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Abstract—Distributed shared memory (DSM) multiprocessors typically require disjoint networks for deadlock-free execution of cache

coherence protocols. This is normally achieved by implementing virtual networks with the help of virtual channels or virtual lanes

multiplexed on a single physical network. To keep the coherence protocol simple, messages are usually assigned to virtual lanes in a

predefined static manner based on a cycle-free lane assignment dependence graph. However, this static split of virtual networks (such

as request and reply networks) may lead to underutilization of certain virtual networks while saturating the other networks. In this

paper, we explore different static and dynamic schemes to select the virtual lanes for outgoing messages and mix the load among them

without restricting any particular type of message to be carried only by a particular virtual network. We achieve this by exposing the

selection algorithms to the coherence protocol itself, so that it can inject messages into selected virtual lanes based on some local

information, and still enjoy deadlock-freedom. Our execution-driven simulation on five applications from the SPLASH-2 suite shows

that as the system scales, the virtual network selection algorithms play an important role. For 128-node systems, our dynamic selection

algorithm speeds up parallel execution by as much as 22 percent over an optimized baseline system running a modified SGI Origin

2000 protocol. We also explore how network latency, the number of message buffers per virtual lane, and the depth of network

interface output queues affect the relative performance of various virtual lane selection algorithms.

Index Terms—Distributed shared memory, cache coherence protocol, virtual network, deadlock-freedom.
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1 INTRODUCTION

VIRTUAL channels in routers allow messages to share a
common physical link [4] and are often used to

implement separate virtual networks in DSM multiproces-
sors. Usually, each input port in the router is equipped with
a number of virtual channels or virtual lanes (we will
interchangeably use the terms virtual channel, virtual lane,
and virtual network). Further, each virtual lane of a router
port usually maps to an input queue in the network
interface (NI) of the memory controller, meaning that a
message in a particular virtual lane will be drained into the
corresponding NI input queue at the destination node,
while a message in an NI output queue will get injected into
the corresponding virtual network and arrive on the
corresponding incoming virtual lane at the destination
node. For example, if every router port has four virtual
lanes, the NI will have four input and output queues. These
virtual lanes usually serve two purposes. First, they
improve physical link utilization by allowing messages to
overtake blocked ones on a shared physical link. Second,
cache coherence protocols normally rely on the availability
of separate virtual networks for deadlock-free execution.
Every directory-based cache coherence protocol has certain
types of messages. Read, upgrade, read-exclusive, and
writeback are the four main types of requests generated by
the processor. These are generated, respectively, by load

misses, store misses to shared cache lines, store misses to
memory lines that are not in the cache, and evicted cache
lines in the modified state. In a home-based directory
protocol, every cache line is assigned a home node that is
responsible for maintaining the state of the cache line in a
structure called a directory. On inspection of the directory,
the home node may initiate a series of coherence transac-
tions possibly terminating in a reply to the requesting node.
In all the protocols considered in this paper, the reply to an
intervention (i.e., a request forwarded by the home node) is
directly sent to the requesting node. To service a coherent
store miss, the home node sends invalidation requests to the
current sharers. Acknowledgments to these messages are
sent either to the home node or to the writer. To guarantee
deadlock-freedom, cache coherence protocols statically
assign different virtual networks to carry disjoint sets of
messages. However, this may lead to underutilization of
certain virtual networks. In this paper, we focus on this
aspect of virtual networks and explore how cache coherence
protocols can improve the utilization of the output queues
in the NI and, hence, the virtual lanes in the router. We
assume a deadlock-free deterministic routing algorithm.
Evaluation of our virtual network selection algorithms in
conjunction with adaptive routing remains a topic of future
research.

Complicated virtual network selection policies have direct
implication on deadlock avoidance in the cache coherence
protocol. This is the reason why most DSM multiprocessors
adhere to a predefined static selection policy based on a cycle-
free virtual lane dependence graph. Coherence protocols
usually support either two disjoint virtual networks (namely,
request and reply), or sometimes three, as we shall see. The
Stanford DASH multiprocessor [17], [18], the SGI Origin 2000
[16], and the Piranha chip-multiprocessor [1] belong to the
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first category that execute two-lane protocols. In most cases, a
request generates a reply and these two message types travel
in separate virtual networks. Therefore, to avoid deadlock, an
incoming message on the request network can be serviced
only if there is space in the outgoing NI reply queue and an
incoming reply message may always be serviced since it does
not generate any further messages. This leads to a trivial lane
dependence graph as shown in Fig. 1.

In this graph, “R” stands for the request network while
“Y” stands for the reply network. The arc shows that an
incoming message on the request network may require
space in the reply network and, hence, cannot be safely
scheduled by the memory controller until space is available.
In these protocols, a problem arises when a request
generates another (or several) request(s) which, in turn,
generates a reply. For example, a read-exclusive request
may generate several invalidation requests which, in turn,
will generate invalidation acknowledgment replies. To
drain the incoming request network, the memory controller
cannot rely on the availability of space in the outgoing
request network since this would lead to a cycle ðR ! RÞ in
the lane dependence graph. The DASH multiprocessor,
other than having fairly large input and output queues,
resorts to a time-out mechanism to avoid deadlock in such
situations. The home node waits for a predetermined
number of cycles trying to get space in the outgoing request
network and, if it fails, it rejects the request and sends a
negative acknowledgment (NACK) on the reply network to
the requester. This preserves a strict request-reply protocol,
but relies on the fact that the retry from the requester will
eventually succeed. Instead of NACKing, the SGI Origin
2000 resorts to a back-off invalidation or intervention
mechanism and sends a reply to the requester with the
remaining sharer identities to invalidate or with the identity
of the exclusive owner in the case of an intervention. The
Piranha internode protocol implements two virtual net-
works, namely, a low priority network (L) and a high
priority network (H). The L network is used for sending
requests other than writebacks to the home node, while the
H network is used for interventions, invalidations, write-
backs, and all replies. The H ! H deadlock cycles are
broken by providing sufficient buffering in the network.

To solve the problems of the two-lane protocols, current
DSM multiprocessors normally support more than two
virtual networks. The Stanford FLASH multiprocessor [10],
[11], [12], [15] runs four-lane protocols. The lane depen-
dence graph is shown in Fig. 2. In addition to having
request (R) and reply (Y) lanes, the “RR” lane carries the

requests generated by request messages, i.e., invalidations
and interventions. These messages are normally called
forwarded requests. The other lane (YY) is responsible for
consuming replies generated by the reply messages. The
last invalidation acknowledgment (a reply) arriving at the
home node uses this lane for sending a write completion
reply message to the writer. Note that this is necessary only
because the Stanford FLASH protocol collects invalidation
acknowledgments at the home node. The AlphaServer
GS320 [7] uses a three-lane protocol. The virtual lanes are
named Q0, Q1, and Q2. The Q0 lane carries requests from a
processor to a home. The replies and the forwarded
requests (e.g., invalidations and interventions) from the
home node travel on the Q1 network. The Q2 lane carries
the replies to the forwarded requests. These replies are
directly sent to the requester. This leads to a lane
dependence graph, as shown in Fig. 3. In all these cases,
the processor interface typically injects requests into the
request network, thereby initiating a chain of transactions
possibly terminating in a reply back to the requester.

Supporting adaptive routing requires an even larger
number of virtual networks. The minimally adaptive two-
dimensional torus router in the Alpha 21364 [21], [22]
implements 19 virtual channels. Three virtual channels
form a virtual network which is responsible for routing
exactly one of the six types of coherence protocol messages.
This accounts for 18 virtual channels. The remaining virtual
channel is responsible for routing a seventh special type of
coherence protocol message. Out of the three virtual
channels within a nonspecial virtual network, one forms
the adaptive routing network, while the other two form the
deadlock-free dimension-order routing network.

From the above discussion, it is clear that the trend in DSM
multiprocessors is to statically assign message types to the
virtual networks. For example, a request can only travel on
the request network, etc. The AlphaServer GS320 provides
some flexibility by mixing replies and forwarded requests in
the Q1 network. But, still, the processor interface can inject
requests only in the Q0 network. In addition, there always
exists a static sink—the reply network for two-lane protocols,
the YY lane in the Stanford FLASH protocol, or the Q2 lane in
the AlphaServer GS320 protocol. This guarantees that the
network will drain in steady state. These decisions are taken
so that proving a coherence protocol deadlock-free becomes
easier. However, static assignment of messages to virtual
networks (a static virtual network selection policy) may lead
to underutilization of certain virtual networks while the other
networks approach saturation. In our experience, this case is
quite common for two reasons. First, for applications with
long sharing lists, the invalidation message load is normally
very high and bursty when writes take place, since all the
invalidation messages are injected into the same virtual
network. Second, a forwarded request normally generates
two replies, namely, a direct reply to the requester and a
notification reply to the home node. This leads to a relatively
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Fig. 1. Virtual lane dependence graph in a 2-lane protocol.

Fig. 2. Virtual lane dependence graph in a 4-lane Stanford FLASH
protocol.

Fig. 3. Virtual lane dependence graph in AlphaServer GS320 protocol.



high load on the outgoing reply network as compared to the
request network. This is shown in Figs. 4a and 4b.

Fig. 4a shows the maximum occupancy for each of three
NI output queues averaged across all the nodes for five
applications running our baseline 3-lane protocol (Section 2.2)
on a 64-node system (uniprocessor nodes) built out of 2-way
bristled fat hypercubes [16]. Similar results for 128 nodes
are shown in Fig. 4b. The Queue0 implements the request
network, the Queue1 implements the reply network, and the
Queue2 carries all invalidation and intervention requests.
Each NI output queue has 16 slots. In both the plots, it is
clear that the reply network and the forwarded request
network are heavily loaded, while the request network
remains mostly idle. On average, at most, four slots in the
output request queue are ever occupied. In this paper, we
focus on the problem of this load imbalance among the
virtual networks arising from simple static selection
algorithms. Following the SGI Spider router [6] used in
the SGI Origin 2000, we fix the number of virtual lanes at
four. We propose one fixed priority and one round robin
selection algorithm for balancing the invalidation load.
Next, we augment the low-overhead fixed priority algo-
rithm with a static and a dynamic selection algorithm to
more evenly distribute the network load. We carry out
execution-driven simulations on five applications from the
SPLASH-2 suite [26] assuming a deterministic routing
algorithm [5], which is commonly used in DSM multi-
processors. Note that, although this study does not consider
adaptive routing as used in Piranha [1], Cray T3E [24], and
Alpha 21364 [21], [22], our techniques can be directly
applied to such systems. More specifically, our algorithms
do not assume anything about the routing algorithms. Also,
our virtual network selection algorithms are different from
adaptive routing algorithms because adaptive routing,
instead of switching between virtual networks, only
executes an adaptive routing algorithm within each virtual
network (which may have multiple virtual channels). Our
dynamic selection algorithm achieves up to 22 percent
speedup for 128 nodes over the baseline. We further explore
the relative performance of the algorithms as the network
latency, the number of message buffers per virtual lane, and
the depths of the NI output queues are varied.

In the next section, we briefly present related work in the
field of evaluating network parameters using execution-
driven simulation of DSM multiprocessors. Section 2
presents our baseline system architecture, Section 3 intro-
duces our virtual network selection algorithms, Sections 4
and 5 discuss our simulation results, and Section 6 concludes
the paper.

1.1 Related Work

Much has been done to investigate the effects of network
parameters in DSM multiprocessor systems with synthetic
workloads. However, execution-driven simulation for
studying the effects of architectural changes on DSM
multiprocessors is of paramount importance. Kumar and
Bhuyan [14] use execution-driven simulation to investigate
the impact of the number of virtual lanes and the number of
buffers per virtual lane in a DSM multiprocessor built out of
a 2D torus. The study does not consider the coherence
protocol aspects and is orthogonal to our proposal. It
concludes that both parameters are important for parallel
performance and that four virtual lanes per port and two to
four buffers per lane are sufficient. Vaidya et al. [25] explore
the impact of virtual lanes and adaptivity on parallel
performance using a 2D mesh, and conclude that none of
them contribute significantly to end-performance. Martı́nez
et al. [20] carry out execution-driven simulations to explore
the impact of virtual lanes and adaptivity in bristled
hypercubes, and conclude that in these systems parallel
performance can be greatly improved by introducing more
virtual lanes and adaptivity while the nonbristled systems
remain largely insensitive to these effects. The study uses a
conventional two-lane coherence protocol. In contrast to all
these studies, we focus on virtual network selection
algorithms in coherence protocols and explore the impact
of the network parameters on the relative performance of
these algorithms.

The Spider router [6] used with the SGI Origin 2000
provides minimal support for congestion control within the
request and the reply networks. The router has four virtual
lanes and two lanes can be assigned to each virtual network.
One bit in the header is used to switch messages between two
virtual lanes within the same virtual network. This helps in
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Fig. 4. Average maximum occupancy of NI output queues for (a) 64 nodes and (b) 128 nodes.



selecting the least used virtual lane within a virtual network.
We are not aware whether this feature is actually used in the
SGI Origin 2000. However, this mechanism still does not
allow complete mixing of the virtual networks, i.e., a virtual
lane belonging to the reply network cannot be used to inject
requests. Our algorithms try to achieve this mix as much as
possible, thereby improving utilization of the NI output
queues, while still keeping the protocol deadlock-free.

2 SYSTEM ARCHITECTURE

This section describes our system architecture including the
node controllerarchitectureandthecachecoherence protocol.

2.1 Node Controller Architecture

Our node controller architecture shown in Fig. 5 is directly
derived from the Memory And General Interconnect
Controller (MAGIC) of the Stanford FLASH multiprocessor.

It is very similar to the hub of the SGI Origin 2000 with the
exception that our node controller is programmable and can
execute any cache coherence protocol. Such flexible protocol
processors, used in the Piranha system [1], STiNG multi-
processor [19], S3.mp [23], etc., allow late binding of the
protocol, flexibility in the choice of protocol, and a relatively
easy and fast protocol verification phase. Coherence mes-
sages arrive at the processor interface (PI inbound) or the
network interface (NI inbound) and wait for the dispatch unit
to schedule them. The processor interface has an outstanding
transaction table (OTT) to record the outstanding read,
upgrade, and read-exclusive requests issued by the local
processor. The network interface has four virtual lanes to
implement a deadlock-free protocol and obviates the need for
a strict request-reply protocol. The dispatch unit carries out a
round robin scheduling among the PI queues (there are two PI
input queues; see Section 2.2 for details), four NI input
queues, and the software queue (see below). After selecting a
message, a table lookup decides which protocol message
handler is invoked to service the scheduled message. A
message arriving on a certain virtual network may require
space in a number of outgoing networks. This is specified in
the form of a dependence graph and is programmed in the
dispatch unit at boot time. Before scheduling a message, the
dispatch unit guarantees that the availability of virtual lane

space in required outgoing networks exceeds a minimum
threshold (2 in this study). Still, it may happen that, while
running a handler, the protocol processor finds that it needs
more space in an outgoing network queue—for example, this
situation may arise while sending out invalidation messages.
At this point, the incomplete message is stored in the software
queue, which is a reserved space in main memory. At some
later point, this message will get scheduled from the head of
the software queue by the dispatch unit and will continue
sending the remaining invalidations. The protocol processor
has dedicated protocol instruction and data caches backed by
main memory. During the handler execution, the protocol
processor may instruct the send unit to send out certain types
of messages (such as data requests/replies or other coherence
messages) to either the local processor (via PI outbound) or
remote nodes (via NI outbound).

2.2 Cache Coherence Protocol

This section describes the baseline cache coherence protocol
on top of which all the virtual network selection algorithms
run. Our protocol is a simplified MSI version of the SGI
Origin 2000 protocol. This protocol differs from the actual
Origin protocol in four notable respects. First, our protocol
is MSI as opposed to MESI and, consequently, the home
node does not send speculative replies to the requester
when the line is dirty at a third node. Second, our protocol
supports eager-exclusive replies (as opposed to strict
sequential consistency) where upgrade acknowledgments
and read-exclusive data replies are immediately sent to the
requester even before all the invalidation messages are sent
and all the acknowledgments are collected. Our relaxed
consistency model guarantees “global completion” of all
writes on release boundaries, thereby preserving the
semantics of flags, locks, and barriers. Third, our protocol
sends an exclusive data reply (versus a negative acknowl-
edgment) if an upgrade request comes from a node that is
not marked as a sharer in the directory. A write followed by
a writeback to the same cache line from a different node
reaching the home node before this upgrade can lead to
such a race. Fourth, our protocol uses three virtual lanes,
namely, Q0, Q1, and Q2, as opposed to a two-lane strict
request-reply mechanism. The Q0 lane is the request lane,
the Q1 lane is the reply lane and also serves as the sink, and
the Q2 lane is used to send out forwarded requests, i.e.,
invalidations and interventions. This eliminates the neces-
sity of implementing any back-off mechanism. The lane
dependence graph for our protocol is shown in Fig. 6. Note
that the lane dependence graph is exactly the same as that
in the Stanford FLASH protocol, except that the fourth
virtual lane is not used. The processor interface (PI) uses the
Q0 network for sending requests to the home node and the
Q2 network for sending forwarded intervention and
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Fig. 5. Node controller architecture.

Fig. 6. Cycle-free virtual lane dependence graph in baseline protocol.



invalidation requests. The second input queue (PI2) in the
processor interface requires space in the Q0 network for
sending blocked writebacks and space in the Q1 network
for sending blocked intervention replies (see below for
detail). The software queue (SW) uses only the Q2 network
since it only sends out pending invalidation messages. Note
that the protocol does not rely on any message ordering in
the network. As a result, we can safely ignore this issue
while designing our virtual network selection algorithms.

The directory entry is 64 bits wide. Among these 64 bits,
four bits are dedicated to maintain state information:
pending shared, pending dirty exclusive, dirty, and local.
The pending shared bit is set when a read request is
forwarded by the home node to the current exclusive owner.
This bit gets cleared when the home node receives a sharing
writeback message from the previous owner. Similarly, the
pending dirty exclusive bit is set when a read-exclusive
request is forwarded by the home node to the current
exclusive owner. This bit gets cleared when the home node
receives an ownership transfer message from the previous
owner. In both of the forwarding cases, the intervention reply
is directly sent to the requester by the owner if it can satisfy
the request (i.e., if the owner still caches the memory line).
The local bit in the directory entry is set when the local
processor caches the line. This bit is used to quickly decide
whether an invalidation or intervention needs to go over the
network interface or not. The sharer vector is 32 bits wide
and, depending on the directory state, it is used to store either
the sharer identities in the form of a bit vector or the identity
of the dirty exclusive owner. The remaining 28 bits are left
unused for future extensions of the protocol. Whenever the
number of nodes in the system is larger than 32, the protocol
scales by becoming a coarsevector protocol [9] with a
coarseness of 2 and 4 for 64 and 128-node systems,
respectively, so that each bit in the sharer vector represents
a cluster of two or four consecutive nodes. For multi-
processor nodes, a single bit in the directory entry keeps
track of the sharing information for each node (information is
not maintained per processor).

As in the Origin protocol, our protocol collects the
invalidation acknowledgments at the requester. The write
reply from the home node carries the expected number of
acknowledgments. The requester node remembers this
count in the outstanding transaction table (OTT) and
decrements the count as it receives the acknowledgments.
However, the write reply is immediately sent to the
processor so that it can continue with the write. Writebacks
for that line and any intervention to that line are blocked in
the OTT until all the acknowledgments are collected. These
will be referred to as blocked writebacks and blocked
interventions. In addition to the actual PI input queue, there
is a 4-entry bypass input queue (named PI2) in the processor
interface that is used by the OTT control hardware to put
blocked writebacks and intervention replies after the last
invalidation acknowledgment is collected. We also merge
any blocked writeback with blocked intervention replies in
case both a writeback and an intervention to the same
memory line are blocked at the OTT, thereby saving some
network messages. Our protocol correctly handles the early
and late intervention races. An early intervention race occurs
when a forwarded intervention races past the write reply
and reaches the owner first. Early interventions are buffered
in the OTT in the processor interface of the designated

owner. A late intervention race occurs when a forwarded
intervention reaches the owner after it has issued a write-
back message to the home node. Late interventions are
replied to by the home node when it receives the writeback.
At this time, it also clears the appropriate pending bit in the
corresponding directory entry. The late interventions are
ignored at the third party nodes. To properly decide which
interventions to ignore, the node controller requires a
writeback buffer that stores the addresses of the outstanding
writeback messages until they are acknowledged by the
home node. Two types of writeback acknowledgment
messages are required to properly decide whether a write-
back buffer entry should wait for an upcoming intervention
before being recycled.

3 VIRTUAL NETWORK SELECTION ALGORITHMS

This section describes our virtual network selection algo-
rithms. We present two algorithms to accelerate invalida-
tions, combine one of them with a static reply message
balancing algorithm and, finally, present a completely
dynamic algorithm that chooses the outgoing virtual
network based upon past lane usage while maintaining
deadlock-freedom.

3.1 Accelerating Invalidation Messages

In the baseline protocol presented in Section 2.2, the
invalidation messages are carried only by the Q2 network.
This fills up the corresponding NI output queue in bursts.
When the Q2 queue fills, the protocol processor stores the
remaining sharer identities in the software queue. The
dispatch unit eventually schedules a handler that starts
sending the pending invalidations. Quickly sending inva-
lidation messages automatically accelerates the correspond-
ing invalidation acknowledgments leading to earlier
completion of writes. This can be done by using all the
virtual networks to send out invalidations. However, these
messages generate replies and, therefore, we need to leave
out at least one virtual lane to carry the invalidation
acknowledgments. Our algorithms use Q0, Q1, and Q2
networks to send invalidations. The invalidations sent on
Q0 and Q2 generate invalidation acknowledgments on the
Q1 network, while those sent on the Q1 network inject the
corresponding acknowledgments into the Q3 network. This,
when augmented with the graph in Fig. 6, results in the lane
dependence graph, as shown in Fig. 7. The software queue
now needs space in Q0, Q1, and Q2 for sending out pending
invalidations. Note that Q3 acts as the static sink in this
protocol.
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Having presented the central idea for distributing the
invalidation load, we turn to the distribution algorithm. We
have experimented with two algorithms. The first algorithm
assigns a fixed priority to the three queues in the order Q2, Q0,
and Q1, giving the reply network (Q1) the least priority. This
is done to keep the reply network as free as possible to
minimize the delay of reply messages. Therefore, a protocol
message handler always sends invalidations along the
Q2 network first. Once that queue fills up, the handler injects
the invalidations into the Q0 network and then into the
Q1 network.

The second algorithm picks the Q0, Q1, and Q2 networks
in a round robin fashion. The protocol processor maintains
state about the next round robin candidate and updates this
state at the end of the handler. The next time the handler
executes, invalidations are sent first along the round robin
candidate instead of Q2 as in the fixed priority scheme.
When that queue fills up, the next candidate is chosen and
the process continues until all the invalidations are sent or
all three queues fill.

As the results in Section 5 will show, the fixed priority
algorithm performs equally well or better than the more
complicated round robin algorithm. This is largely due to
assigning the least priority to the reply queue. The round
robin algorithm also consumes extra cycles in the protocol
processor to maintain state. Therefore, in the following
discussion, we distribute the invalidations according to the
fixed priority algorithm only.

3.2 Balancing Reply Message Load

This section augments the fixed priority invalidation
algorithm with a static algorithm to distribute the load of
reply messages. While the baseline protocol only uses the
Q1 network to send replies, this algorithm statically
distributes the reply messages among the Q1 and Q3
networks based on message type. All the replies to
forwarded requests travel along the Q3 network, including
both the reply to the requester and the notification message
to the home node. The home node sends read replies on the
Q1 network, and write replies (i.e., read-exclusive replies
and upgrade acknowledgments) and writeback acknowl-
edgments on the Q3 network. The Q1 network is almost
completely dedicated to read replies, and all other replies
are grouped into the Q3 network (because of the underlying
fixed priority invalidation algorithm, some invalidations
and acknowledgments are sent on the Q1 network). The
resulting lane dependence graph is shown in Fig. 8. Note
the distinctions between this graph and the one shown in
Fig. 7. The PI2 queue now needs space in the Q3 network

instead of Q1 to inject the blocked intervention replies
(these are replies to forwarded requests). The incoming Q0
network (the request network) needs space in the outgoing
Q3 network so that the home node can inject write replies
and the writeback acknowledgments. Finally, the incoming
Q2 network (that carries the forwarded requests) needs
space in the Q3 network to send the replies generated by
forwarded requests.

3.3 A Dynamic Selection Algorithm

In this section, we augment the fixed priority invalidation
algorithm with a completely dynamic algorithm to dis-
tribute all non-invalidation messages (not only replies)
among the four virtual networks. The central idea is to
provide as many choices as possible in the outgoing
networks to every source of incoming messages and to
use all the NI output queues as equally as possible. The
main constraint that must be satisfied while opening up
outgoing virtual network space for a particular incoming
network is that the protocol must remain deadlock-free.
This is guaranteed by designing a cycle-free lane depen-
dence graph and maintaining a static sink. The chosen lane
dependence graph is shown in Fig. 9. The only difference
between this graph and the one shown in Fig. 8 is that we
open up space in all the virtual networks for the processor
interface and assign them in a non-overlapping fashion to
the PI and PI2 input queues. The PI input queue uses the Q0
and Q2 networks, while the PI2 queue uses the Q1 and Q3
networks. This is the best that can be achieved with four
virtual lanes—adding an arc between any two Qi’s will
introduce a cycle in the graph.

This algorithm does not attach any special meaning to
any virtual network, i.e., Q1 can carry any message, not
only replies, etc. The memory controller is augmented with
one round robin counter for each of PI, PI2, Q0, and Q2
incoming queues for selecting the corresponding outgoing
queues. Q3 does not need a counter since it is the sink. Q1
does not need a counter since it has no choice other than
sending all messages into Q3 as dictated by the lane
dependence graph. The counter for a particular incoming
queue records the next round robin outgoing network
queue (i.e., one of Q0, Q1, Q2, and Q3) to be used for
sending a message that gets generated by a message
arriving at that incoming queue. Therefore, with four
virtual lanes, each counter is 2 bits wide. Recall that every
incoming queue cannot use all the outgoing queues since
some arcs are absent in the lane dependence graph.
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The algorithm works as follows: In response to processor
requests arriving from the PI, the coherence protocol
forwards requests to the home node or third party nodes
alternately on Q0 and Q2. The blocked intervention replies
(these arrive on the PI2 queue) are sent alternately on Q1
and Q3. The blocked writebacks arriving on the PI2 queue
are sent only on the Q1 network since these messages
generate replies. The messages arriving on Q0 and Q2 may
generate either forwarded requests or replies. The algo-
rithm handles them as follows: The forwarded requests
generated by the messages arriving on Q0 are sent
alternately on Q1 and Q2, while the replies generated by
these Q0 messages are sent on Q1, Q2, and Q3 in a round
robin manner. Note that, since Q3 is the sink, it can only
carry replies. The forwarded requests generated by the
messages arriving on Q2 are sent on Q1 while the replies
generated by these Q2 messages are sent on Q1 and Q3,
alternately. Considering the algorithm description, it should
be clear that any message arriving on the incoming Q1
network does not generate any forwarded request, but may
generate replies. These replies are always sent on Q3. Q3
acts as the static sink, i.e., any message arriving on Q3 does
not generate any further messages. Note that the fixed
priority invalidation algorithm runs together with this
algorithm.

4 EVALUATION METHODOLOGY

This section discusses the applications and the simulation
environment we use to evaluate our virtual lane selection
algorithms.

4.1 Applications

We have chosen five programs from the SPLASH-2 bench-
mark suite [26]. These are shown in Table 1. There are two
complete applications (Ocean and Water) and three
computational kernels (FFT, LU, and Radix-Sort). The
programs were chosen because they represent a variety of
important scientific computations with different commu-
nication patterns and synchronization requirements. As a
simple optimization, in Ocean the global error lock in the
multigrid phase has been changed from a lock-test-set-
unlock sequence to a more efficient test-lock-test-set-unlock
sequence [13]. All five applications use page placement.
FFT, LU, Radix-Sort, and Ocean use software prefetch to
hide remote latency as much as possible.

4.2 Simulation Environment

The main processor runs at 1GHz and is equipped with
separate 32KB primary instruction and data caches that are

two-way set associative and have line sizes of 64 bytes and
32 bytes, respectively. The secondary cache is unified, 2MB,
two-way set associative and has a line size of 128 bytes. The
processor ISA includes prefetch and prefetch exclusive
instructions and the cache controller uses a critical double-
word refill scheme. The processor model also contains a fully-
associative 8-entry instruction TLB and a 64-entry data TLB
with 4KB pages. We accurately model the latency and cache
effects of TLB misses. On two different occasions our
processor model has been validated against real hardware
[2], [8].

The embedded protocol processor in the memory con-
troller is a dual-issue core running at 400MHz system clock
frequency. The instruction and data cache behavior of the
protocol processor is modeled precisely via a cycle-accurate
simulator similar to that for the protocol processor in [8]. We
simulate a 32KB direct-mapped protocol instruction cache
and a 512KB direct-mapped protocol data cache. Our
execution driven simulator models contention in detail
within the memory controller, between the controller and
its external interfaces, at main memory, and for the system
bus. The access time of main memory SDRAM is fixed at 90ns
(36 system cycles). The memory queue is 16 entries deep. The
input and output queue sizes in the node controller’s
processor interface (PI) are set at 16 and 2 entries, respec-
tively. The corresponding queues in the network interface
(NI) are 2 and 16 entries deep. We will also explore the effects
of making the NI output queues 8 and 32 entries deep. The
network interface is equipped with four virtual lanes to aid
deadlock-free routing. The processor interface has an 8-entry
outstanding transaction table and a 4-entry writeback buffer.
For dual-processor nodes, sizes of the outstanding transac-
tion table and the writeback buffer are doubled to be able to
hold more outstanding requests and writebacks. Each node
controller has 32 cache line-sized data buffers used for
holding data as a protocol message passes through various
stages of processing.

The router architecture is very similar to that used in the
SGI Spider chip [6]. There are six full-duplex ports and each
port has four incoming virtual lanes. We experiment with
one, two, and four message buffers per virtual lane. One
message is composed of a 64-bit header, a 64-bit address,
and optional data payload up to 128 bytes, which is the
coherence granularity. We assume that a message buffer is
big enough to hold an entire message. In this context, we
would like to mention that the Spider router provides
256 bytes of message buffering at each virtual lane. Our
router model (like Spider) carries out a look-ahead routing
algorithm that determines the output port at the next router
ahead of time. We simulate a 2-way bristled fat hypercube
for more than 32 nodes as done in the SGI Origin 2000 with
the conventional e-cube routing. We experiment with 25ns
and 50ns hop times. The simulated node-to-network link
bandwidth is kept constant at 1GB/s.

5 SIMULATION RESULTS

This section presents the simulation results for the virtual
network selection algorithms. We evaluate the following
algorithms.
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TABLE 1
Applications and Problem Sizes



1. Base. The base protocol discussed in Section 2.2.
2. InvalFP. The fixed priority invalidation algorithm

presented in Section 3.1.
3. InvalRR. The round robin invalidation algorithm

presented in Section 3.1.
4. InvalFP+Static. The static reply balancing algo-

rithm presented in Section 3.2.
5. InvalFP+Dynamic. The dynamic algorithm pre-

sented in Section 3.3. This algorithm requires
nominal hardware support in the NI for selecting
the round robin candidate from the legal outgoing
virtual networks as dictated by the lane dependence
graph.

We present results for both 64-processor and 128-processor
DSM systems. For 64 processors, we evaluate uniprocessor
nodes (64 nodes) and dual-processor nodes (32 nodes). For
128 processors, we only evaluate uniprocessor node systems.
We also evaluate how the relative performance of these
algorithms changes as the network latency, number of
message buffers per virtual lane, and the depths of the NI
output queues are varied.

5.1 64-Processor Results

This section presents results for a 64-processor system. First,
we present results for systems with uniprocessor nodes, i.e.,
64 nodes. Next, we present results for systems with dual-
processor nodes (32 nodes).

5.1.1 Uniprocessor Nodes

Figs. 10a and 10b present results for 64 nodes with 25ns and
50ns hop times, respectively. The execution times are
normalized to Base. We divide the execution time into
busy cycles, read and write stall cycles, and synchronization
cycles. We further break down the synchronization time
into time spent on lock acquires, barriers, and flags.

For all the applications other than Water, the algorithms
perform almost equally. For Radix-Sort and Ocean, the static
algorithm performs slightly better than the other algorithms.
For Water,InvalFP is always better thanInvalRR. For both
latencies, the dynamic algorithm outperforms all others in
Water. For 25ns hop time, it is 7.5 percent faster than Base,
while for 50ns hop time, it is 22 percent faster. All the gains
come from reduction in lock and barrier times. The lock

acquire time decreases due to accelerated invalidations
leading to early write completion (i.e., completion of store
conditionals used to implement lock acquires), while reduc-
tion in barrier time results from improved load balance.
Water is the most lock-intensive application among the five
selected ones and, hence, with 64 nodes, many invalidations
get generated during the lock acquire phase. In general, the
relative performance of all the algorithms compared to Base

improves for the slower network meaning that virtual
network selection algorithms grow in importance as network
latency increases.

For Radix-Sort and Ocean, the dynamic algorithm is the
worst among all the algorithms. This is due to an increased
read/write stall time in Radix-Sort and an increased lock
acquire time in Ocean. The reasons are different for Radix-
Sort and Ocean. We will explain these with the data from
the 25ns hop time simulation. The reasons are the same
with 50ns hop time.

In Radix-Sort, the slowdown results from a data buffer
shortage in the memory controller. In the Base protocol, the
dispatch unit fails to schedule a message 38.46 percent of
the time due to a lack of available space in the outgoing Q1
and Q2 networks. In the dynamic algorithm, this goes down
to 8.22 percent due to better utilization of the virtual
networks. However, this causes more data buffers to be
held in the NI output queues at the same time. This is
because an outgoing message may hold the data buffer
allocated to it until the cache line is injected into one of the
message buffers in the corresponding virtual lane of the
router. This, in turn, delays new, possibly critical, messages
from being scheduled on the protocol processor. Radix-Sort
is most sensitive to this problem due to its irregular bursty
communication in the permutation phase. However, we
will see that the benefit of the dynamic algorithm starts to
outweigh this problem as the system scales to 128 nodes.

In Ocean, the increased lock acquire time results from a
totally different phenomenon. Due to better load balance in
the dynamic algorithm, the lock accesses from different
processors are found to occur almost at the same time. As a
result, the load-linked instructions (LL) are negatively
acknowledged 52 percent more often compared to the
Base protocol. Further, the store-conditional instructions
(SC) are negatively acknowledged 36 percent more often.
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Fig. 10. Normalized execution time for 64 nodes with two message buffers per virtual lane, 16 slots in NI output queues, and (a) 25ns and (b) 50ns

hop time.



This leads to an overall 44 percent increased negative
acknowledgment (NACK) count in the dynamic algorithm.
This is one instance where NACKs actually make a
noticeable difference in the end-performance.

Next, we turn to see the effect of the number of message
buffers per virtual lane in the router. This effectively
changes the amount of buffering in the network. Figs. 11a
and 11b show the results for one message buffer per virtual
lane on 25ns and 50ns networks, respectively. The results
do not include the InvalRR algorithm since the InvalFP

algorithm has been found superior. Now, along with Water,
FFT and Radix-Sort show some interesting variation in
performance across the algorithms. For 25ns hop time the
dynamic algorithm is the best for FFT executing 3 percent
faster than Base. The static algorithm emerges the best for
Radix-Sort, executing 7.5 percent faster than Base. For
Water, the dynamic algorithm continues to be the best,
executing 19 percent faster than Base. The static algorithm
in this application increases the execution time by 4.3 per-
cent over Base due to a 16.4 percent increase in NACK
count. This happens mostly because of the timings of the
lock accesses in this protocol. As the network slows down to
50ns, the dynamic algorithm benefits for Radix-Sort,

executing 11.1 percent faster than Base. For Water, this
algorithm is able to reduce the lock and barrier times by a
surprisingly large amount and executes 63.9 percent faster
than Base. In summary, with a smaller number of message
buffers in the network virtual lanes, the contention in the NI
increases and the output queue selection algorithms become
even more important.

Figs. 12a and 12b present the results for four message
buffers per virtual lane in the router with 25ns and 50ns hop
times, respectively. Clearly, the algorithms lose significance
as the message buffers get less contended. Radix-Sort and
Ocean continue to see similar effects as in the two message
buffers per lane case. For a 50ns hop time, the dynamic
algorithm runs 4.2 percent faster than Base for Water.

Next, we explore the effect of varying the depths of the
NI output queues. The results fix the number of message
buffers per lane in the router to two. Figs. 13a and 13b
present the results for eight slots (Fig. 10 had 16) in each NI
output queue with 25ns and 50ns hop times, respectively. A
comparison with Fig. 10 shows that reduced NI output
queue size has little performance effect for LU, Radix-Sort,
and Ocean. For FFT, the dynamic algorithm runs 3 to
4 percent faster than Base for both hop times. This
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Fig. 11. Normalized execution time for 64 nodes with one message buffer per virtual lane, 16 slots in NI output queues, and (a) 25ns and (b) 50ns

hop time.

Fig. 12. Normalized execution time for 64 nodes with four message buffers per virtual lane, 16 slots in NI output queues, and (a) 25ns and (b) 50ns
hop time.



algorithm runs 14.9 percent and 19 percent faster than Base

in Water for 25ns and 50ns hop times, respectively.
Figs. 14a and 14b present the results with 32 slots (as

opposed to 16 in Fig. 10) in each NI output queue for 25ns
and 50ns hop times, respectively. For 25ns, the algorithms
perform almost equally. For Ocean, the static algorithm
runs 4.2 percent faster than Base, while for Water, the
dynamic algorithm executes 6.4 percent faster than Base.
As the hop time increases to 50ns, Ocean attains an even
larger reduction in the lock acquire time with the static
algorithm. This algorithm executes 7.5 percent faster than
Base. Water continues to observe good performance with
the dynamic algorithm. It runs 19 percent faster than Base.
Finally, we note that 32 entries in each NI output queue
with 32 data buffers per node may not be a good design
choice. As already mentioned, a message may hold a data
buffer until it is pulled out of the NI output queue and
injected into the router. This simply increases the lifetime of
a data buffer preventing other possibly critical messages
from being scheduled. But, implementing a large number of
multiported data buffers in the memory controller is
impractical.

From the above discussion, it is clear that the relative

performance of the algorithms is more sensitive to the

number of message buffers per virtual lane and the network

latency than to the depths of NI output queues. Decreasing

the number of message buffers per virtual lane increases the

importance of the network selection algorithms much more

compared to decreasing the depths of the NI output queues.

Further, the relative performance of the algorithms always

improves as the network hop time increases.

The dynamic algorithm greatly helps reduce the lock

acquire time and barrier time in Water. LU remains

completely insensitive to the algorithms. For FFT the static

and the dynamic algorithms get some advantage in some of

the cases. Ocean and Radix-Sort show strikingly similar

behavior in most of the cases. For both of these applications,

the static algorithm typically emerges the best, while the

dynamic algorithm usually hurts performance.

5.1.2 Dual-Processor Nodes

This section discusses the results for 64-processor systems

built out of dual-processor nodes. Figs. 15a and 15b present
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Fig. 13. Normalized execution time for 64 nodes with two message buffers per virtual lane, eight slots in NI output queues, and (a) 25ns and (b) 50ns
hop time.

Fig. 14. Normalized execution time for 64 nodes with two message buffers per virtual lane, 32 slots in NI output queues, and (a) 25ns and (b) 50ns

hop time.



results for both 25ns and 50ns hop times fixing the number

of message buffers to two and the depths of the NI output

queues to 16. The InvalRR algorithm is worse compared to

InvalFP in most of the cases. Water continues to benefit

from the dynamic algorithm due to reduction in lock and

barrier times. This algorithm is 4.2 percent and 16.3 percent

faster than Base for 25ns and 50ns hop times, respectively.

Further, some algorithms perform relatively better as the

network slows down, e.g., the static algorithm in FFT,

InvalFP and the static algorithm in Radix-Sort, and all the

algorithms in Water.

5.2 Scaling to Larger Systems

This section presents the results for 128 nodes with uni-

processor nodes fixing the hop time to 25ns. Fig. 16a shows the

normalized execution time while Fig. 16b plots the average

maximum occupancy of the NIoutput queues for the dynamic

algorithm in the same way as Fig. 4b does for the Base

protocol. Both the results use two message buffers per virtual

lane and 16 entries in each NI output queue. We have omitted

the results for LU in the occupancy plot since this application

is mostly insensitive to the algorithms. In all the applications,

other than Radix-Sort and Ocean, InvalFP performs better

thanInvalRR. The trends are now quite different for FFT and

Radix-Sort. The dynamic algorithm runs 14.9 percent faster

than the Base protocol for FFT. This is due to reduced read/

write stall time. For Radix-Sort, the algorithms perform

progressively better. InvalFP executes 9.9 percent faster

andInvalRR runs 11.1 percent faster compared toBase. The

static algorithm executes 13.6 percent faster, while the

dynamic algorithm speeds up execution by 17.6 percent over

Base for Radix-Sort. In this application, all the gains arise

from reduced read/write stall time. Also, LU executes

2 percent faster than Base for all the algorithms other than

InvalRR. For Ocean, the static algorithm continues to excel,

executing 6.4 percent faster than Base, while the dynamic

algorithm continues to suffer from a 48 percent increase in

NACK count over Base. Water continues to show similar

trends as in 64 nodes. InvalRR and InvalFP are, respec-

tively, 11.1 percent and 12.4 percent faster than Base. The

static and the dynamic algorithms execute, respectively,

16.3 percent and 22 percent faster than Base. Again, most of
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Fig. 15. Normalized execution time for 64 processors with dual-processor nodes, two message buffers per virtual lane, 16 slots in NI output queues,

and (a) 25ns and (b) 50ns hop time.

Fig. 16. (a) Normalized execution time, (b) average maximum occupancy of NI output queues in the dynamic algorithm for 128 nodes, two message
buffers per virtual lane, 16 slots in NI output queues, and 25ns hop time.



the gains come from greatly reduced lock acquire time made

possible by accelerated invalidations leading to early comple-

tion of store conditionals. In general, there is more variation in

performance across the algorithms for 128 nodes as compared

to 64 nodes. The results establish the fact that the virtual

network selection algorithms become more important as we

move toward large-scale DSM multiprocessors.

Turning to Fig. 16b, we observe that the dynamic

algorithm (the best performing algorithm for FFT, Radix-

Sort, and Water) achieves a very good balance in the NI

output queues for Water. Although, for FFT, Radix-Sort and

Ocean the Q2 network is still overloaded due to the fixed

priority invalidation algorithm, the utilization of the other

three networks is good, especially for FFT and Radix-Sort. For

Ocean the Q0 network still looks slightly underutilized. As

we have already pointed out, it is impossible to execute a pure

round robin algorithm because the coherence protocol must

remain deadlock-free. Still, our dynamic algorithm achieves a

much better balance of load among the NI output queues

compared to the baseline static algorithm shown in Fig. 4b.

Next, we investigate the effects of reducing contention in

the NI. We separately present the results with four message

buffers per virtual lane and 32 slots in the NI output queues.

Fig. 17a shows the results with four message buffers (as

opposed to two in Fig. 16a) per virtual lane, while keeping

the depths of the NI output queues fixed at 16. A

comparison with Fig. 16a brings out some interesting

differences. For FFT, the relative benefit of the dynamic

algorithm goes down slightly while the InvalRR algorithm

emerges the best, executing 9.9 percent faster than Base.

Most of the gains achieved by InvalRR arise from a

reduced barrier time resulting from better load balance. LU

continues to remain insensitive to the algorithms. The

relative performance of the algorithms is largely unchanged

for Radix-Sort with a slight decrease in the gain achieved by

the dynamic algorithm, executing 14.9 percent faster than

Base. For Ocean, all the algorithms other than the dynamic

one perform almost equally. For Water, the relative

importance of the algorithms diminishes as the message

buffers become less contended. For this application, the

InvalFP algorithm emerges the best, executing 6.4 percent

faster than Base. In summary, as we observed for 64 nodes,

increasing the number of message buffers usually reduces

the performance gap between the various virtual network

selection algorithms.
Fig. 17b presents the results with 32 entries (as opposed

to 16 in Fig. 16a) in each NI output queue, while fixing the

number of message buffers per lane to two. Again,

comparing these results against the ones presented in

Fig. 16a, we find similar trends. For FFT, the performance

gap between the algorithms is reduced, but still, the

dynamic algorithm continues to deliver the best perfor-

mance, executing 8.7 percent faster compared to Base. For

Radix-Sort, the results are essentially the same as in Fig. 16a.

For Ocean, the static algorithm continues to be the best

running 6.4 percent faster compared to Base. For Water, the

performance gap between the algorithms diminishes; the

dynamic algorithm runs 14.9 percent faster than Base. In

summary, the general observations remain unchanged as

the system scales. The performance gap between the virtual

network selection algorithms is more affected by the

number of message buffers per lane in the router than the

depths of the NI output queues in the memory controller.

6 CONCLUSIONS

We have presented an evaluation of four virtual network

selection algorithms along with a conventional base algo-

rithm for five shared-memory scientific applications running

on 64 and 128-node DSM multiprocessors. The evaluated

algorithms include one fixed priority and one round robin

algorithm to distribute the load of invalidation messages

among different virtual networks. One static algorithm aims

at balancing the reply message load, while a completely

dynamic algorithm picks the outgoing network for all types of

messages based on a round robin policy. Our results show

that the low overhead fixed priority algorithm appears to be

sufficient for balancing invalidation load. In 64-node systems,

except for one application (Water), the performance gap

between the algorithms is not significant. However, as the
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Fig. 17. Normalized execution time for 128 nodes with 25ns hop time. (a) Four message buffers per virtual lane and (b) 32 entries in each NI
output queue.



system scales to support 128 nodes, the virtual network

selection algorithms become important. Except for LU, all

applications show different performance levels for different

algorithms. In most cases, the dynamic algorithm emerges the

best, speeding up parallel execution by as much as 22 percent

over an optimized base system. But, there are applications

(e.g., Ocean) for which the static algorithm consistently

outperforms the dynamic one.
With the dynamic algorithm, Ocean suffers from an

increased NACK count. To further explore this issue, we

designed a number of NACK-free cache coherence protocols

[3] and augmented the best one with our InvalFP, a static

and a dynamic virtual network selection algorithm. Our

evaluation on Ocean with a 25ns hop time and 64 nodes

shows that, after eliminating the NACKs, virtual network

selection algorithms continue to improve the end-perfor-

mance of Ocean, with the static algorithm slightly out-

performing the dynamic one.

To explore the performance sensitivity of the algorithms,

we varied the number of message buffers per virtual lane, the

depths of the NI output queues, and the network hop time. In

general, the performance gap between the algorithms is more

sensitive to the number of message buffers in the network

routers than the NI output queue depth in the node controller.

Even with four message buffers per virtual lane, the

algorithms exhibit a wide range of performance levels for

some of the applications (Radix-Sort) running on 128 nodes.

Although this study has fixed the number of virtual networks

to four, having more virtual networks will lead to better

distribution of load and increased freedom of choice for the

dynamic algorithm. Finally, with increasing network hop

time, the relative performance gap between the algorithms

increases, implying that having a good virtual network

selection algorithm has significant benefits for slow or

contended interconnection networks.
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