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Abstract—We introduce M2S-CGM a detailed architectural
simulator that models the interactions between CPUs and GPUs
operating in coherent heterogeneous compute environments.
M2S-CGM extends an existing and established x86 CPU model
and Southern Islands GPU model, adds a new custom-built
memory system model and switching fabric called CGM, and
incorporates a well-known SDRAM model. The CGM memory
system simulator provides configurable entire system simulation
and can support a range of non-coherent and coherent CPU-GPU
configurations. M2S-CGM supports the runtime for OpenCL-
based benchmarks in addition to traditional multithreaded CPU
benchmarks and can run benchmarks from established hetero-
geneous benchmark collections. This allows us to experiment with
different coherent CPU-GPU configurations and propose effective
future improvements in these systems. We present the makeup of
M2S-CGM’s software architectural design, provide a validation
of the simulator, and provide coherent CPU-GPU execution
results. Our validation results show average differences between
our physical test system and M2S-CGM, of 10.4%, 22%, and
6.4% for 2 threaded, 4 threaded, and heterogeneous benchmark
runs respectively. Our coherent CPU-GPU experimental results
show an average speedup of 2.8 for our benchmarks over the
baseline noncoherent system.

I. INTRODUCTION

Recently, GPUs are being included on die with the CPU

in a much more tightly-integrated environment and are be-

ing positioned to support future coherent execution with the

CPU [1]. This new design space poses interesting research

questions, such as how to best utilize shareable resources in

a coherent CPU-GPU environment and what changes could

be made to improve the heterogeneous system programming

model? For the exploration of the CPU-GPU coherent de-

sign space we introduce M2S-CGM as a new and novel

simulation tool. M2S-CGM provides end-to-end simulation

of the system elements required to simulate non-coherent

and coherent CPU-GPU heterogeneous workloads. M2S-CGM

extends the multicore out-of-order x86 CPU model and multi-

Compute Unit (CU) Southern Islands GPU model found in

Multi2Sim [2]. Multi2Sim’s x86 CPU model and Southern

Islands GPU models [3] have previously been established,

supported by the community, and proven to provide reasonably

accurate CPU and GPU emulation and timing [4], [5].
We enhance the Multi2Sim package by completely remov-

ing the existing Multi2Sim memory system and replacing it

with our own detailed memory system called CGM. We also

make emulation and timing modifications to the Multi2Sim

CPU and GPU models that correct certain modeling issues,

enhance simulation fidelity, model runtime interactions be-

tween the CPU and GPU, and integrate with CGM. CGM

provides coherence protocols and execution-driven discrete

models of configurable CPU and GPU cache structures, di-

rectories, virtual memory mechanisms, switching fabrics, a

system agent, and a memory controller. CGM also models

occupancy and contention for all memory system structures

within its scope. Main memory simulation is provided by

DRAMSim2, which provides a cycle-accurate model of a

SDRAM memory controller, the SDRAM modules of the main

memory system, and the physical memory’s internal buses [6].
In this paper, we introduce M2S-CGM and explain its ad-

vantages over existing tools. We cover aspects of the software

architecture of M2S-CGM and discuss details regarding its

heterogeneous simulation capability. We also provide vali-

dations of M2S-CGM’s multicore and GPGPU capabilities

and provide baseline results for noncoherent and coherent

CPU-GPU benchmark executions. We show that M2S-CGM

includes a high level of configurability that supports several

forms of heterogeneous system experimentation. This provides

researchers the ability to conduct a range of experiments with

varying degrees of configurability in the memory system for

both the CPU and GPU. After comparison to our physical test

system, we establish that M2S-CGM provides good correlation

to modern computing systems and that information ascertained

from experimentation is reliable and can be used for trade-off

decisions in proposed architectural implementations.
To our knowledge, M2S-CGM is novel in several ways:

• M2S-CGM provides baseline results for coherent CPU-

GPU heterogeneous executions in a fully modeled system

with and without shared lower level caches between the

CPU and GPU. Our experimental results show the po-

tential for coherent heterogeneous systems and provides

new directions for future research.

• M2S-CGM includes a significantly more detailed mem-

ory system for both the CPU and GPU. We find that

related work utilizes simpler memory systems with only

one or two levels of cache, lacks shared resources, or

does not include other pertinent architectural elements,

such as, a system agent or GPU hub and IOMMU.

• M2S-CGM provides modeling of intra CPU-GPU system

functionality that would otherwise typically require a full
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system simulator. For system calls that are of importance,

the x86 emulator produces an appropriate approximation

of the GPU’s driver and OS’s kernel code for use by the

CPU and memory system timing models. The result is

the accurate simulation of system behavior, but without

the need or complexity of developing or modifying a

full system simulator that can boot a relatively recent

OS kernel. This provides speed in heterogeneous system

simulation and maintains a high level of reliability in the

simulated results.

• M2S-CGM implements a modeling methodology that is

unlike other mainstream simulator methodologies. M2S-

CGM implements a simulated hardware signaling based

methodology that more closely represents the makeup

of the hardware for all the discrete elements in the

system. This methodology is free from predetermined

events and fixed timings for each event. Additionally,

system occupancy and contention are implicitly modeled

via this modeling methodology.

The rest of this paper is organized as follows. Section

II provides a background in heterogeneous systems and the

motivation for research in this area. Sections III and IV

provide a software architectural overview and validation of

M2S-CGM. Section V discusses our heterogeneous system

implementation methodology. Sections VI and VII provide

our coherent CPU-GPU heterogeneous system experimental

results and observations. Finally, sections VIII and IX sum-

marize related work to our own and conclude the paper.

II. BACKGROUND AND MOTIVATION

The start of the GPGPU era served as a tipping point in

the mainstream use of GPUs as co-processing elements to the

CPU—the crux of a CPU-GPU heterogeneous system. GPGPU

applications are designed to offload extremely parallelizable

code segments onto the GPU where the GPU’s Single Instruc-

tion Multiple Data (SIMD) architecture can provide significant

speedup over a CPU’s multi-threaded equivalent implementa-

tion. Currently, there are two mainstream forms of GPU-based

co-processing: (1) a traditional approach where one or more

GPUs are located on discrete graphics cards connected through

one of several peripheral interconnect types and (2) a more

recent approach where the GPU is colocated with the CPU on

die and is connected to the rest of the system via the on-die

switching fabric [7], [8]. Despite the differences between the

two approaches, the processing model has remained similar—

the GPU is treated as a separate system element that operates

independently in its own memory address space.

In the GPGPU model the user must endeavor to partition

the execution of the application between the CPU and GPU

such that the overall application provides higher performance

to the equivalent multithreaded version. The performance of

the GPGPU version of the application, as compared to a

multithreaded equivalent, is subjective and depends on several

system variables, such as, number of CPU cores, number of

GPU compute units, memory system latency, contention, and

the number of interactions between the CPU and GPU. As a

rule of thumb, research shows that fewer interactions between

the CPU and GPU and larger problem sizes for the GPU will

yield higher levels of speedup over applications with more

interactions between the CPU and GPU and smaller problem

sizes. However, it remains that some GPGPU implementations

do not perform better than their multithread equivalents [9].

With discrete graphics cards, the application that is running

on the CPU must first configure and setup the GPU’s execution

code and data elements prior to the execution of a selected

kernel on the GPU. Subsequently, at the end of GPU kernel

execution the application running on the CPU must copy the

resultant data back from the GPU’s memory address space

to the CPU’s address space so that the application can make

use of the computed result. The GPU’s configuration and data

movement is accomplished via a series of system calls that

invoke several OS and GPU driver interactions. This approach

is required because the GPU is treated as a physically disparate

I/O device, unequal to the CPU, with a different instruction

set architecture (ISA) and memory structure.

This processing approach is still employed in modern pro-

cessors that include both a CPU and GPU on die together.

However, with the inclusion of the GPU on die with the CPU

new heterogeneous hardware and software design spaces can

be explored and new levels of parallel system performance

are theoretically achievable. This serves as the motivation for

producing M2S-CGM. M2S-CGM provides the foundational

infrastructure required to study system architectural interac-

tions between two processing elements with two different

ISAs and very different processing capabilities. M2S-CGM

allows for exploration of changes supporting performance

improvements for heterogeneous workload executions and the

study of the trade-offs those design choices impose. M2S-

CGM allows us to experiment with both the programming

model and its supporting hardware design spaces allowing for

higher levels of hardware and software co-design.

III. M2S-CGM ARCHITECTURAL OVERVIEW

For our CPU-GPU heterogeneous system experiments, we

show a typical configuration of the M2S-CGM simulator in

Fig. 1 where we model a realistic processor and its ancillary

components. The makeup of the system includes an x86

multicore CPU, a Southern Islands GPU, a detailed multi-level

cache memory system, virtual memory mechanisms, switch-

ing fabric, system agent, memory controller, and SDRAM.

The system’s architecture is configured similarly to the Intel

Haswell architecture where L2 caches, L3 caches, the GPU,

and system agent sit on a network with a ring bus topology.

A. x86 CPU model

M2S-CGM extends the x86 CPU model found in Multi2-

Sim. The x86 model includes a x86 ISA, disassembler, x86

system emulator, and a general purpose out-of-order pipelined

CPU timing model. The x86 CPU can be configured as a

multicore and multithreaded CPU with a highly configurable

pipeline. During execution, applications are first loaded from
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Figure 1: Simulated System Node Architectural Block Diagram

their native binary files, where macro instructions are sub-

sequently fetched. The fetched macro instructions are then

passed to a x86 emulator, executed, turned into pipeline

uops, and passed to a x86 timing model. The CPU timing

model interfaces with CGM at the fetch and issue stages and

is dependent on CGM’s modeled memory system latency.

Addresses are looked up in a translation lookaside buffer

and on hit are translated from virtual to physical prior to

accessing the respective L1 cache. Memory system accesses

are execution driven and latency varies based on memory

system contention and occupancy. Access latency within the

memory system, saturation of memory system elements, or

lack of free miss status handling registers may result in any

combination of an empty fetch queue, full reorder buffer, and

full issue buffer which effectively stalls the CPU.

B. Southern Islands GPU Model

M2S-CGM also extends the Southern Islands GPU model

found in Multi2Sim. The Southern Islands GPU model in-

cludes a Southern Islands ISA, disassembler, emulator, and an

in-order GPU timing model. The GPU comprises a number

of CUs and each CU in turn comprises a front end, SIMD

lanes, a scalar unit, a branch unit, a vector memory unit,

and a Local Data Share (LDS) unit. For the CPU to make

use of the GPU, GPU kernel executions must be prepared by

the CPU in advance as a part of the user’s application. This

requires the use of an OpenCL library, runtime, and the GPU’s

drivers. During execution, the CPU traps to the OS via a series

of system calls that set up and load the GPU kernel on the

GPU. Instructions are fetched by the CU Front End and are

issued to their respective processing unit. During execution

there are three types of memory access in the GPU. These

include accesses to the LDS, scalar cache, and vector cache.

The GPU timing model interfaces with CGM at these access

points where CGM provides latency for these internal memory

elements and external memory system accesses. In addition

to the caches and crossbar, the GPU memory system model

includes a hub and IOMMU (see Fig. 1). The hub multiplexes

memory system accesses between the GPU’s L2 cache banks

and the switching fabric. The IOMMU performs address

translations for the GPU and can alternately preform both

forward and reverse address translations if utilizing virtual

addressing within the GPU’s caches. CGM coalesces vector

memory accesses at the system interface prior to memory

system access. Upon L1 cache input queue saturation the

vector pipeline is stalled until there is space to issue the

next round of memory system accesses. Additionally, memory

system accesses destined for the external memory system

include a configurable virtual or physical address schema. For

our experimentation purposes we assume that GPU virtual to

physical address translation can occur at either the interface

between each CU and the first level of cache or within the

GPU’s IOMMU. GPU TLB misses result in an intervention

by the CPU. An efficient design of the GPU’s hardware that

enables the GPU to share a virtual address space with the CPU

is still an open research question.

C. CGM Memory System Model

CGM is a new and custom memory system model that

replaces Multi2Sim’s existing memory system model. CGM

provides models of configurable cache structures, cache di-

rectories, translation lookaside buffers, page table walkers,
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switching fabrics, cross bars, a system agent, memory con-

troller, and other discrete system elements such as the GPU’s

hub and IOMMU. For the CPU and GPU, CGM currently

implements a detailed MESI and MEI coherence protocol that

supports request forwarding (3-way hops), joins, upgrades,

and is nearly NACK-free. Coherence protocol actions within

the GPU are optimized for the GPU in both non-coherent

and coherent modes of operation. CGM models occupancy

and contention for all memory system structures and queues

within CGM’s scope. Caches are configurable and incorporate

coalescing and miss status handling for flow control and sup-

port asynchronous data transfer and virtual lanes for message

packet access routing. Switches support 4 ports, utilize an

internal crossbar, and are asynchronously linked with other

elements in the memory system via bidirectional links. Inter-

nally, the switches include multiple lanes for request, replies,

and other coherence related message traffic. The system agent

currently provides interfaces to the SDRAM controller and is

responsible for providing interfaces to other I/O related system

elements and other CPU nodes.

CGM’s timing model and implementation is based on a

simulated hardware signaling methodology for all simulated

memory system elements in its scope. In this approach indi-

vidual elements are advanced (signaled) when given work to

perform. On advance elements wake up and try to process their

assigned work until success. Once complete, the next element

is given work to perform and it is in turn advanced by the

previous element. On each advance elements assess a latency

for the performance of the work performed and pause until

that latency has expired. The assessed latency provides the

modeled occupancy of that element. Contention is modeled as

resources begin to fill or saturate creating element stalls and

longer access latency. In comparison to the Multi2Sim existing

memory system and GEM5 timing model, the hardware signal-

ing methodology does not rely on a predetermined event and

event execution time for the start of a modeled element’s task.

Thus the hardware signaling methodology more accurately

models physical system elements, element interactions, and

system-wide occupancy and contention.

D. DRAMSim 2

For the simulation of our main memory modules we in-

clude DRAMSim2 [6]. DRAMSim2 provides detailed timing

models for several state-of-the-art SDRAM and DDR memory

modules. DRAMSim2 is connected to CGM through CGM’s

memory controller. DRAMSim2 models contention and oc-

cupancy within the SDRAM modules and includes selectable

scheduling paradigms.

IV. M2S-CGM VALIDATION

As mentioned earlier, previous work has introduced and

established the CPU and GPU models of Multi2Sim [4], [5].

This leaves the validation of M2S-CGM with its detailed mem-

ory system model. For our tests we compare our simulated

benchmark results to the benchmark results from our target

test system. The test system comprises an Intel Core i7-4790K

Devil’s Canyon Quad-Core CPU and AMD Radeon HD 7990

64 CU GPU. We configure M2S-CGM as shown in Fig. 1

and to match our test system’s hardware profile. M2S-CGM

and test system frequencies for the CPU, GPU, and memory

system are 4 GHz, 1 GHz, and 2 GHz respectively. For M2S-

CGM, the system-wide cache block size is 64B and we assume

an 8 byte header on all memory system messages. CPU L1, L2,

and L3 cache sizes are configured as 32KB, 256KB, and 2 MB

respectively with L3 caches in a striped configuration. GPU

vector and L2 cache sizes are configured as 16KB and 64KB

respectively. Main memory is configured as dual channel with

4GB SDRAM.

For validation we select the Rodinia OpenMP and OpenCL

Backprop (BP), Lower Upper Decomposition (LUD), Kmeans,

Hotspot, NeedlemanWunsch (NW), and Breadth First Search

(BFS) benchmarks. The selected benchmarks provide a good

spectrum of processor intercommunication aggressiveness for

OpenMP executions and a good spectrum of inter-CPU-GPU-

communication through GPU kernel invocations and memory

copies for OpenCL executions. For all benchmarks we take

measurements across the benchmark’s parallel section. For

OpenCL benchmarks, we define the beginning of the parallel

section to be the first OpenCL-related memory buffer creation

and the ending of the parallel section to be the completion of

the final memory copy to the host device. We select benchmark

problem sizes based on the maximum obtainable speedup in

the simulated system where problem sizes range from medium

to large.

In validating M2S-CGM, we compare measured speedup

on the test system to measured speedup on M2S-CGM for

the Rodinia OpenMP benchmarks as shown in Fig. 2a. We

also compare heterogeneous-workload percentage breakdown

for the Rodinia OpenCL benchmarks as shown in Fig. 2b. We

do not seek to compare absolute total cycles between the target

test system and simulator because the simulated CPU and

GPU are generalized and represent a wide range of possible

processor configurations. Instead, by correctly modeling and

observing system behavioral results we draw conclusions on

the influence of system level design changes that can be

applied to more than just a single processor’s architecture.

In Fig. 2a we measure the speedup for 2 and 4 threads for

the Rodinia OpenMP benchmarks on our test system and on

M2S-CGM. The results show good correlation between the test

system and M2S-CGM and highlight expected performance

differences. For the OpenMP benchmarks, simulated execution

had an average difference of 10.4% for the two threaded runs

and 22% for the four threaded runs. These differences are

expected and show correct simulation behavior as compared

to a physical system that is running many other system

processes in addition to the benchmarks themselves. These

results also highlight the inherent parallelism and correctness

of the memory system’s MESI protocol.

Results for OpenCL benchmarks are shown in Fig. 2b. We

measure heterogeneous workload execution time and provide

breakdowns of GPU kernel time, CPU time, and OpenCL

related system call time. In the results we combine CPU
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(a) Rodinia OpenMP Benchmark Results (b) Rodinia OpenCL Benchmark Results

Figure 2: Validation Results

time and OpenCL related system call time and denote this

as “CPU+SC”. Again, the results show close correlation

between the test system and M2S-CGM and highlight the

delicate simulation of the interplay between the CPU and

GPU over the parallel section. For the OpenCL benchmarks,

simulated execution time breakdown between the CPU and

GPU is within 6.4% on average. We also note that the Rodinia

OpenCL benchmarks themselves do not make use of the CPU

for processing during the execution of the benchmark. Instead,

the CPU only performs setup and management of problem

data and GPU execution through a series of OpenCL calls

and ultimately OS system calls. During GPU invocation the

CPU goes dormant until the GPU completes and signals the

CPU to wake up.

Based on the results shown here, and by successful com-

parison of M2S-CGM’s simulated results to our test system,

we establish that M2S-CGM provides a valid and realistic

multicore and heterogeneous system model and therefore can

serve as a strong platform for our heterogeneous system

research.

V. HETEROGENEOUS SYSTEM IMPLEMENTATION

METHODOLOGY

We Configure M2S-CGM in the following four configura-

tions for our heterogeneous workload executions:

• A traditional GPGPU configuration, denoted as NC-MC,

with the CPU and GPU operating in disparate virtual

address spaces and disparate memory systems.

• A modified traditional GPGPU configuration, denoted as

NC-L3, with the CPU and GPU operating in disparate

virtual address spaces, but with shared lower level caches.

• A potential half CPU-GPU heterogeneous configuration,

denoted as C-MC, with the CPU and GPU operating

in a shared virtual address space, but disparate memory

system.

• A potential full CPU-GPU heterogeneous configuration,

denoted as C-L3, with the CPU and GPU operating in

both a shared virtual address space and with shared lower

level caches.

In our configuration nomenclature, “NC” and “C” stand for

noncoherent and coherent. “MC” and “L3” stand for memory

controller and L3 cache and represent the GPU memory

request destination when entering the memory system from

the GPU.

Our traditional and modified GPGPU configurations serve

as our heterogeneous execution baseline and model a current

GPGPU system. In these configurations the GPU is treated

as a disparate device from the CPU and must work in its

own address space. This requires the CPU to copy memory

back and forth to and from the GPU prior to and after kernel

executions through a series of OS systemcalls and GPU driver

executions. Additionally, the OS must manage the state of the

memory system, and ensure that CPU and GPU caches are

fully flushed to main memory prior to a memory system read

at the beginning and end of GPU kernel execution. In our

modified GPGPU configuration we extend the memory system

to allow for sharing of the L3 caches between the CPU and

GPU which effectively gives the GPU a larger and faster third

level of cache.

Our system changes that enable our half and full CPU-

GPU heterogeneous configurations concern the entire software

stack and the underlying hardware itself. We configure the

OS, GPU driver, and OpenCL runtime such that the CPU

and GPU can operate in a shared virtual address space and

share data. We make the assumption that, for now, the CPU

is still responsible for explicitly coordinating the activities of

the GPU. Thus, the CPU must first allocate and prepare all

application memory and GPU kernels prior to GPU executions.

We configure our OpenCL benchmarks and runtime to pass

memory by pointer to the GPU from the CPU. This eliminates

the explicit requirement for memory copies between the CPU

and GPU and allows the GPU to simply pull in the data it

needs by standard memory system requests.

Several hardware changes are required to enable the CPU-

GPU heterogeneous environment. First, we introduce memory

system coherency between the CPU and GPU. We implement

a MEI protocol for the GPU’s memory system. This protocol

is optimized for the streaming nature of GPU memory system
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Figure 3: CPU-GPU Heterogeneous System Experimental Results

requests and readily connects with the CPU’s MESI proto-

col. Coherence protocol request forwarding (3-way hops) is

supported between the L3 and L2 caches by both the CPU

and GPU. Second, memory system coherence directories are

extended to account for the entire GPU as an nth core. Third,

the hardware mechanisms necessary to support virtual memory

are built into the GPU’s memory system. This includes GPU

specific TLBs, PTWs, and reverse address translation func-

tionality which is incorporated in our modeled GPU IOMMU.

We assume that GPU address translation occurs within the CU

or at the IOMMU on a GPU TLB miss. A best approach to

GPU led address translation in a coherent fully heterogeneous

system is still an open research question. For our experiments,

we wish to establish an ideal performance baseline and thus do

not charge a penalty for GPU TLB misses. We plan to explore

this topic in a subsequent paper, where we use our established

ideal performance baseline as the point of comparison.

VI. EXPERIMENTAL RESULTS

For our heterogeneous system experiments we maintain the

system wide configuration parameters and OpenCL parallel

section definition as outlined in Sec. IV. Experimental re-

sults for our selected Rodinia OpenCL Benchmark execu-

tions on each system configuration are shown in Fig. 3. For

each OpenCL benchmark all results are normalized to the

benchmark’s NC-MC configuration results. The results show

execution breakdowns for CPU Busy, CPU Stall, GPU Busy,

GPU Stall, and System Time (SYS Time) in percentage of

cycles. CPU and GPU busy time is the time the CPU and GPU

performed work over the parallel section. CPU and GPU stall

time is the time the CPU and GPU were stalled while waiting

on outstanding memory system requests. System time is the

time spent trapped to the OS while performing an OpenCL

related system call or memory system related CPU interrupt,

such as a cache flush. Results show that our modeled half

coherent CPU-GPU heterogeneous system achieves speedups

of 3.27, 1.06, 0.94, 6.51, 1.21, and 1.19 and our fully coherent

CPU-GPU heterogeneous system achieves speedups of 3.67,

1.06, 0.95, 8.83, 1.23, and 1.40 for Backprop, LUD, Kmeans,

Hotspot, Needleman, and BFS respectively.

The measured system time comprises all of the overhead

associated with executing workloads in the CPU-GPU hetero-

geneous environment and includes all of the intercommunica-

tion required between the CPU and GPU. From comparison of

the results between noncoherent and coherent executions, it is

apparent that the extent to which speedup is achievable is de-

pendent on the amount of overhead incurred by the application.

Thus applications that require significant CPU intervention,

like Backprop and Hotspot, see significant improvements and

others, like LUD, Needleman, and BFS see slight improve-

ment. However, all benchmarks with the exception of Kmeans

did show improvement in speedup. Kmeans is an exception

because the parallel section in Kmeans contains a significant

amount of CPU setup between kernel executions which effec-

tively defeats the purpose of parallelizing the benchmark over

the GPU. This is evident in the nearly negligible GPU busy

time for Kmeans.

CPU and GPU busy and stall time show the benchmark’s

utilization of the CPU and GPU together. After inspection

of the Rodinia OpenCL Benchmark’s source code and the

experimental results it is apparent that allocation of work

to the CPU is non existent. The current Rodinia OpenCL

Benchmarks do not fully exploit the complete level of paral-

lelism available between the CPU and GPU. As shown in the

results, the Rodinia OpenCL benchmarks effectively delegate

all processing to the GPU while the CPU mostly remains idle
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where it is relegated to only performing coordinating functions

with the GPU between kernel executions. In an ideal system

the CPU would effectively share 50% of the total busy time

with the GPU. Performance gains in these measurements rely

on better utilization of the CPU and GPU. Despite this, CPU

and GPU busy time remains consistent between configuration

experiments which is expected and correct.

In the noncoherent configuration the results show that

sharing the L3 caches between the CPU and GPU is ineffective

and actually slightly hurts overall performance. This is due

to the streaming nature of the GPU and low temporal reuse

of memory system blocks. Thus, forwarding memory access

request to L3 resulted in a predominance of L3 cache misses,

which are then subsequently sent to the memory controller.

In a noncoherent configuration it is better to directly forward

the memory request to the memory controller and bypass the

latency of the L3 cache access. However, in the heterogeneous

configuration shared L3 caches can provide a measurable

performance boost. This is due to the coherence protocol,

where GPU cache flushes are no longer required on account of

the supported request forwarding between the CPU and GPU.

VII. OBSERVATIONS

Drawing on the experiences gained from the implementation

of M2S-CGM and the generation of our baseline experimental

results we have gleamed several important insights related to

the nature of coherent CPU-GPU heterogeneous workloads.

• The CPU and GPU should share a single virtual address

space. By sharing a single virtual address space underly-

ing mechanisms like memory copies between the CPU

and GPU are no longer required and higher levels of

parallelism can be obtained through traditional synchro-

nization and coherency mechanisms.

• GPU address translation mechanisms need to be re-

searched more. The current IOMMU approach incurs

significant overhead as we must trap back to the CPU

to solve address translation issues. The GPU should be

capable of resolving address translation issues on it own.

• Current benchmarks do not fully exploit the complete

level of parallelism available between the CPU and GPU.

The Rodinia OpenCL benchmarks effectively delegate all

processing to the GPU while the CPU mostly remains

idle. In an ideal system the CPU would effectively be

load balanced with the GPU and share 50% of the run-

time’s busy time. New benchmarks that take advantage of

shared data in a fully coherent CPU-CPU heterogeneous

environment are needed.

VIII. RELATED WORK

Related work in CPU-GPU heterogeneous system research

is diverse and covers many aspects over the breadth of both

the software stack and hardware layer. Recent software-based

approaches include techniques that manage system coherence

such as hypervisor layers and modified programming models

[10], [11], [12]. Higher level software-based approaches that

utilize the current underlying hardware and software may

provide a boost in speedup and efficacy of programming,

however significant system changes proposed require a more

robust software and hardware co-design where the program-

ming model and underlying hardware are both changed to

evoke a substantive improvement in processing performance.

For this paper, we limit our related work summary to computer

architectural simulators and recent research in hardware based

CPU-GPU coherency.

Examples of directly related work in CPU-GPU hetero-

geneous computer architectural simulators includes Gem5-

GPU [13] and FusionSim [14]. Gem5-GPU combines the

Gem5 CPU model, the Ruby memory system model, and the

GPGPU-Sim GPU model into a cohesive system that allows

for simulation of GPGPU workloads under full system or

system call emulation modes. With Gem5-GPU researchers

can run CUDA and OpenCL benchmarks utilizing the pre-

dominantly NVIDIA-based ISA for GPU simulation provided

by GPGPU-Sim’s GPU model. FusionSim, another hetero-

geneous system simulator, also makes use of GPGPU-Sim and

includes an x86 CPU model. In comparison to Gem5-GPU

and FusionSim, M2S-CGM includes similar functionality, but

makes different implementation choices. M2S-CGM allows

for OpenCL-based benchmarks to be run on an AMD-based

Southern Islands ISA and includes a CPU and GPU memory

system model that provides higher detail over the memory

system models included in Gem5-GPU and FusionSim. M2S-

CGM’s memory system model, includes elements such as a

detailed MESI protocol, configurable cache structures, cache

directories, translation lookaside buffers, page table walkers,

switching fabrics, system agents (Intel termed uncore), mem-

ory controllers, GPU hub and IOMMU, and SDRAM model.

M2S-CGM does not implement a full system simulation

mode, however M2S-CGM does provide emulation and timing

models for the functional interactions that occur by the OS

as a result of application evoked system calls. This modeling

methodology provides fidelity comparable to a full system

simulator without the development overhead of implementing

and supporting a full system simulation mode and kernel boot.

Another example of related work in CPU-GPU hetero-

geneous computer architectural simulators includes Multi2-

Sim [2] from which M2S-CGM inherits its CPU and GPU

model from. Multi2Sim allows for researches to run the AMD

APP SDK sample OpenCL benchmarks in a non CPU-GPU

coherent environment, includes simple memory system models

for the CPU and GPU, and utilizes averaged flat latency

timings for memory system interactions and for main memory

latency [15]. M2S-CGM retains the ability to run the AMD

APP SDK sample OpenCL benchmarks, but also includes

extensions to the CPU and GPU models that correct timing

issues and allows M2S-CGM to run the Rodinia OpenMP

benchmarks and, currently, most of the Rodinia OpenCL

benchmarks [16]. In contrast to Multi2Sim, M2S-CGM can be

configured for both non-coherent and coherent executions of

heterogeneous workloads in both disparate and shared virtual

memory address spaces. Also as mentioned before, M2S-CGM

replaces the existing Multi2Sim memory system model with
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CGM. In lieu of Multi2Sim’s averaged flat latency timings,

CGM provides timings for memory requests, system coher-

ence messages, and DRAM accesses while taking a complete

picture of system-wide occupancy and contention into account.

We do not make direct comparisons between M2S-CGM and

Multi2Sim because Multi2Sim’s native memory system does

not support modeling of the differences outlined in Sec. I.

Examples of directly related research in hardware based

CPU-GPU coherency include a timestamp-based protocol

called Temporal Coherence [17] and a directory-based re-

gion coherence protocol called Heterogeneous System Co-

herence [18]. Temporal Coherence provides a low overhead

coherence mechanism for memory systems internal to the

GPU. In comparison to Temporal Coherence, Our work fo-

cuses on directory based full system coherence to include

hardware based coherence internally to the GPU as well as

between the CPU and GPU. Heterogeneous System Coherence

proposes the addition of region buffers to the CPU and GPU

L2 caches. In this context the region buffer acts as a course-

grain filter for memory system message traffic. Thus, if the

CPU or GPU controls a region of memory it then does not need

to consult with other processing elements before preforming

reads or writes to main memory. In contrast, our work focuses

on a protocol based approach that relies on memory system

block forwarding between the CPU and GPU. Our approach

minimizes impacts to the general purpose CPU and does

not introduce the possibility of region thrashing in the ideal

heterogeneous system, where, the CPU and GPU jointly per-

form work within the same region. We note that comparisons

between our experimental results and the experimental results

derived via Heterogeneous System Coherence reconcile.

IX. CONCLUSION

In this paper we introduced M2S-CGM, a detailed archi-

tectural simulator that models the interactions between CPUs

and GPUs operating in heterogeneous compute environments.

We presented the motivation and need for M2S-CGM and pro-

vide in-depth details about its software architectural makeup.

We provided a validation of M2S-CGM’s multithreaded and

heterogeneous system simulation capabilities via the compar-

ison of executions of select Rodinia OpenMP and OpenCL

Benchmarks on a test system and the simulator. Finally, we

utilized the Rodinia OpenCL Benchmarks and conducted ex-

periments over four noncoherent and coherent heterogeneous

system configurations.

Our validation results show that M2S-CGM provides an

accurate simulation model of a modern multicore and hetero-

geneous system with differences ranging from 10.4% and

22% for two and four threaded OpenMP runs and 6.4%

for OpenCL runs. Our noncoherent and coherent benchmark

executions show that added coherency between the CPU

and GPU can provide significant performance gains. Results

show that our modeled half coherent CPU-GPU heterogeneous

system achieves speedups of 3.27, 1.06, 0.94, 6.51, 1.21, and

1.15 and our fully coherent CPU-GPU heterogeneous system

achieves speedups of 3.67, 1.06, 0.95, 8.83, 1.23, and 1.16

for Backprop, LUD, Kmeans, Hotspot, Needleman, and BFS

respectively over the noncoherent equivalent.

A standalone version of CGM and the modifications made

to Multi2Sim, that enable our heterogeneous simulations, are

made available for public use as free software for future

research purposes. Current versions of CGM and M2S-CGM

can be found on GitHub.
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