

June 22, 1998 1

Cache-Coherent Distributed Shared Memory:
Perspectives on Its Development and Future

Challenges

John Hennessy, Mark Heinrich, and Anoop Gupta
Stanford University

Abstract

Distributed shared memory is an architectural approach that
allows multiprocessors to support a single shared address space
that is implemented with physically distributed memories.
Hardware-supported distributed shared memory is becoming
the dominant approach for building multiprocessors with mod-
erate to large numbers of processors. Cache coherence allows
such architectures to use caching to take advantage of locality
in applications without changing the programmer’s model of
memory. We review the key developments that led to the cre-
ation of cache-coherent distributed shared memory and
describe the Stanford DASH Multiprocessor, the first working
implementation of hardware-supported scalable cache coher-
ence. We then provide a perspective on such architectures and
discuss important remaining technical challenges.

1. Motivations

In the 1980s, multiprocessors were designed with two major
architectural approaches. For small numbers of processors
(typically less than 16 or 32), the dominant architecture was a
single shared memory with multiple processors, interconnected
with a bus, as shown in Figure 1. These machines were called

bus-based multiprocessors

 or

symmetric multiprocessors

(SMPs),

since all processors have an equal relationship with
the centralized main memory. Bus-based, shared-memory mul-
tiprocessors remain the dominant multiprocessor architecture
for small processor counts.

To scale to larger numbers of processors, designers distrib-
uted the memory throughout the machine and used a scalable
interconnect to enable processor-memory pairs to communi-
cate, as shown in Figure 2. The primary form of this architec-
ture was a

message-passing

 architecture, named for the method
by which processors communicate. Message-passing architec-
tures also have been called

multicomputers

because they con-
sist of separate computing nodes with no shared structure,
other than the interconnect. The name

distributed address
space

 architecture is also sometimes used for these machines.
In the 1980s, a small number of architectures with physically
distributed memory but using a shared memory model were
also developed. We discuss these early distributed shared-
memory architectures in the next section.

Each of these two primary approaches offered advantages.
The shared memory architectures supported the traditional pro-
gramming model, which saw memory as a single, shared
address space. The shared memory machines also had lower
communication costs since the processors communicated
through shared memory rather than through a software layer.
On the other hand, the distributed address space architectures

had advantages in scalability, since such architectures did not
suffer from the limits of a single, centralized shared memory or
bus. Despite these scalability advantages, the difference in pro-
gramming model from the dominant small-scale, shared-mem-
ory multiprocessors, has severely limited the success of
message-passing computers, especially at lower processor
counts (e.g., less than 64 processors).

1.1 Development of Distributed Shared Memory

Distributed Shared Memory (DSM) is an architectural
approach designed to overcome the scaling limitations of sym-
metric shared-memory multiprocessors while retaining a
shared memory model for communication and programming.
DSM machines achieve this by using a memory that is physi-
cally distributed but logically implements a single shared
address space, allowing the processor to communicate through,
and share the contents of, the entire memory. DSM multipro-
cessors have the same basic organization as the machines in
Figure 2.

As mentioned earlier, DSM architectures first appeared in
the late 1970s and through the 1980s, embodied in three

Figure 1. A symmetric, shared-memory multiprocessor.

The most
common interconnect in such multiprocessors is a bus, used both to allow
access to the common memory and to implement cache coherence by
using the bus as a broadcast medium. The role of cache coherence is
discussed in more detail in the next section.

Figure 2. A distributed memory multiprocessor.

The key distinction
between this and the shared bus design is the distribution of memory with
the processors. The use of multiple memory modules and a scalable
network allows the machine to scale to larger numbers of processors. In
addition, because the memory is distributed with the processors, local
memory accesses do not consume global bandwidth and can achieve lower
access times.

Processor

One or
more levels

of cache

Processor

One or
more levels

of cache

Processor

One or
more levels

of cache

Processor

One or
more levels

of cache

Main memory
I/O System

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Processor
+ cache

Memory I/O

Interconnection Network

June 22, 1998 2

machines: the Carnegie Mellon Cm* [SBL+77], the IBM
RP3 [PBG+85], and the BBN Butterfly [BBN86]. All these
machines implemented a shared address space where the time
to access a datum depended on its location. Hence the name
Non-Uniform Memory Access (NUMA) machines was also
given to such architectures. (The symmetric multiprocessors,
as shown in Figure 1, are called UMAs for Uniform Memory
Access.) Although in NUMA architectures the actual time to
access a datum could depend on exactly which memory con-
tained the desired address, in reality the big difference was
between addresses in local memory and addresses in remote
memory. Because the access times could differ by a factor of
10 or more and there were no simple mechanisms to hide these
differences, it proved difficult to program these early distrib-
uted shared-memory machines. In uniprocessors this long
access time to memory is largely hidden through the use of
caches. Adapting caches to work in a multiprocessor environ-
ment is, however, challenging, as we discuss next.

1.2 The Problem of Cache Coherence

When used in a multiprocessor, caching introduces an addi-
tional problem:

cache coherence

, which arises when different
processors cache and update values of the same memory loca-
tion, as shown in Figure 3. Introducing caches without dealing
with the coherence problem does little to simplify the program-
ming model, since the programmer must worry about the
potentially inconsistent views of memory.

A clever solution, which builds on the bus interconnect,
was developed to address the cache coherence problem in
small-scale shared-memory multiprocessors. The basic idea is
to enforce the property that before a location is written, all
other copies of the location, which may be present in other
caches, are invalidated. Thus, the system allows multiple cop-
ies of a memory location to exist when it is being read, but only
one copy when it is being written. The unit for enforcing coher-
ence is a block in the cache, typically 16 to 128 bytes.

As shown in Figure 4, the bus is the key to implementing
the most common coherence protocols, which are called

snoopy

protocols

. The basic idea behind such protocols is that
when a processor wants to write into a cache block that may be
shared, the request is transmitted on the bus, and all caches that

have a copy of the cache block simply invalidate the copy. For
write-through caches, this is the only addition needed to a stan-
dard cache protocol, since the memory is always up-to-date.
For write-back caches, an added complication arises since the
most recent copy of a data item may reside in a cache. If so,
read misses must snoop in the caches and possibly retrieve data
from another cache.

Whether the cache uses a write-through or a write-back
mechanism, the snooping operations are implemented by plac-
ing the request on the bus and having all the caches read the
address and, if the address matches something in the proces-
sor’s cache, either perform an invalidation or supply data from
the cache. Because all requests must be placed on the bus,
which carries only one request at a time, the bus breaks the tie
when two processors try to write at the same time. This serial-
ization of all requests via the bus imposes an ordering on all
writes, including those to the same address, and is critical to
maintaining coherence.

The snoopy cache coherence schemes and the bus-based
interconnect used in small-scale shared memory multiproces-
sors work well together for three reasons. First, the cache
coherence scheme makes the caches functionally transparent,
allowing the system to cache both shared and private data with-
out changing the shared-memory programming model. Second,
the use of caches reduces the bandwidth requirements on the
bus and memory, thus allowing the processors to share a single
memory and bus. Third, the use of a bus, which broadcasts all
memory requests to all processor-cache modules, makes it eas-
ier to implement the snoopy coherence protocols.

The reduced programming complexity offered by cache
coherence, together with its relatively low cost of implementa-
tion, led to cache coherence being included in all small-scale,
bus-based multiprocessors. In the last few years, microproces-
sors have included support for cache-coherence and intercon-
necting small numbers of processors (2-4) within the
microprocessor die, further reducing the cost of small-scale
multiprocessors and significantly increasing their popularity.

Unfortunately, the snoopy schemes used in small-scale
SMPs do not scale. The problem goes beyond the use of a bus,
since any potential memory request must be seen and snooped
by all the caches in the system. Thus, when the first DSM
machines were developed, designers did not include cache for
shared data. Instead, the machines prevented shared data from
being cached and forced the programmers to deal with long
access times to remote memories. This made the early DSM
machines not much easier to program than the message-pass-
ing architectures. Furthermore, the lack of cache coherence
created a schism in the programming approach used for the
widespread small-scale, cache-coherent multiprocessors and
the programming approach used for large-scale shared-mem-
ory architectures without cache coherence. The solution to this
problem was to develop a coherence mechanism that could be
efficiently extended to the DSM architectural approach.

Time Processor A Processor B

x = 1 y = 1

• • • • • •

y = y + 1

x = x +1

Figure 3. Coherence problems that arise when shared data is
cached.

Assume both x and y are initially 0 and that copies are cached
in both A and B. If the caches are not coherent, it is possible that
Processor A does not see the changed value of y (thus assigning y the
value 1) and Processor B does not see the changed value of x (thus
assigning x the value 1). This problem arises with either write through
caches, if the values of x and y are in the caches to start, or write-back
caches irrespective of the initial cached state of x and y.

June 22, 1998 3

2. Directory-Based Cache Coherence

As we saw in the previous section, the small-scale bus-based
multiprocessors rely on snoopy cache coherence mechanisms,
which inherently use broadcast. Such schemes were not, how-
ever, the first protocols developed for cache coherence. Before
the snoopy schemes were developed, directory-based protocols
had been proposed [CF78]. Directory-based schemes rely on
an extra structure called the

directory

 that tracks which proces-
sors have cached any given block in main memory. The initial
directory schemes assumed a single, monolithic directory, and
we explain the basic operation of directory coherence using
this assumption.

Because the directory tracks which caches have copies of
any given memory block, a coherence protocol can use the
directory to maintain a consistent view of memory. To maintain
coherence, the state of each cache block is tracked in the cache
and additional information is kept in the directory for each
block. A simple cache coherence protocol can operate with
three states for each cache block:

1. Invalid–the cache block is invalid and cannot be used by the
processor.

2. Shared–the cache block is readable, but may be present in
the cache of another processor. In this case, the directory
entry for this block contains a list of the other processors’
caches that have a copy of this block. When a block is
shared, it can be read but not written.

3. Exclusive–the cache block is only cached in this cache and
hence is writable.
The protocol ensures consistency by invalidating all the

caches that have a copy of a cache block before allowing a
cache block to enter the Exclusive state. The key difference
between a directory protocol and a snoopy protocol is that the
directory protocol gets the information about which processors
are sharing a copy of the data from a known location, the direc-
tory, rather than interrogating all the processors’ caches by a
broadcast. The directory also serves to serialize writes, just as a

bus does in a snoopy scheme. To see this, consider what hap-
pens when two processors decide to write into the same block.
In a directory scheme, the potential race is prevented when the
requests serialize on their way to the directory. Since one
request is processed before the other, the first request will
cause the other processor’s data to be invalidated. We will
examine the details of a directory protocol shortly, after we dis-
cuss an important enhancement.

The original directory protocols were never widely
embraced because, in a small-scale machine, a bus intercon-
nect suffices and the snoopy schemes can be easily imple-
mented. The use of a directory avoids the need to broadcast to
interrogate all the caches, but a single centralized directory still
cannot scale to larger numbers of processors. Using a single
centralized directory would simply shift the bottleneck from
the bus to the directory. The key insight to circumvent this lim-
itation was to distribute the directory and extend and adapt the
protocols to deal with a distributed directory.

2.1 Distributed Directory Protocols

Cache-coherent DSM architectures build on the directory con-
cept, but distribute the directory just as the memory is distrib-
uted. At any point in time, the contents of a cache block
correspond to exactly one block in the distributed memory, and
the directory information for that block is kept in the directory
associated with the memory. Figure 5 shows the structure of a
typical cache-coherent DSM multiprocessor.

The first step in extending cache coherence to a DSM
machine is to distribute the memory, the physical address
space, and the directory structures around the machine. Given a
memory address, the hardware can then find the location of
that memory as well as the corresponding directory.

Although the extension of the directory protocol to a dis-
tributed directory implementation is conceptually simple, the
implementation introduces many complexities, since few of the
protocol actions can be atomic (e.g., acquiring exclusive access
to a memory location). Instead, the protocol is implemented by
sending messages among:

Processor A Processor B

Program
action System Action

Program
Action System Action

x = 1 Broadcast cache invalidation for x

Receive invalidation and eliminate x from cache

t = x + 1 Broadcast cache miss for x

Receive cache miss; recognize that only copy of x is
in cache and place value of x on bus

Receive value of x (=1) from bus, place into
cache, and continue

Figure 4. A snoopy based cache coherence scheme.

This example shows the order of events as they occur in a coherent system with write-back caches. The
example assumes that the variable x is present in both caches at the start. This is an invalidation protocol, similar to those used in most real systems. If two processors
attempt to write the same data at the same time, the bus acts as a serialization point, allowing one to go forward first. Some early machines also implemented an
update protocol, whereby data was updated on writes rather than invalidated. Update is not supported in most recent machines because of its potential inefficiency
when write access patterns exhibit spatial locality, and implementation complications associated with the cache control.

June 22, 1998 4

•

the requesting processor node, called the

Local

 node,

•

the node containing the address of the block that the Local
node desires to read or write, called the

Home

 node, and

•

a possible third node, called the

owner

 or

Remote

 node,
which contains the cache block when it is in the Exclusive
state.

Figure 6 shows an example of such a protocol in operation.
One complication in distributed directory protocols is that

satisfying a remote request requires at least two messages:
from the Local to the Home node to request a cache block and
then from the Home to the Local node to reply with the data. In
the case of a remotely cached data item, at least three messages
are required (Local to Home, Home to Remote, and Remote to

Local). Furthermore, a request may require many more mes-
sages in the case of invalidating a heavily shared block. The
need for multiple messages to complete what is architecturally
an atomic operation introduces significant potential for dead-
lock. Deadlock occurs when the machine enters a state from
which it cannot continue. The distributed nature of the imple-
mentation together with finite resources, such as message buff-
ers, makes deadlock a danger. Avoiding such situations
requires significant attention in the implementation of the pro-
tocol. While the avoidance of broadcast and a single point of
serialization, like the bus of a snoopy coherence scheme, com-
plicates the coherence protocols, it is also the key to scalable
cache coherence!

3. An Example: The Stanford DASH
Multiprocessor

To see how these architectural concepts work in a real
machine, let’s briefly look at the Stanford DASH
prototype [LLG+92], the first operational multiprocessor to
support a scalable coherence protocol. DASH was designed by
a team of faculty, staff, and students at Stanford and became
operational in late 1991. DASH implements a distributed
shared-memory architecture supporting cache coherence with a
distributed directory. The DASH prototype was built using
four-processor bus-based multiprocessors as the building
block, as shown in Figure 7.

Figure 5. Structure of a DSM Multiprocessor Using Distributed
Directories.

Each processing node includes both memory and a directory.
The directory tracks the copies of the memory locations in the memory
associated with that node.

Interconnection Network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor A Processor B

Program
action System Action

Program
Action System Action

x = 1 Send ownership request to home node. Home node
sends invalidations to all processors that cache x.

Receive invalidation, eliminate x from cache, and
acknowledge invalidation.

A has an exclusive copy of x; store1 into x.

t = x +1 Send message to home node, which forwards
request to A for value.

Receives request from home node; changes cache
state to shared; sends value to both B (for its use) and

to the home node (for writing back into memory).

Obtain the value of x from A, and change state of x
to shared.

x = t Send message to home node requesting ownership
of x. Home node sends invalidation to A.

Receive invalidation, eliminate x from cache, and
acknowledge invalidation.

B has an exclusive copy of x; store t into x.

Figure 6. A distributed directory cache coherence protocol.

This chart shows the events in the order that they occur, as initiated by the program actions.

June 22, 1998 5

3.1 Other innovations in DASH

In addition to being the first implementation of distributed
directory-based coherence, DASH experimented with three
concepts that increase the latency tolerance of the processor.
The first concept was the use of a relaxed memory consistency
model. A key question for multiprocessors implementing
shared memory is how consistent a view of memory should be
provided. In particular, if Processor A writes a memory loca-
tion, when must the system guarantee that Processor B will
have seen the value written? The strictest definition of memory
consistency that has been implemented for a machine with dis-
tributed shared memory is sequential consistency, described by
Lamport [Lamp79]. Sequential consistency effectively says
that a processor will not perform additional reads or writes of
shared data until it knows that all other processors have seen
the most recent write. Figure 6 assumes sequential consistency,
since processors A and B wait for invalidations to be acknowl-
edged. Unfortunately, in general, sequential consistency
requires that a write must potentially wait until all processors
have been guaranteed to see the invalidation caused by the
write. Thus, while sequential consistency offers a simple model
of shared memory, it is more strict than most programs require.

In practice, most programs use explicit synchronization
operations to ensure that Processor B does not try to read the
value of a location before Processor A has written it. If pro-
grams use this type of synchronization, then the system can
implement a relaxed model of memory consistency without
affecting the results that the programmer sees. DASH imple-
mented a relaxed memory consistency model called release
consistency. Under release consistency, the system need not
guarantee that a written value will be seen by another processor
until both processors perform a synchronization operation.

This allows the system to perform writes without having to
wait until all the invalidations have been performed. If the pro-
cessor reaches a synchronization operation, it must wait for the
outstanding writes to complete any pending invalidations
before continuing.

If, however, programmers do not rely on standard synchro-
nization primitives or build programs that are not strictly syn-
chronized, the use of a weaker consistency model makes
writing a correct program significantly more challenging.
Relaxed consistency models have had an interesting effect on
commercial multiprocessor architectures. While a number of
architectures have adopted some sort of relaxed model for the
multiprocessor architecture

specification

, most commercial
DSM multiprocessors have implemented sequential consis-
tency, using a variety of buffering and speculative techniques.
Nonetheless, in the long-term, relaxed models will offer advan-
tages in hiding memory latency and are likely to be used in
future machines.

The second key technique for hiding memory latency was
the introduction of support for software prefetch. Prefetch
operations allow a processor to specify the address of a data
item so that the system can fetch that data item before the pro-
cessor actually needs it. Although prefetch was implemented in
a number of earlier machines, the incorporation of cache
coherence allowed DASH to include a non-binding prefetch. A

non-binding prefetch

 brings a copy of the data into the cache
but maintains coherence on the data; that is, if the prefetched
data is written by another processor before the prefetching pro-
cessor uses it, the data is invalidated—causing the prefetching
processor to refetch the most recent value. Unlike binding
prefetch, a non-binding prefetch does not change the program
semantics and thus can be freely inserted by the compiler
affecting only program performance. Several studies have
since documented the efficacy of non-binding prefetch

[GGV90, CKP91

, MLA92].
Thirdly, DASH introduced a

remote access cache

 (RAC) to
allow remote accesses to be combined and buffered within the
individual nodes. This cache, also called a

cluster cache

, stored
remote data that was recently accessed; if the data was
requested by a processor in node, it could be retrieved from the
RAC, eliminating the need for a remote memory access. In
DASH, the RAC also served to track pending requests for a
cache block, thus eliminating duplicate requests that could lead
to protocol failure.

A RAC can capture remote memory accesses under two cir-
cumstances: when data is fetched by one processor and used by
another in the same node and when the data is simply too large
to be kept in the local cache but fits in a larger RAC. Unfortu-
nately, the RAC cannot eliminate misses caused by invalida-
tions (called

coherence

 or

communication

misses

), since these
misses and requests are needed to maintain coherence. Instead,
a RAC can capture remote

capacity misses

, changing such
misses into local misses to the RAC. As we will see shortly,
many recent systems use large cluster caches to reduce the fre-
quency of remote memory access.

Figure 7. The Stanford DASH Architecture.

Each node in the
multiprocessor was a 4-processor, bus-based multiprocessor, using snoopy
cache-coherence on a bus. The prototype consisted of 16 such nodes, for a
total of 64 processors. The directory structure was implemented using a bit
vector representation. The use of a snoopy-bus-based multiprocessor for the
nodes of DASH was an implementation decision. In retrospect, this choice
complicated the coherence protocol and introduced a potential performance
bottleneck (the bus). When several of the DASH designers worked on the
SGI Origin, they decided to avoid this problem by using a simpler two-
processor node design.

• ••

P P

Cache Cache

Memory Directory

P

MemoryDirectory

P

CacheCache

Interconnection Network

June 22, 1998 6

3.2 DASH: system and application performance

A challenge in any scalable coherent machine is to achieve
good performance given the inherently long delays associated
with remote memory access. Figure 8 shows the time to access
different levels in the memory hierarchy for DASH [Len92]. In
modern cache-coherent DSM implementations, such as the HP
Exemplar [BA97] and SGI Origin [LL97], the absolute times
for these accesses have all decreased, though the ratio of
remote to local access time has increased in several systems.

The key question is whether applications can achieve good
performance given the long delays to remote memory. The
answer to this question is illustrated in Figure 9, which shows a
variety of speed-up curves for applications running on DASH.
Overall, we can see that DASH achieves significant speed-ups
for a wide range of applications.

4. Perspectives and Lessons Learned

When we started the exploration of the ideas that led to DASH
in the late 1980s, we did so based on two hypotheses. First,
shared memory machines would be easier to program than
message-passing machines, since shared memory allowed pro-

grammers to share data structures in flexible ways at different
granularities. Second, cache coherence would be vital to allow
shared data to be cached in complex applications. We did not
come to this belief easily. In fact, we started our project with
the goal of enforcing coherence by the compiler. We con-
cluded, after significant exploration, that it was unlikely that
the compiler could efficiently solve the coherence problem
across a wide range of applications. While significant progress
has been made for well-structured, scientific problems, effi-
cient software coherence for more dynamically structured
applications or for systems software has not yet been achieved.

To confirm these hypotheses, we planned a significant
applications effort as part of the DASH project. Our experience
in developing the SPLASH applications suite has confirmed
these hypotheses, although in somewhat unexpected ways.
First, we found that achieving the highest level of performance
often required careful planning of remote data accesses; some-
times down to the level of understanding the impact of cache
line size. We did find, however, that the coherence mechanisms
often helped exploit locality with little extra work, and that
when careful attention was needed, the effort often focused on
a small kernel of the application. We also found that exploiting
the natural locality of scientific problems, even when using
more dynamic solutions techniques, was sometimes surpris-
ingly easy. The n-body applications illustrate this best: the sys-
tem being modeled has natural locality due to the underlying
physical phenomena, but exploiting that locality requires fine-
grain and time-varying communication. This is the type of
environment where a cache-coherent shared address space
shows its advantages most strongly. As a side note, we often
found that when scaling applications, bottlenecks arose in dif-
ferent areas, including load balancing, limited parallelism, syn-
chronization, and data locality. In general, we found that
scaling up applications to use more processors is more difficult
than it appears at first glance. Some of this experience is docu-
mented in our description of SPLASH-2 [WOT+95].

We began the DASH project based on the belief that a
shared-memory, cache-coherent programming model used both
by small machines (using bus-based, snoopy protocols) and
larger machines (using cache-coherent DSM) would be vital to
the development of applications. This belief motivated our key
objective: to demonstrate that scalability and cache coherence
were not incompatible. While this has proved correct and is
probably the most significant accomplishment of the DASH
project, our understanding of the role of cache coherence has
also grown.

In particular, based on our experience, as well as recent
experience with the Cray T3D/T3E [Scott96], we believe that
the effective use of shared-memory programming

requires

 sup-
port for global cache coherence. This hypothesis is based on a
simple observation: caches provide a functionally-transparent
way to allow the memory system to amortize the cost of remote
access. In shared-memory programming, the latency and band-
width efficiency of remote access is crucial. Cache coherence
allows both the latency and bandwidth of a remote access to be

Type of Access
Processor Clocks

(30 ns each)

Local Fill 29

Fill from Home 101

Fill from Remote 132

Figure 8. Memory access times in DASH.

Figure 9. Speed-up curves on DASH for a variety of applications.

The
basis (i.e., a speed-up of 1) is normalized to the best single processor
version, so the curves indicate real reductions in running time. The
applications are chosen largely from the SPLASH suite [SWG92] and vary
from kernels (such as matrix multiply) to partial differential equation
solvers (such as Ocean) to applications using a variety of n-body modeling
techniques: Barnes-Hut, FMM (Fast Multipole Method), and Radiosity.
Although the DASH prototype has 64-processors, reliability problems in the
interconnect make it difficult to obtain useful measurements with more than
48 processors.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

1 2 4 8 1 2 1 6 2 4 3 2 4 0 4 8

Speedup

P
ro

c
e

s
s

o
rs

Ideal

Matmult

VolRend

FMM
Barnes

Water

Radiosity

Choelsky
PSIM4

Mincut

LocusRoute

MP3D

June 22, 1998 7

amortized across a cache block. Without such support, the nat-
ural unit of access of a load or store is a single word, which is
extremely inefficient. Overcoming this inefficiency and access-
ing multiple words without cache coherence requires the com-
piler or programmer to guarantee the functional correctness of
retrieving a block of data rather than a single word. We believe
this capability for functionally-transparent buffering of remote
memory accesses is key to programming shared-memory
machines in a manner that is efficient in both performance and
the use of programmer time.

5. Important Commercial Developments

While DASH demonstrated that distributed directory coher-
ence could be implemented efficiently and that cache-coherent
DSM architectures could be programmed to achieve high per-
formance, several important innovations were developed in the
early industrial machines and by the SCI coherence protocol.
After discussing these innovations, we turn to a discussion of
recent cache-coherent DSM multiprocessors.

5.1 Efficient Scaling of Directory Structures

Although distributed directories conceptually eliminate the
scaling barriers inherent in snoopy-based schemes, the initial
implementation of DASH used a non-scalable implementation
of directories. In particular, DASH used a bit vector with one-
bit for every node. Since each node contains four processors, a
16-bit vector handled up to 64 processors. Besides the imple-
mentation difficulties of handling a very wide bit vector for
larger processor counts, using a flat bit vector has a fundamen-
tal problem: the amount of directory storage scales quadrati-
cally as a function of processor count. In practice, this problem
is not an issue for machines with less than 64 nodes (or 64 to
256 processors), but it becomes a major problem for very large
processor counts.

There are two primary methods that have been used by the
commercial DSM machines to avoid inefficient scaling of
directory memory: storing full directory information only for
blocks that are actually in a processor cache and using a sparse
representation of the directory information. DASH uses a
directory that maintains the state of each memory block in a
single unique location tracking exactly the nodes that have cop-
ies of the associated memory block. By distributing the infor-
mation for each actively cached memory block, the amount of
directory memory can be reduced to an amount that grows lin-
early in the processor count. Sparse schemes reduce the direc-
tory memory required either by changing the representation of
sharing information or by keeping track of only those blocks
that are actively shared. The directory memory for sparse
schemes also scales linearly in processor count.

The most heavily used protocol for distributed directory
information is the Scalable Coherent Interface [IEEE93] or
SCI protocol, an IEEE standard. In SCI the directory informa-
tion is stored in a two-way linked list that is distributed among
the nodes that share a cache block. The node that is the home
also contains an entry for each word in its memory, and this
entry provides access to the head of the list of sharers for a par-

ticular block. Coherence is maintained by adding processors
that read a cache block to the linked sharing list and by invali-
dating all the processors on the list when writing a shared data
block. Because the list is distributed, invalidations must
traverse the list. The protocol specifies that when a sharer
receives an invalidation it acknowledges the invalidations and
returns the identity of the next sharer to which an invalidation
must be sent. In practice, the protocol is usually implemented
by having the invalidation operations sent down the sharing list
and having each sharer forward the invalidation to the next
sharer. The distribution of the directory information for a single
block in SCI decreases the storage overhead and reduces the
contention for accessing the information; however, SCI incurs
greater overhead and requires more complex protocol opera-
tions in return for these advantages. The Sequent NUMA-Q
[LC96], HP Exemplar [WGH+97], and Data General
NUMALiine [Clark96] all use SCI to implement coherence.

An alternative method for directory scaling is to use a
sparse directory representation. This can be done either by
caching the directory information or by using a representation
that becomes coarse as the processor count increases. A direc-
tory cache might keep the information in bit vector form, but
only keep entries for a subset of the memory. When a cache
mapping conflict occurs and an entry in the directory cache
must be replaced, the system sends invalidations for the con-
flicting block to all processors sharing the block, and then
replaces the entry with the requested block. The HaL S-1

[WGH+97]

 uses a cached directory structure.
An alternative to caching is to use a representation of the

directory information that becomes coarser as processor count
grows. For example, suppose we wanted to scale DASH to
more than 64-processors but maintain only 16-bits of directory
bit vector. We could use each bit to represent an increasing
number of processors. At 64 processors, each bit represents one
node, which is four processors. At 256 processors, each bit
would represent four nodes, or 16 processors. The directory
memory would then scale linearly with processor count. The
disadvantage, however, is that the sharing information is
coarse, so that each bit in directory of a 256-processor machine
represents 16 processors, and indicates that any of the 16 pro-
cessors may be sharing the data. On a write, invalidations must
conservatively be sent to all 16 processors, only one of which
may actually have the data. The SGI Origin

[LL97]

 uses a
coarse bit vector for configurations with more than 128 proces-
sors; the coarseness is fixed at 8 processors/bit, allowing a
maximum of 1024 processors.

5.2 Extending Caching Further: the COMA Concept

In DASH, remote memory latency was significantly larger than
local memory latency. The small remote access cache on
DASH could help reduce this latency, and many recent
machines have incorporated such caches, typically at much
larger sizes (4MB–16MB). The Kendall Square Research
machine, the KSR-1 [BFKR92], introduced an even more
ambitious scheme for reducing the remote latency of data that
could not be accommodated in the processor caches. This

June 22, 1998 8

scheme, widely called COMA, for Cache Only Memory Archi-
tecture, was simultaneously investigated by a research group at
the Swedish Institute of Computer Science

[HLH92]

.
The key idea in a COMA machine is to use the memory

within each node of the multiprocessor as a cache, migrating
and replicating data in the memory, just as you would in the
caches. The key advantage of COMA is the ability to capture
remote capacity misses as hits in the local memory. If a data
item initially allocated in a remote memory is heavily used by a
processor, the data block can be replicated in the memory of
the node where it is being referenced. In the ultimate COMA
system, data blocks may not even exist in the memory in which
they were initially allocated; however, such flexibility incurs
additional complexity, since the system must ensure that it
always has at least one copy of every memory block. Because
data migrates to where it is used, COMA reduces the need to
worry about initial memory allocation, which can be important
with large data structures that have high capacity miss rates.
Implementing a COMA scheme requires that larger tags be
allocated for main memory and also incurs significant added
protocol complexity, but COMA’s potential for reducing costly
remote misses can provide performance advantages for some
applications. The KSR-1 is the only instance of a commercial
COMA machine, but several research implementations of the
COMA idea are underway.

5.3 Commercial Cache-Coherent DSM Multiprocessors

This paper does not allow for a complete description of the
wide variety of commercial machines that have been devel-
oped. Instead, we briefly discuss the architecture of three typi-
cal machines: the HP Exemplar [BA97] (formerly the Convex
Exemplar), the SGI Origin [LL97], and the Sequent NUMA-
Q [LC96].

The HP Exemplar is organized as a two dimensional torus
containing up to 32 nodes, each of which contains 16 proces-
sors and memories connected with a crossbar switch. The torus
is formed by sets of rings, each connecting eight nodes and
using an SCI protocol. In addition, each node contains a large
cluster cache, called the CTI cache, used to reduce the fraction
of remote misses. Inter-node coherence is maintained using an
SCI protocol, while a bit-vector directory scheme is used for
the 16-processor nodes

The SGI Origin is organized as a fat hypercube consisting
of up to 512 nodes each containing two processors, a memory,
and an I/O system. A fat hypercube has the property that the
bisection bandwidth grows linearly with processor count,
through the addition of extra links. The

bisection bandwidth

 is
the lowest bandwidth across the middle of the machine and is
commonly used as a measure of the interconnect capacity.

As mentioned earlier, the Origin uses a bit-vector directory
scheme for up to 128 processors and a coarse vector for larger
numbers. One of the novel features in the Origin is hardware
support for page migration. This support, which consists of bits
that can cause traps when migrated pages are accessed, reduces
the overhead for page migration. Page migration, like the

COMA and cluster cache techniques, can reduce the remote
capacity misses incurred by a processor.

The Sequent NUMA-Q, like the DG NUMALiine, the HaL
S-1 and the DASH prototype, is built from a standard four-pro-
cessor bus-based multiprocessor. The four-processor nodes
maintain a snoopy coherence scheme internally. Internode
coherence uses SCI protocols on the Sequent and DG
machines, and a directory cache for the HaL machine. The
NUMA-Q and NUMALiine multiprocessors use an SCI ring to
connect up to eight nodes, or 32 processors. The HaL design
also uses a ring interconnect, which supports up to four nodes
or 16 processors.

Though all these machines rely on distributed directories
for implementing cache coherence, tradeoffs in the use of dif-
ferent directory protocols and in the interconnection technol-
ogy result in significantly different performance
characteristics. Figure 10 shows one of the most important per-
formance metrics: memory latency for these commercial DSM
multiprocessors. The wide variety in access times, shows the
significance in the tradeoffs among different organizations and
coherence protocols.

6. Challenges

The DASH experiment and the recent commercial DSM
machines demonstrated that cache-coherent DSM machines
can be built efficiently and can perform well. Nonetheless, a
variety of interesting technical challenges both in hardware and
software remain; we pose these as a series of questions.

What are the best alternatives for designing scalable,
cache-coherent multiprocessors?

 Although individual parts of
the design space for coherence protocols have been explored, it
is unclear how best to design protocols that span a variety of
processor counts and provide robust and efficient performance
across the range. In addition to the choice of protocols, it
remains unclear what are the best combinations of hardware
and software for implementing such protocols. Several

System
Local

memory

Remote
memory (clean

at home)

Remote
memory (dirty

at home)

HP
Exemplar

450 1315 1955

SGI Origin

200 710 805

DG NUMA-
Liine

165 2400 3400

HaL S-1

240 1065 1365

Figure 10. The local and remote access times in nanoseconds for several
commercial systems.

All configurations are 32 processors except the HaL
system, which has only 16 processors. Times are shown for a local memory
access, a remote access that is clean in the home node’s memory, and an
access requiring intervention to a third processor’s cache to retrieve an
exclusive copy. The latencies shown assume no contention, a cache and
cluster cache miss, and are an average value for the multiprocessors where
multiple network hops are involved.

June 22, 1998 9

research machines, including the MIT Alewife [ABC95], MIT
Star-T [NPA92] and Star-T NG [AAC92], and Wisconsin
Typhoon [RLW94], as well as the NUMA-Q design have used
a combination of hardware and software to implement coher-
ence. Most other commercial machines use hardwired hard-
ware implementations. The FLASH machine, discussed below,
uses a completely programmable, but specialized, protocol
processor. Which combinations are most effective for what
classes of applications?

What should the programming model be for shared-mem-
ory multiprocessors and what software tools are needed?

Clearly, to obtain good performance, programmers must under-
stand the importance of spatial and temporal locality and possi-
bly the single-writer nature of coherence protocols, but
programmers should not need to understand the details of a
cache organization or coherence algorithm. The challenge lies
in developing a programming model that helps programmers
reason about their code and develop applications that require
tuning rather than rewriting to achieve good performance.
Once a programming model is broadly accepted, the challenge
of developing tools for programming parallel applications can
be tackled. We need better languages for conveying parallelism
and expressing data locality issues. We need compilers that
automate the process of optimizing the parallelism decomposi-
tion as well as the data allocation. Finally, the process of tuning
a code for larger processor counts and specific architectures
requires significant advances. The parallel programming task
broadly defined—including programming models, load balanc-
ing, synchronization, and memory locality optimization—is
the most critical challenge facing more effective use of parallel
computing

.
How should synchronization be supported?

 The underlying
cache coherence structure provides one mechanism for imple-
menting simple synchronization primitives such as locks and
barriers. Our explorations and those of other researchers have
shown that these simple synchronization primitives can have
poor performance in larger machines, especially under high
contention. Designing more flexible synchronization mecha-
nisms that have low latency in low contention situations, but
also scale well under high contention, is becoming more
important as machine sizes grow.

How can large-scale multiprocessors deal with the chal-
lenges of reliability and fault tolerance?

 Scalable multiproces-
sors offer the advantage of scaling up performance by adding
processors. If, however, the reliability of the machine decreases
as it becomes larger, the attractiveness of such machines is
decreased. Ideally, the reliability seen by an individual applica-
tion should depend on the resources (processors, memory, etc.)
that it uses rather than on the total size of the machine. Unfor-
tunately, this is not the case today, and faults in one node can
easily affect other nodes that are not involved in the computa-
tion. Furthermore, the tighter coupling and more implicit shar-
ing that is supported in a cache-coherent shared-memory
environment complicates the problem of fault containment and
recovery.

How should DSM multiprocessors deal with increasing
remote latency?

 DASH explored several approaches: relaxed
consistency, prefetching, and cluster caches. COMA provides
another method for reducing some types of remote latency. The
Alewife project explored the use of multithreading for hiding
remote latency. (Multithreading uses multiple threads of execu-
tion, automatically changing which thread is executing when a
long latency event is incurred.) The best approach or combina-
tion of approaches remains open.

6.1 The Stanford FLASH Multiprocessor

To explore a number of these issues, our research group at
Stanford began a project called FLASH (FLexible Architecture
for SHared memory) [KOH+94]. Figure 11 shows a picture of
a FLASH node. The key innovation in FLASH is that each
node contains a programmable communications controller
called MAGIC (Memory And General Interconnect Control-
ler).

A programmable controller has several benefits. First, the
controller can implement different scalable coherence proto-
cols, based on processor count and application characteristics,
including complex protocols unsuitable for hardwired imple-
mentation. Second, MAGIC can also provide support for high
performance message passing protocols that are integrated
with the coherence mechanisms. Third, the replacement of spe-
cial-purpose hardware with a programmable processor reduces
parts count while retaining flexibility that can be used for many
purposes, such as implementing synchronization. Fourth, a
programmable controller can incorporate support for fault
detection, encapsulation, and recovery. Last, such a controller
can include performance monitoring code in the core of the
communications path {MOH96]. The key challenge we are
exploring in FLASH is whether we can achieve these benefits
without unreasonable sacrifices in performance or cost.

7. Concluding Remarks

The development of cache-coherent distributed shared memory
has been an interesting process. Like other engineering
research projects, it was motivated by the need to solve a prob-

Figure 11. Each node in the FLASH architecture includes a
programmable communication controller, called MAGIC.

MAGIC
handles all inter-node communication including coherence and
synchronization. MAGIC consists of a superscalar processor with custom
interfaces.

2$

I/O busInterconnect

2nd-Level
Cache

2nd-Level
Cache

DRAM μP

MAGIC

CPUDRAM

MAGIC

June 22, 1998 10

lem, and, in the process, has led to new understanding of multi-
processor architecture as well as parallel software systems.
While cache-coherent distributed shared memory was origi-
nally developed for large-scale parallel machines, continuing
rapid increases in microprocessor performance and the result-
ant demand on memory bandwidth, both lead to the observa-
tion that DSM techniques are likely to be used for ever smaller
numbers of processors. Already, several of the major vendors
of bus-based multiprocessors have switched to DSM designs. It
is likely that cache-coherent DSM will soon be the dominant
architectural approach for multiprocessors with as few as four
or more processors.

We believe that moderate-scale DSM machines (16-64 pro-
cessors) are likely to become one of the most important archi-
tectures for large-scale commercial computing. These
machines can provide high performance, fault containment and
recovery, and efficient use of resources. Whether such
machines will be built with custom nodes or whether they will
be built from standard 2-4 processor clusters will be deter-
mined by the potential performance and functional advantages
of a custom node versus the cost advantages of a commodity 2-
4 processor node.

Economic issues will also play a key role in the future of
very large DSM multiprocessors (above 64 processors). The
key question for such machines is whether the market is signif-
icantly large to justify the engineering investment to develop
the coherence mechanisms, interconnect, and operating sys-
tems support for these large-scale multiprocessors. It appears
that the technical issues for such machines are reasonably well
understood and a large-scale integrated cache-coherent
machine could be built today. Alternatively, very large proces-
sor counts might be achieved by hooking together DSM nodes
with 64-128 processors using standard off-the-shelf intercon-
nect. Although such “clustered” multiprocessors will probably
have a lower design and manufacturing cost, they are likely to
provide lower performance, introduce significant new perfor-
mance challenges, and require new operating systems support.
In the end, the needs of applications and the economic
resources available to invest in multiprocessors for these appli-
cations is likely to dictate how they will be built.

8. Acknowledgments

The DASH and FLASH teams involved a large number of fac-
ulty and students contributing to the architecture, hardware
implementation, and software. Key members of the DASH
team included: Daniel Lenoski, Jim Laudon, Dave Nakahira,
and Kourosh Gharachorloo. J.P. Singh was responsible for the
development of SPLASH and our application-focused evalua-
tions. Key members of the FLASH team include: Jeffrey
Kuskin, David Ofelt, Mark Heinrich, Joel Baxter, Jules Berg-
man, Jeff Solomon, Hema Kapadia, Rich Simoni, John Hein-
lein, Mendel Rosenblum, and Mark Horowitz. We also wish to
acknowledge the support of the Defense Research Projects
Agency (DARPA). Without the efforts of a dedicated team of

students, staff, and faculty, and the support of DARPA these
ideas might still be unproven.

9. References

[AAC92] B. Ang, Arvind, and D. Chiou. StarT the Next Generation:
Integrating Global Caches and Dataflow Architecture.

 In Proceed-
ings of the

International Symposium on Computer Architecture

Dataflow Workshop, Hamilton Island, Australia, May 1992.
[ABC95] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D.

Kranz, J. Kubiatowicz, B-H Lim, K. Mackenzie, and D. Yeung. The
MIT Alewife Machine: Architecture and Performance. In

Proceed-
ings of the 22nd International Symposium on Computer Architec-
ture

, Proc. 22nd Annual Symposium on Computer Architecture,
pages 2-13, Santa Margherita Liguire, Italy, June 1995

[BA97] T. Brewer and G. Astfalk. The evolution of the HP/Convex
Exemplar. In

Proceedings of COMPCON Spring'97: Forty Second
IEEE Computer Society International Conference

, pages 81-86,
February 1997.

[BBN86] BBN Laboratories, Butterfly Parallel Processor. Tech.
Rep. 6148, Cambridge, MA, 1986.

BFKR92 H. Burkhardt III, S. Frank, B. Knobe, and J. Rothnie.
Overview of the KSR-1 Computer System. Tech. Rep KSR-TR-
9202001, Kendall Square Research, Boston, February 1992.

{CKP91] D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. In

Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems

, pages 40-52, Santa Clara, CA, April 1991.
[CF78] L. Censier and P. Feautrier. A New Solution to Coherence

Problems in Multicache Systems.

IEEE Transactions on Computers

,
C(27):1112-1118, December 1978.

[Cla96] R. Clark. SCI Interconnect Chipset and Adapter: Building
Large Scale Enterprise Servers with Pentium Pro SHV Nodes, Data
General, 1996. An earlier version appeared in Hot Interconnects,
IEEE, 1996.

[GGV90] E. Gornish, E. Granston, and A. Veidenbaum. Compiler-
Directed Data Prefetching in Multiprocessors with Memory Hierar-
chies. In

International Conference on Supercomputing

, 1990
[HLH92] E. Hagersten, A. Landin, and S. Haridi. DDM—A Cache-

Only Memory Architecture.

IEEE Computer

, pages 44-54. Septem-
ber 1992.

[IEEE93] Scalable Coherent Interface. IEEE Standard 1596-1992.
August 1993.

[KOH+94] Jeffrey Kuskin et al. The Stanford FLASH Multiproces-
sor. In

Proceedings of the 21st International Symposium on Com-
puter Architecture

, pages 302-313, Chicago, IL, April 1994.
[Lamp79] L. Lamport. How to Make a Multiprocessor Computer

That Correctly Executes Multiprocess Programs.

IEEE Transactions
on Computers

, C-28(9):241-248, September 1979.
[LC96] T. Lovett and R. Clapp. STiNG: A CC-NUMA Computer

System for the Commercial Marketplace. In

Proceedings of the 23rd
International Symposium on Computer Architecture

, pages 308-317,
Philadelphia, PA, May, 1996.

[Len92] D. Lenoski. The Design and Analysis of DASH: A Scal-
able Directory-Based Multiprocessor.

Ph.D. Thesis, Technical
Report CSL-TR-92-507

, Stanford University, February 1992.
[LL97] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA

Highly Scalable Server. In

Proceedings of the 24th International
Symposium on Computer Architecture

, pages 241-251, Denver, CO,
June, 1997.

[LLG+92] D. Lenoski et al. The Stanford DASH Multiprocessor.

IEEE Computer

, 25(3):63-79, March 1992.
[MLA92] T. C. Mowry, M. S. Lam and A. Gupta. Design and Evalu-

ation of a Compiler Algorithm for Prefetching

, Proceedings of the
Fifth International Conference on Architectural Support for Pro-

June 22, 1998 11

gramming Languages and Operating Systems

, pages 26-36, Cam-
bridge, MA, October, 1992

[MOH96] M. Martonosi, D. Ofelt, and M. Heinrich, "Integrating Per-
formance Monitoring and Communication in Parallel Computers" in

Proceedings of the SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems

. pages 138-147, May
1996.

1996[NPA92] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A
Multithreaded Massively Parallel Architecture. In

Proc. 19th Annual
Symposium on Computer Architecture

, Gold Coast, Austrialia, May
1992

%P 156-167[PBG+85]G.F. Pfister et al. The IBM Research Parallel
Processor Prototype (RP3): Introduction and Architecture. In

Pro-
ceedings of the 1985 Conference on Parallel Processing

, pages 764-
771, 1985.

[RLW94] S. Reinhardt, J. Larus, D. Wood. Tempest and Typhoon:
User-Level Shared Memory. In

Proceedings of the 21th Interna-
tional Symposium on Computer Architecture

, pages 325-336, Chi-
cago, April 1994.

[SBL+77] R.J. Swan et al. The implementation of the Cm* multi-
microprocessor. In

Proceedings AFIPS NCC

, 645-654, 1977.
[Scott96] S. Scott. Synchronization and Communication in the Cray

T3E Multiprocessor. In

Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems

, pages 26-36, Cambridge, MA, 1996.
[SWG92] J.P. Singh, W.-D. Weber, and Anoop Gupta. SPLASH:

Stanford Parallel Applications for Shared-Memory.

Computer
Architecture News

, 20(1):5-44, March 1992.
[WGH+97] W.D. Weber et al. The Mercury Interconnect Architecture:

A Cost-effective Infrastructure for High-performance Servers. In

Proceedings of the 24th International Symposium on Computer
Architecture

, pages 98-107, Denver, CO, June, 1997.
[WOT+95] S. Woo et al. The SPLASH-2 Programs: Characterization

and Methodological Considerations. In

Proceedings of the 22nd
Annual International Symposium on Computer Architecture

, pages
24-36, Santa Margherita Liguire, Italy, June 1995, .

