,
caching (C) or not caching (U) MYB during a merge, and



caching (C) or not caching (U) a merge result block across
merges. This leads to a total of eight designs (UUU, UCU,. . . ,
CCC), but it is clear from the above discussion that UUC and
CUC are not viable design options because there is no distinc-
tion between the merge results and the contents of MYB, if the
merge results are cached across merges. We found that UCC
and CCC are always superior to UUU, UCU, CCU, and CUU
because UCC and CCC allow the merge results to be cached
across merges. Interestingly, we found UCC to be slightly
better than CCC. The uncached load path of MEB in UCC
is faster than the cached path in CCC the first time around
because a cache miss will go through an L2 lookup, which
the uncached path can bypass. Further, caching the MEB in-
creases cache pressure, thereby hurting performance in CCC.
Therefore, for brevity we will present the results of UCC only.
We found that caching the merge results across merges is the
most important determinant of performance.

2.2 Matrix Transpose

Matrix transpose requires support for dynamic cache line
assembly/disassembly in addition to the address translation
support discussed in the last section. An incoming request
from shadow space needs to gather the corresponding ma-
trix elements from a column and assemble them into a cache
block-sized data buffer. This process was depicted in Fig-
ure 2. This operation requires accessing � � ��� cache
blocks of normal physical space where � is the size of the re-
quested shadow cache block (i.e. L2 cache block size) and �
is the size of one matrix element. We assume � to be at most
a quad-word i.e. 128 bits, which is the case for a complex
double matrix. We further assume that the SDRAM interface
accepts quad-word sized requests. Therefore, to replace the
AMDU pipeline, the protocol software can issue a series of
memory requests along with the destination data buffer indices
i.e. the ��� data element will go to the ��� � -sized segment
of the data buffer. The valid bit of each segment is memory-
mapped and the protocol software can monitor the valid bits
through uncached load operations and clear them through un-
cached store operations. Existing multiprocessors [17] already
have this support to implement aggressive data pipelining be-
tween the DIMM interface and the memory controller. After
implementing these modifications in the protocol software we
can completely get rid of the AMDU, as we have already dis-
cussed how to move the address translation support to protocol
software in the last section.

2.3 Complexity, Area, and Power Issues

In this section, we briefly discuss the issues related to
the complexity, area, and power consumption of the AMDU,
which we propose to get rid of. The AMDU datapath, at
a very high level, was shown in Figure 3. However, many
details related to the logic that synchronizes the AMDU and
the protocol thread were not shown for brevity. We first dis-
cuss some of these here so that the readers can appreciate the
need for substituting the AMDU with less complex designs.
The AMDU was designed for a general address re-mapping
technique where a shadow cache block is composed of words
from multiple physical cache blocks, as in the matrix trans-
pose technique. Therefore, multiple registers are needed in
each pipeline buffer. A shadow cache block request is first

sent to its home node. On this node the base addresses of
the physical cache blocks are filled by the protocol thread in
the base address registers speculatively even before consult-
ing the directory entries. Such a design favors the common
case where all the contributing cache blocks are clean in the
home memory. The AMDU pipeline operates on the base ad-
dresses iteratively taking one address in each pass. Thus, a
multiplexer in each pipe stage selects the appropriate regis-
ter entry to operate on. The selection input of the multiplexer
could be driven using a simple iteration counter, but the situa-
tion is complicated by the fact that under many circumstances,
depending on the directory state of certain cache blocks, the
protocol thread may instruct the AMDU to operate on a few
selected registers in a buffer. Thus, with each pipeline buffer
we must attach a valid bit vector of length equal to the number
of registers in the buffer. The valid bits of any pipe stage can
be set by the protocol thread and reset by that AMDU stage
at the end of processing. This essentially means that after
each iteration, each of the AMDU stages must inspect the valid
bits to find out which register to work on in the next iteration.
However, the protocol thread must be careful while setting the
valid bits and filling the pipeline register contents because one
can easily envision numerous races corrupting the computa-
tion. Another array of ready bits is needed with each buffer to
indicate the completion of computation in a pipe stage. This
bit is tested by the protocol thread before reading any buffer
contents. From our experience, we found that functional ver-
ification of the AMDU even in a high-level simulator (which
ignores many gate-level details) is quite tedious. This mo-
tivated us to explore simpler ways of implementing efficient
address re-mapping.

The new coherence protocol extensions proposed in this
paper remove the burden of verifying the AMDU, but does
introduce extra burden of verifying the protocol software it-
self. However, we found that there are a few unique blocks
of protocol code that get re-used at many places, thereby re-
ducing the verification effort enormously. The biggest advan-
tage of implementing address re-mapping in protocol software
is that discovery of a late bug does not require a silicon re-
spin. In summary, we feel that there are compelling reasons
for believing that the design proposed in this paper is indeed
complexity-effective.

Elimination of the AMDU saves area in the memory con-
troller. Moving the re-mapping support to the protocol soft-
ware does not add any extra hardware because the new proto-
col continues to run on the existing protocol thread hardware
in SMTp or protocol core. Using a 65 nm process technology
we estimate the area and the peak dynamic power consump-
tion (without any clock gating) of the AMDU to be respec-
tively 1.77 mm� and 2.81 W. These numbers do not include
wiring area and static power. The wordline spacing, bitline
spacing, register cell height and width, and various capaci-
tance values are taken from Wattch distribution [2] and scaled
down appropriately to 65 nm. The supply voltage, thresh-
old voltage, and frequency are assumed to be 1.1 V, 0.18 V,
and 2.4 GHz, respectively. All the arrays have one read port
and one write port. All the array ports, except for the 1024-
entry direct-mapped AMTLB and the DFCM7 [11] AMTLB
prefetcher, are modeled as single-ended, as sense amplifiers
are not necessary in the small arrays. The ALU/adder/shifter
area is derived by scaling down the data published in [3] for
the MIPS R10000 at 0.35 �m technology. We assume the area



of an adder to be double of a barrel shifter. Further, we as-
sume the peak dynamic power of the adder to be double of
the shifter. The power consumption of the adder is computed
from Wattch. As expected, we found that big portions of the
area (about 60%) and peak power (about 60%) of the AMDU
are consumed by the AMTLB and the AMTLB prefetcher.
The majority of the remaining area and peak power is con-
tributed by the merger and the address calculators. By ex-
amining Figure 3 we expect a significant additional wiring
overhead between the SDRAM/protocol thread/protocol core
interface and the AMDU. This may even necessitate re-
engineering of the SDRAM to memory controller interface.
As the dynamic peak power density of the AMDU is about
1.6 W/mm�, future efforts will develop a temperature model
of the AMDU and explore if elimination of the AMDU re-
moves a potential hot-spot from the system.

3 Simulation Environment
In this section we discuss our simulation environment in-

cluding the applications we use for evaluating our AMDU-free
protocol extensions. We simulate DSM multiprocessors with
16 nodes where each node contains a heterogeneous dual-core
processor. One core is in-order statically scheduled dual-issue
and dedicated to protocol processing in non-SMTp models.
This core is modeled after the embedded protocol processor
in Memory And General Interconnect Controller (MAGIC)
of the Stanford FLASH multiprocessor [10, 17]. The other
core is dynamically scheduled out-of-order issue and simulta-
neous multi-threaded (SMT) [30, 31]. This core executes one
or two application threads in addition to the protocol thread
in the SMTp architecture. Thus in the SMTp architecture the
protocol core is unnecessary (and hence is not shown in Fig-
ure 4(D)), while in non-SMTp models the protocol thread con-
text is idle. We would like to mention that, other than a PC,
a rename table, a return address stack, a branch history ta-
ble (BHT) in the branch predictor, and an active list, no ex-
tra resource is provided when adding the protocol thread con-
text in SMTp. In addition to the cores, each node contains
an on-die integrated memory controller [5, 13, 15, 27, 28]
clocked at core frequency, an integrated e-cube router clocked
at core frequency, and off-chip SDRAM banks connected to
the memory controller. Optionally, each node may contain
an AMDU attached to the memory controller. The architec-
tures with AMDU serve as the baseline in this study and we
evaluate the performance after the AMDU is removed, while
executing our proposed AM-enabled coherence protocols in
software and taking advantage of address re-mapping. In Ta-
ble 1 we present the architecture of the SMT core including
the SMTp-specific reserved resources. The L2 cache round-
trip time includes a 3-cycle tag look up time determined by
CACTI 3.2 [12] for 65 nm process with a four-way banked
organization. The number of reserved resources for SMTp is
determined through extensive simulation. Note that these are
not additional resources, but are just reserved from the existing
pool of resources.

The memory system architecture is presented in Table 2.
We simulate a 16-way banked 400 MHz SDRAM module

and explore configurations with one logical channel capable
of transferring 64 bits on both edges of the clock (DDR), the
critical 64 bits being the first transfer packet. This leads to an
aggregate bandwidth of 6.4 GB/s per channel.

Table 1. Simulated SMT core
Parameter Value

Frequency 2.4 GHz
Thread contexts 2 app. + 1 protocol
Pipe stages 18
Fetch policy ICOUNT (2 threads)
Front-end/Commit width 8/8
BTB 256 sets, 4-way
Branch predictor Tournament (Alpha 21264)
RAS 32 entries (per thread)
Br. mispred. penalty 14 cycles (minimum)
Active list 192 entries (per thread)
Branch stack 48 entries
Integer/FP Register 224/224
Integer/FP/LS queue 48/48/64 entries
ALU/FPU 8 (two for addr. calc.)/3
Integer mult./div. latency 6/35 cycles
FP mult. latency 2 cycles
FP div. latency 12 (SP)/19 (DP) cycles
ITLB, DTLB 128/fully assoc./LRU
Page size 4 KB
L1 Icache 32 KB/64B/2-way/LRU
L1 Dcache 32 KB/32B/2-way/LRU
Unified L2 cache 2 MB/128B/8-way/LRU
MSHR 16+1 for retiring stores
Store buffer 32
L1 cache hit 3 cycles
L2 cache hit 11 cycles (round trip)

Reserved (SMTp specific)
Front-end slots 1
Branch stack slots 1
Integer registers 16
Integer queue slots 12
LSQ slots 8
Store buffer 1
Bypass buffer 16 each for

instruction and data

Table 2. Memory system

Parameter Value

Memory controller frequency 2.4 GHz
System bus width 64 bits
System bus frequency 2.4 GHz
SDRAM access time 80 ns (row buffer miss)

40 ns (row buffer hit)
SDRAM bandwidth 6.4 GB/s
Router frequency 2.4 GHz
Hop time 10 ns
Link bandwidth 3.2 GB/s
Router ports 6 (SGI Spider)
Network topology 2-way bristled hypercube
Virtual networks 4 (AM protocol uses all)



The in-order dual-issue protocol core is clocked at the same
frequency as the SMT core. We simulate multiple configura-
tions for the protocol core differing mostly in the data cache
organizations. The instruction cache of the protocol core is al-
ways 32 KB direct-mapped with 128-byte line size, backed by
main memory, and accessible in a single cycle. We simulate
four different configurations for data accesses. In the first two
configurations the protocol core has a single level of private
data cache backed by main memory. These configurations cor-
respond to Figure 4(A). We simulate 128 KB direct-mapped
and 2 MB 8-way set associative caches. The first size allows a
single-cycle access at 65 nm (16-way banked as determined by
CACTI 3.2 [12]) while the second size requires three cycles,
but matches the amount of L2 cache space that the protocol
thread shares with the application thread(s) in SMTp. We call
these two configurations PCPL1 128KB (Protocol Core with
Private L1 of size 128 KB) and PCPL1 2MB, respectively.
In the third configuration the protocol core does not have a
private data cache, but shares the L2 cache with the SMT
core. This will be called PCSL2 (Protocol Core with Shared
L2 cache). This configuration corresponds to Figure 4(B). In
the fourth configuration the protocol core has a single-cycle
128 KB direct-mapped private L1 cache and shares the L2
cache with the SMT core. This configuration corresponds to
Figure 4(C) and closely resembles that of a shared L2 cache
dual-core processor, although the protocol core is much sim-
pler than the SMT core. This configuration will be called
PCSL2PL1 (Protocol Core with Shared L2 and Private L1
caches). In the AMDU-enabled architectures, the protocol
core/thread communicates with the AMDU through uncached
load/store operations. In these architectures, we use a 1024-
entry direct-mapped TLB in the memory controller accessible
in a single cycle at 65 nm (determined with CACTI 3.2 [12]).

The seven explicitly parallel applications used to evaluate
our proposal are listed in Table 3. The first four applications

Table 3. Applications and problem sizes

Applications Problem Sizes

DenseMMM 256�256 matrix
Spark98Kernel 64K�64K matrix, 1M non-zeros
SparseFlow 512K vertices and 1M edges
MSA 256�128K matrix
SPLASH-2 FFT 1M complex double points
FFTW 8192�16�16 cube
Transpose 1K�1K matrix

are used to evaluate parallel reduction while the last three use
matrix transpose. DenseMMM carries out the computation
� � ��� on square matrices� and � which is a special case
of the level-3 BLAS [6] for matrix-matrix multiplication. The
modified Spark98 Kernel [22, 23] parallelizes one call to Lo-
calSMVP. SparseFlow computes a function on the in-flow of
every edge incident on a vertex and sums up the function out-
puts as the net in-flux at each vertex in a sparse multi-source
flow graph. MSA calculates the mean square average of the
elements in every column of a matrix. All four applications
use addition as the underlying reduction operation. All these
applications are optimized with prefetching and application-
directed page placement to reduce remote misses as much as
possible.

SPLASH-2 FFT [32] and FFTW [8] are respectively 1D

and 3D fast Fourier transform kernels (frequently used in
multimedia and DSP applications), while Transpose is a mi-
crobenchmark which reads from and writes to a matrix and
its transpose, and hence is highly memory-bound. In addition
to prefetching and page placement, the parallelized versions
of all these three applications are optimized with tiling and
padding to improve cache utilization.

4 Simulation Results
We show results for 16 and 32-way threaded applications

running on a 16-node DSM multiprocessor with each node
capable of running one or two application threads in addi-
tion to the coherence protocol thread in SMTp. We present
evaluations for architectures with AMDU as well as with-
out AMDU. The architectures with AMDU run the baseline
directory-based coherence protocol suitably extended with ad-
dress re-mapping support as presented in [16]. The architec-
tures without AMDU run either the baseline protocol or our
proposed protocol that takes advantage of address re-mapping.
In the evaluation we will focus on the following two questions.

� How much speedup does our protocol offer compared to
running the baseline non-AM protocol without AMDU?

� What is the performance gap between our protocol run-
ning without AMDU and the previously proposed pro-
tocol [16] running with AMDU on otherwise similar ar-
chitectures?

4.1 Parallel Reduction

We present the simulation results for MSA, DenseMMM,
SparseFlow, and Spark98 in Figures 5, 6, 7, and 8, respec-
tively. For each application we show two groups of bars,
namely, one group for 16 threads and the other for 32 threads,
both running on 16 nodes. The left five bars in each group (up
to SMTp+AMDU) present results for existing systems while
the right five bars present results for our proposal. The first
two bars present the execution time for an architecture with
a protocol core having a private data cache of size 128 KB
and 2 MB, respectively, each running a non-AM conven-
tional bitvector protocol. The next three bars show the re-
sults for AMDU-enabled architectures sporting either a pro-
tocol core (PCPL1 128KB and PCPL1 2MB) or a protocol
thread (SMTp). These three architectures run the same cache
coherence protocol extensions presented in [16] with some se-
lective optimizations. The next five bars on the right (start-
ing with SMTp+UCC) present the results of our best proto-
col UCC on different flexible directory controller architec-
tures that do not rely on the AMDU. Recall that UCC uses
uncached loads to access the data in message buffers and
caches the merge results across merges. The SMTp+UCC
bar shows the results of executing UCC on a protocol thread.
The next two bars show performance of UCC when executed
on a protocol core with a private data cache of size 128 KB
and 2 MB (PCPL1 128KB and PCPL1 2MB). The last two
bars present results of running UCC on a dual-core archi-
tecture with a shared L2 cache, one core being the protocol
core. PCSL2 has a 3-cycle access latency for every cached
load/store to the shared L2 cache while PCSL2PL1 enjoys
the advantages of having a single-cycle reasonably large pri-
vate L1 data cache. Each bar is broken down into four parts,



namely, busy commit cycles, memory stall cycles, synchro-
nization cycles, and other lost commit cycles. Cycle account-
ing is done at the commit stage of the core pipeline.
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Figure 5. MSA using 16 and 32 threads.

In MSA (Figure 5) all architectures with UCC (the right
five bars) are performing equally well when compared to the
AMDU-enabled architectures (the left five bars, except the
first two). All these architectures achieve a speedup of around
1.12 over the non-AM baseline (the leftmost two bars) for 16
application threads. Thus the removal of the AMDU in UCC
does not lead to any performance loss. Further, the perfor-
mance of the non-SMTp models is largely insensitive to the
size of the cache provided to the protocol core. Finally, with
32 threads we observe fairly good scalability. Also, with 32
threads, the architecture with a protocol core sharing the L2
cache and having a private L1 data cache running our UCC
protocol turns out to be the best (the last bar).
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Figure 6. DenseMMM using 16 and 32 threads.

DenseMMM (Figure 6) shows similar performance varia-
tion across the design space as MSA. The architecture with
a protocol core sharing the L2 cache and having a private
L1 data cache running UCC (the last bar) performs the best
and achieves a speedup of 1.07 on 16 threads and 1.15 on 32
threads compared to the non-AM baseline (the leftmost two
bars). We also note that if the protocol core does not have
a private L1 data cache, and is only allowed to share the L2
cache (as in PCSL2+UCC), the performance degrades consid-
erably with 32 application threads due to slow cache hits (3 cy-
cles). Interestingly, with 32 application threads, SMTp+UCC

is 2.3% faster than a more complex SMTp+AMDU architec-
ture. This is mostly due to caching of the merge results in
UCC, which the existing protocol did not have [16].
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Figure 7. SparseFlow using 16 and 32 threads.

SparseFlow (Figure 7) shows wide variation in perfor-
mance across the design space. The first interesting aspect
of this application is that the cache size and organization of
the protocol core affect performance significantly irrespec-
tive of the coherence protocol: PCPL1 2MB is 22% bet-
ter than PCPL1 128KB, PCPL1 2MB+AMDU is 46% better
than PCPL1 128KB+AMDU, and PCPL1 2MB+UCC is 49%
better than PCPL1 128KB+UCC for 16 application threads.
However, it is worth noting that SMTp+AMDU is only 2.9%
better than SMTp+UCC, latter running our proposed proto-
col extensions. More interestingly, the architecture with a
protocol core sharing the L2 cache with main core and hav-
ing a private L1 data cache (the rightmost bar: PCSL2PL1)
and running our UCC protocol delivers the best performance
among all AMDU-free architectures. It achieves a speedup
of 2.57 over a non-AM protocol core baseline (the leftmost
bar: PCPL1 128KB) for 16 application threads and comes
surprisingly close (within 2.4%) to PCPL1 2MB+AMDU.
It is encouraging to note that PCSL2PL1 also has a lower
area requirement compared to PCPL1 2MB+AMDU because
PCSL2PL1 does not have an AMDU. Finally, we note that this
application is not as scalable as MSA or DenseMMM. How-
ever, scalability improves significantly due to a large reduction
in memory stall time after we employ the AM protocol.
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Figure 8. Spark98 using 16 and 32 threads.

Spark98 (Figure 8) repeats the trends of SparseFlow, al-



though at a much lower variational scale across the design
space. SMTp+UCC performs equally well as the AMDU-
enabled design SMTp+AMDU. Also, PCSL2PL1+UCC per-
forms close to PCPL1 2MB+AMDU. PCSL2PL1+UCC, hav-
ing the large 2 MB L2 cache shared with the main core,
achieves a speedup of 1.20 over a non-AM protocol core base-
line (the leftmost bar) for 16 application threads. We note
that this application shows better scalability than SparseFlow
while moving to 32 threads.

In summary, the results are very encouraging. The ar-
chitectures without an AMDU are delivering performance
close (within at most 3%) to those with AMDU. The two
most attractive architectural options are UCC protocol with
SMTp (SMTp+UCC) and UCC protocol with a protocol core
that shares the L2 cache with the main core and has private L1
caches (PCSL2PL1+UCC). Overall, these two architectures
enjoy speedup of 1.45 and 1.49, respectively, with 16 appli-
cation threads relative to a non-AM baseline having a protocol
core with a 128 KB L1 data cache.

4.2 Matrix Transpose

Figures 9, 10, and 11 show the results for Transpose, FFT,
and FFTW, respectively. The last five bars present the normal-
ized execution time for our protocol (SoftTr), which does not
require the special AMDU hardware. The first five bars are
same as discussed above for parallel reduction.
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Figure 9. Transpose using 16 and 32 threads.

The first interesting observation we make in Transpose mi-
crobenchmark (Figure 9) is that even with the AMDU hard-
ware and a private 128 KB L1 data cache, the protocol core
cannot derive any benefit from the existing AM protocol
(see PCPL1 128KB+ AMDU). However, with a significantly
larger 2 MB 8-way dedicated cache, an AMDU delivers 51%
better performance (see PCPL1 2MB+AMDU) compared to
a similar non-AM baseline without AMDU (PCPL1 2MB).
This is because of a large number of directory con-
flict misses in PCPL1 128KB+AMDU. On the other hand,
SMTp+AMDU performs as well as PCPL1 2MB+AMDU be-
cause the protocol thread enjoys the advantage of having ac-
cess to the large 2 MB L2 cache shared with the application
threads. The most interesting result is that SMTp+SoftTr, exe-
cuting our proposed coherence protocol extensions on SMTp,
delivers performance within 13.2% of SMTp+AMDU. The re-
maining 13.2% performance gap results mostly from the ab-
sence of efficient data pipelining present in the AMDU. How-

ever, SMTp+SoftTr still achieves 1.37 speedup compared to a
non-AM baseline (the leftmost bar) on 16 application threads.
Interestingly, the protocol core architecture with a dedicated
2 MB L1 data cache running SoftTr (PCPL1 2MB+SoftTr)
performs worse than SMTp+SoftTr, although the former has
an 8-way 2 MB protocol core data cache. This mostly happens
due to slow cache hits (all hits are 3 cycles). Similar trend
is observed in the protocol core architecture with L2 cache
shared with the main core running SoftTr (PCSL2+SoftTr),
which continues to be much worse compared to SMTp+SoftTr
due to the combined effect of slow cache hits and shar-
ing of cache space with application threads. Surprisingly,
SMTp+SoftTr beats the protocol core architecture with private
L1 and shared L2 caches (the rightmost bar) by 10.6% on 16
application threads. This happens due to a subtle difference in
LRU behavior in the L2 cache in these two configurations. In
SMTp+SoftTr the L1 cache is shared among the protocol and
application threads leading to a sizable number of L1 proto-
col misses. This keeps the L2 ways occupied by protocol data
more frequently and recently used. In PCSL2PL1+SoftTr the
L1 cache is private and suffers from a miss less frequently. But
since the L2 cache is shared, this increases the chance of the
protocol ways becoming LRU victims.
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Figure 10. SPLASH-2 FFT using 16 and 32 threads.
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Figure 11. FFTW using 16 and 32 threads.

FFT (Figure 10) and FFTW (Figure 11) continue to show
similar trends as Transpose. However, the performance gap
between SMTp+AMDU and SMTp+SoftTr is much smaller
in FFT (within 4.1%) and FFTW (within 8.7%) compared to



Table 4. Summary of results for 16-threaded executions

AM Technique Average AMDU-free speedup Max. gap Mean gap
SMTp (Figure 4(D)) PCSL2PL1 (Figure 4(C))

Reduction (UCC protocol) 1.45 1.49 3.0% 1.5%
Transpose (SoftTr protocol) 1.29 1.23 13.2% 8.7%

Transpose (within 13.2%). This is a good news because Trans-
pose represents the extreme memory-bound behavior with
practically no computation, which in reality should be rare.
Overall, across these three applications SMTp+SoftTr deliv-
ers the best performance among all AMDU-free architectures
and achieves a speedup of 1.29 on average compared to a non-
AM architecture employing a protocol core with a 128 KB
direct mapped data cache (the leftmost bar) for 16 application
threads. The dual-core PCSL2PL1+SoftTr design with shared
L2 cache and private L1 data cache comes close (within 2.3%
in FFT and FFTW, and 10.6% in Transpose) to this perfor-
mance. Finally, with 32 application threads the performance
trends are very similar to those with 16 application threads.
We find that Transpose is the least scalable of the three bench-
marks (as expected) while FFT shows very good scalability
with FFTW following closely.

We summarize the salient results for 16-way threaded exe-
cutions in Table 4. In this table we answer the two key ques-
tions that we started with for each of the two AM techniques.
We present the speedup of two most attractive AMDU-free ar-
chitectures running our protocols when compared to the non-
AM baseline PCPL1 128KB. We also present the maximum
and average performance gaps between the AMDU-free archi-
tecture and a similar architecture with AMDU. We conclude
that our proposal is highly successful in reducing the com-
plexity of the active memory systems while delivering perfor-
mance comparable to the existing complex systems that use
the AMDU.

5 Related Work
The Impulse memory controller [33] used the address re-

mapping technique and showed how to improve cache lo-
cality of matrix transpose and sparse matrix-vector prod-
uct on single-threaded systems. This architecture employed
a custom-designed memory controller for doing address re-
mapping e.g., address translation and dynamic cache line as-
sembly/disassembly, and relied on application-directed cache
flush calls for maintaining coherence between shadow and
physical spaces. Subsequently, the Active Memory architec-
ture [16] made the coherence maintenance completely trans-
parent to the compiler and extended conventional cache co-
herence protocols to handle this while continuing to rely on
a custom-designed active memory data unit (AMDU) embed-
ded in the off-chip memory controller. This naturally enabled
seamless extension of address re-mapping to symmetric multi-
processors (SMPs) and DSM clusters. Further, this design em-
ployed a flexible off-chip coherence protocol processor to han-
dle an array of AM techniques e.g., matrix transpose, sparse
matrix-vector product, linked list linearization, and parallel re-
duction. The parallel reduction technique employed in this
paper was first proposed in a non-AM context [9] and that ar-
chitecture relied on application-directed cache flush calls for
maintaining coherence between the two spaces. In this paper

we have shown how to efficiently carry out coherent address
re-mapping without any custom hardware in the memory con-
troller.

The DIVA [7], Active Pages [24], and FlexRAM [14]
projects, instead of using address re-mapping, implement
active memory elements to improve memory performance.
These architectures add processing capabilities to memory
chips, thereby creating so-called PIMs. The MAUI effort [29]
integrates the concepts of DIVA, Active Pages, and user-level
memory threads [26] into a single design. All these designs
are very different from our proposal which employs flexible
address re-mapping to improve locality of cache access.

Flexible directory controller architectures have been ex-
plored in academia (Stanford FLASH multiprocessor [17],
Wisconsin Typhoon [25]) as well as in industry proto-
types (Compaq Piranha [1], Sequent STiNG [19], Sun
S3.mp [21]). However, none of these studies explore the per-
formance impact of on-die integrated protocol engine and the
cache organizations of the protocol engine as we do in this
paper in the context of the AM protocols. A cost-effective ar-
chitecture for carrying out flexible coherence processing was
presented in the SMTp study [4], which does not require extra
cache area or protocol core area. In this paper we have ex-
plored an array of flexible directory controller organizations
in the context of today’s multi-threaded and dual-core envi-
ronments and presented a thorough quantitative evaluation of
these organizations.

6 Summary
For the first time, we have shown how to achieve flexible

and hardware-coherent address re-mapping without custom-
designed hardware in the memory controller. We have evalu-
ated our protocol extensions for parallel reduction and matrix
transpose kernels. Our experiments show that for parallel re-
duction, our best coherence protocol running on a hardware
thread context in SMTp achieves, on average, 1.45 speedup
relative to a non-AM baseline design and delivers performance
within 3% of an SMTp design with custom AM hardware sup-
port with 16 application threads. Our experiments also dis-
cover efficient low-complexity alternatives. Specifically, an
architecture with a simple dedicated in-order static dual-issue
protocol core having a private L1 data cache and sharing the
L2 cache with main core achieves a speedup of 1.49 relative
to a non-AM baseline. However, this alternative may not be as
attractive as SMTp, given the extra area overhead of the pro-
tocol core. What is worth noting is that none of these architec-
tures require custom AM support in the memory controller, as
the existing proposals do.

We have evaluated our matrix transpose protocol exten-
sions on a microbenchmark and 1D and 3D fast Fourier trans-
form kernels. The results show that SMTp, running our pro-
tocol on a hardware thread context, achieves, on average, a
speedup of 1.29 over a non-AM baseline and comes within



13.2% of SMTp equipped with custom AM memory con-
troller. The architecture with a protocol core having a private
L1 date cache and sharing the L2 cache of main core comes
within 5%, on average, of SMTp performance.

In summary, we have presented AM protocol extensions
that do not require any custom hardware support in the mem-
ory controller. Executing these protocols on either a thread
context in SMTp or a core with private L1 and shared L2
caches in a CMP delivers competitive performance for parallel
reduction and matrix transpose, two widely used application
kernels. We believe that this study opens up new opportuni-
ties for complexity-effective active memory implementations
on single-threaded as well as multi-threaded systems.

References

[1] L. A. Barroso et al. Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing. In Proceedings of the 27th In-
ternational Symposium on Computer Architecture, pages 282–
293, June 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework
for Architectural-level Power Analysis and Optimizations. In
Proceedings of the 27th International Symposium on Computer
Architecture, pages 83–94, June 2000.

[3] J. Burns and J-L. Gaudiot. SMT Layout Overhead and Scalabil-
ity. In IEEE Transactions on Parallel and Distributed Systems,
13(2): 142–155, February 2002.

[4] M. Chaudhuri and M. Heinrich. SMTp: An Architecture for
Next-generation Scalable Multi-threading. In Proceedings of
the 31st International Symposium on Computer Architecture,
pages 124–135, June 2004.

[5] Z. Cvetanovic. Performance Analysis of the Alpha 21364-
Based HP GS1280 Multiprocessor. In Proceedings of the 30th
International Symposium on Computer Architecture, pages
218–228, June 2003.

[6] J. J. Dongarra et al. “A Set of Level 3 Basic Linear Algebra
Subprograms”. ACM Transactions on Mathematical Software,
16(1):1–17, March 1990.

[7] J. Drapper et al. The Architecture of the DIVA Processing-in-
Memory Chip. In Proceedings of the 16th ACM International
Conference on Supercomputing, pages 14–25, June 2002.

[8] M. Frigo and S. G. Johnson. FFTW: An Adaptive Software Ar-
chitecture for the FFT. In Proceedings of the 23rd International
Conference on Acoustics, Speech, and Signal Processing, pages
1381–1384, May 1998.

[9] M. J. Garzaran et al. Architectural Support for Parallel Reduc-
tions in Scalable Shared-Memory Multiprocessors. In Proceed-
ings of the 10th International Conference on Parallel Architec-
tures and Compilation Techniques, September 2001.

[10] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 49–58, November 2000.

[11] B. Goeman, H. Vandierendonck, and K de Bosschere. Differen-
tial FCM: Increasing Value Prediction Accuracy by Improving
Table Usage Efficiency. In Proceedings of the 7th International
Symposium on High-Performance Computer Architecture, Jan-
uary 2001.

[12] HP Labs. CACTI 3.2. Available at
http://www.hpl.hp.com/personal/Norman Jouppi/cacti4.html.

[13] R. Kalla, B. Sinharoy, J. M. Tendler. IBM Power5 Chip: A
Dual-core Multithreaded Processor. In IEEE Micro, 24(2): 40–
47, March-April 2004.

[14] Y. Kang et al. FlexRAM: Toward an Advanced Intelligent
Memory System. In Proceedings of the International Confer-
ence on Computer Design, pages 192–201, October 1999.

[15] C. N. Keltcher et al. The AMD Opteron Processor for Multipro-
cessor Servers. In IEEE Micro 23(2):66–76, March-April 2003.

[16] D. Kim et al. Architectural Support for Uniprocessor and Mul-
tiprocessor Active Memory Systems. In IEEE Transactions on
Computers, 53(3):288–307, March 2004.

[17] J. Kuskin et al. The Stanford FLASH Multiprocessor. In Pro-
ceedings of the 21st International Symposium on Computer Ar-
chitecture, pages 302–313, April 1994.

[18] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th International Sym-
posium on Computer Architecture, pages 241–251, June 1997.

[19] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA Com-
puter System for the Commercial Marketplace. In Proceedings
of the 23rd International Symposium on Computer Architecture,
pages 308–317, May 1996.

[20] MIPS/SGI. R10000 Microprocessor User’s Manual.

[21] A. Nowatzyk et al. The S3.mp Scalable Shared Memory Multi-
processor. In Proceedings of the 24th International Conference
on Parallel Processing, Vol. 1, pages 1–10, August 1995.

[22] D. R. O’Hallaron. Spark98: Sparse Matrix Kernels for Shared
Memory and Message Passing Systems. Technical Report
CMU-CS-97-178, October 1997.

[23] D. R. O’Hallaron, J. R. Shewchuk, and T. Gross. Architectural
Implications of a Family of Irregular Applications. In Fourth
IEEE International Symposium on High Performance Com-
puter Architecture, pages 80–89, February 1998.

[24] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A Com-
putation Model for Intelligent Memory. In Proceedings of the
25th International Symposium on Computer Architecture, pages
192–203, June 1998.

[25] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Decoupled Hard-
ware Support for Distributed Shared Memory. In Proceedings
of the 23rd International Symposium on Computer Architecture,
pages 34–43, May 1996.

[26] Y. Solihin, J. Lee, and J. Torrellas. Using a User-level Mem-
ory Thread for Correlation Prefetching. In Proceedings of the
29th International Symposium on Computer Architecture, pages
171–182, May 2002.

[27] Sun Microsystems. An Overview of UltraSPARC III
Cu. White Paper, September 2003. Available at http://
www.sun.com/processors/whitepapers/USIIICuoverview.pdf.

[28] Sun Microsystems. UltraSPARC IV Processor Archi-
tecture Overview. White Paper, February 2004. Avail-
able at http://www.sun.com/processors/whitepapers/
us4 whitepaper.pdf.

[29] J. Teller, C. B. Silio, and B. Jacob. Performance Characteris-
tics of MAUI: An Intelligent Memory System Architecture. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Memory
Systems Performance, June 2005.

[30] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Mul-
tithreading: Maximizing On-Chip Parallelism. In Proceedings
of the 22nd International Symposium on Computer Architec-
ture, pages 392–403, June 1995.

[31] D. M. Tullsen et al. Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Pro-
cessor. In Proceedings of the 23rd International Symposium on
Computer Architecture, pages 191–202, May 1996.

[32] S. C. Woo et al. The SPLASH-2 Programs: Characterization
and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages 24–
36, June 1995.

[33] L. Zhang et al. The Impulse Memory Controller. IEEE Transac-
tions on Computers, Special Issue on Advances in High Perfor-
mance Memory Systems, pages 1117–1132, November 2001.


