HARDWARE/SOFTWARE CODESIGN OF PROCESSORS:
CONCEPTS AND EXAMPLES

JOHN HENNESSY
Stanford University and MIPS Technologies, Silicon Graphics, Inc.

AND

MARK HEINRICH
Stanford University

1. Introduction

Today, many VLSI designs are processors at the core. Microprocessors are one
obvious example; however, other examples abound. Many special-purpose,
embedded controllers consist of a microprocessor, at least at the core. Digital Sig-
nal Processors (DSPs) are special-purpose processors. Special-purpose engines
for functions such as graphics and video or audio processing are essentially pro-
cessors, some using microcode implemented in a ROM or PLA and others using
code stored in a RAM. The key aspect of all these designs is that they require the
development of both hardware and software to make a successful machine.

The movement towards RISC machines has increased the number of designs
that can be implemented as processors. This has occurred for two reasons. First,
by using RISC pipelining techniques it is possible to implement a programmed
engine that performs competitively with a hardware design that is more special-
ized to the design requirements. Second, the availability of high-performance
RISC cores has made it possible to build application-specific processors that
achieve high performance with modest effort.

Because many VLSI designs are essentially processors, designing both the
hardware and software for such systems is critical. Furthermore, completing the
hardware and software on time, tuned to the needs of the application is often key
to the success of the overall project. Although the hardware and software involved
in a special-purpose processor may be less complicated than the those in a gen-
eral-purpose processor, many of the design issues are the same. Thus, the chal-
lenges faced by complex general-purpose microprocessors striving to achieve
new performance levels will shortly be faced in the design of application-specific
engines.

2 HENNESSY AND HEINRICH

2. Key Hardware and Software Issues in Processor Design

Irrespective of whether a processor design is intended for a general-purpose or
special purpose application, there are two design requirements that are critical to
success. These critical issues are the functional correctness of the design and the
attainment of the performance targets for the design. Functional correctness
depends on a detailed design of the machine and verifying that the processor
implements this detailed design. For a definition to be unambiguous and to pro-
vide a basis for verification typically requires that the design definition be in a
form that can be easily simulated. Design specifications that are written, but can-
not be simulated, are simply too ambiguous and incomplete. Formal specifications
are very useful for small portions of the design, but our present ability to construct
and use formal specifications cannot accommodate full, large-scale designs.

Verifying that the performance of a design will attain the desired goals is a
different, but equally complex, problem. To design a processor that meets its per-
formance targets often requires evaluating many different design alternatives
including both the hardware and software. The design tradeoffs can become quite
complex, employing a variety of hardware or software mechanisms. Furthermore,
real designs must accommodate a different set of constraints, such as power bud-
get, limited silicon area, or pin count limitations. The challenge in many designs is
to achieve the performance targets without compromising the limitations on
power, silicon area, or pad counts.

2.1 DESIGN ELEMENTS OF PROCESSORS

Many of the key design aspects of processors fall into one of three areas: the
instruction set, the pipeline organization, or the memory system [1]. These three
aspects of the design are critical both from a correctness and a performance view-
point.

The instruction set defines the primary boundary between hardware and soft-
ware. As such, it is the highest level definition of the hardware and the basis for
verifying the design. In addition, since it defines the boundary, tradeoffs between
hardware and software implementation are made at this boundary. The difficulty
in making such tradeoffs arises because the design space for the instruction set is
very large, even if the basic instruction set is RISC-oriented (for example see
Appendix E of [1]). To evaluate the instruction set choices, a compiler that can be
easily retargeted to allow exploration of the value of certain tradeoffs is critical. It
is unbelievable that some designers still will completely define and even imple-
ment an instruction set before they have constructed a compiler and examined the
instruction set alternatives quantitatively. Although less common in general-pur-
pose processor designs, this unscientific design approach is common in the spe-
cial-purpose processor arena.

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 3

All modern processors, whether special purpose or general-purpose, make use
of pipelining, since it is the key organizational technique for achieving high
instruction throughput. The increasing complexity of the pipeline being used in
modern processors has led to a situation where both the design and verification of
the pipeline are extremely difficult. Furthermore, the design space for pipelines is
extremely large and evaluating the alternatives is costly for three reasons: the
effort required to create accurate performance models for the pipelines, the long
run times of the simulation models used to evaluate performance, and the possible
need to tune the compiler for each pipeline alternative.

All modern processors also make use of a memory hierarchy to supply the
data required by the processor in a cost-effective manner. The potential design
space for the memory hierarchy is also very large, since it can include both single
and multilevel caches. Furthermore, the cache at each level in the hierarchy has a
large variety of independent design parameters:

e the size of the cache,

» the degree of associatively,

* the block size (as well as possible subblocking),

* the write policy (e.g., write through or write back).

Fortunately, accurate and efficient simulation of memory systems is well
understood and can even be made moderately fast (at least compared to pipeline
simulation). The most challenging aspect of evaluating a particular memory hier-
archy is often obtaining adequate traces to determine the performance. For mod-
ern processors with powerful memory hierarchies these traces must often be quite
large (10’s to 100’s of millions of references) and need to reflect the complex
operating environment (e.g., operating system or other large applications) that the
processor will be used in. For more specialized application environments, obtain-
ing accurate traces often requires building the application and the underlying soft-
ware system to compile and simulate the application.

3. Design Verification and Performance Validation

Verifying the correctness of a processor as well as ensuring that performance
goals are met requires the concurrent design of both the hardware and software for
the system. Assuming the validation strategy uses simulation of the hardware, the
software system must provide a complete and extensive stimulus for the simula-
tion. In addition, to validate the performance, which is typically stated in some
metric involving one or more benchmarks, we must have a software system capa-
ble of compiling the benchmarks so that hardware simulators can be used to accu-
rately project the performance. Thus, the compiler system plays a critical role in
providing stimulus both for functional simulation as well as for performance anal-
ysis of the system. The compiler system must be powerful enough to compile the
key performance benchmarks and any necessary libraries or OS code, so that the

4 HENNESSY AND HEINRICH

benchmarks can be simulated adequately.

To be able to complete the hardware and software design within a time frame
that is competitive, the hardware and software system must be designed concur-
rently. For the software, this leads to requirements such as the ability to retarget
the compiler as instruction set changes are made. The requirement for concurrent
engineering of the hardware and software has even more critical implications for
the hardware and the hardware design methodology. In most hardware designs,
much of the effort goes to decomposing the design and completely defining it as a
series of interacting blocks. Furthermore, as the design proceeds, difficulties
encountered at lower levels of the design hierarchy may force certain decisions to
be changed or may have significant performance implications that were not visi-
ble at the higher levels of the design.

To address these issues and allow the design of the hardware and software to
proceed at multiple levels, we must create a variety of models for the design. By
building simulators for these models we can often obtain rough estimates of per-
formance as well as develop the higher levels of the design. Because the higher
levels of the design (and the accompanying simulations) are more abstract, they
can be created earlier and typically simulated more efficiently. In addition, since
they contain fewer details, the higher level models are easier to change allowing
for more rapid exploration of design alternatives. Although such higher level
models of the system may be missing details and may yield rough estimates of
performance, these higher level models are critical to allow the design to proceed
in a concurrent fashion and to allow the exploration of high level design tradeoffs
before the effort is expended to complete the lower levels of the design. In the
next two sections, we explore how these concepts were applied in the design of
the MIPS R4000, a general purpose processor, and to the MAGIC chip, a special-
purpose, programmable communications processor for use in multiprocessors.

4. An Example of Hardware/Software Codesign: the MIPS R4000

In this section we show how the design strategy of the MIPS R4000 [2] used con-
current engineering of the hardware and software to allow simultaneous design of
hardware and software as well as to verify the design both functionally and from a
performance viewpoint. The key to this process (and to the concurrent design and
implementation of the software) is the use of multiple levels of simulation for
both functional and performance verification.

Although a detailed design description of the R4000 is beyond the scope of
this paper, a few aspects of the design are important to understanding the motiva-
tion for the design strategy that was employed. The R4000 is a general-purpose
processor and its design goals included a variety of functional capabilities as well
as performance goals. Among the key functional capabilities required for the
R4000 are:

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 5

* the implementation of the MIPS-III instruction set architecture including 64-
bit instructions,

* high performance measured using the SPEC benchmarks and other significant
programs,

* asophisticated memory hierarchy with an optional off-chip cache with a vari-
ety of “programmable” aspects, such as access time, transfer rate and block
size,

* the implementation of a powerful coprocessor capable of handling memory
management and other operating system support functions.

These design objectives had to be achieved within tight limitations on the sili-
con area, power consumption, and number of pins. Finally, the desired schedule
allowed for only a small number of fabrication runs with the goal that the first sil-
icon would be usable (possibly with software work-arounds) for debugging the
chip, for testing and debugging complete systems using the R4000, and for com-
pleting operating systems development.

4.1 OVERALL SIMULATION STRATEGY

The strategy for the design and validation of the R4000 focuses on a set of simula-
tors that model the system at increasing levels of detail. Five levels of simulation
are employed in the design.

1. Instruction level simulator: this is used for performance evaluation at the
instruction set level as well as for more detailed modeling of the pipeline and
memory system. This level is also used to generate test vectors employed in
lower-level simulators.

2. System level simulation: this simulator models the details of the system envi-
ronment including such things as interrupts and memory management. It is
used to verify the system-level aspects of the processor, for concurrent design
and debugging of the operating system, and as a comparison basis for generat-
ing test vectors.

3. RTL level: this simulator is generated by compiling an RTL description of the
design into C code. It probably consumes the most simulation cycles. It is
used to simulate both portions (blocks) in the design as well as to simulate the
entire design.

4. Switch level with delays: used to simulate the design mostly in sections; test
vectors are generated from the RTL level.

5. Circuit simulation: Spice is used for detailed modeling of the critical paths as
well as for verification of circuits under variations in temperature, power sup-
ply, etc.

In the rest of this paper, we focus on the top two levels in this design hierar-
chy, since they are most critical to the codesign of the hardware and software sys-
tem. A key to this simulation strategy is that the top level simulators are

6 HENNESSY AND HEINRICH

considerably faster, allowing them to be used for more extensive performance and
functional verification. Figure 1 shows the names given to each simulator (for
those that can be used to simulate the entire design) and the wide variation in per-
formance of these simulation models. The performance is given in number of
clock cycles simulated per second on a 30-mips machine used for simulation.

Simulator Level of Accuracy Simulation Rate

Pixie User instruction set > 100 cycles/second

Sable System level (OS instructions + interrupts) > 103 cycles/second
RTL Synchronous register transfer > 10 cycles/second
Gate Gate/switch level < 1 cycle/second

Figure 1. Levels of simulation used for the entire R4000 design and the performance of each level.

4.2 INSTRUCTION LEVEL SIMULATION OF THE PROCESSOR

Using an appropriate instruction set simulator, we can analyze the perfor-
mance of a processor at three levels: the instruction set effectiveness, the pipeline
performance, and the memory system performance. In the design system used for
the R4000, the basis for all three of these evaluations is a system called pixie.
Pixie translates an object-code file for the MIPS architecture into an instrumented
version of the object-code (called a pixified program). When the instrumented
object-code file is run it can produce both profile information (for each basic
block in the program) and a trace of the instruction and data references. Figure 2
shows how pixie instruments a code sequence and uses the instrumented binary to
produce information.

profile

/ information
object — instrumented)
file pixie . object file wc:

v

traces of
accesses

Figure 2. Pixie instrumentation process translates an object code file into an instrumented
executable. When run, the executable produces both profile information and mem-
ory reference traces.

There are two key advantages to this approach:
1. The pixified program runs very fast with a typical slowdown of 2 to 10 times.
This makes it possible to make many runs of this simulator.

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 7

2. Pixie translates any system calls in the pixified program into calls to the
underlying OS running on the machine that executes the pixified program.
The enormous advantage of this approach is that full programs can be run and
evaluated even if they require OS facilities. This eliminates a major drawback
of many simulation systems that can handle only kernels or small programs.
This advantage allows the analysis of large benchmarks, such as the SPEC-
mark programs.

Once the profile information has been produced from the pixified program, an
analysis program, called pixstats, can analyze both the instruction set performance
and the pipeline performance of a machine. Instruction set performance is ana-
lyzed by using the profile counts and the instruction makeup of each basic block
to compute instruction counts, frequencies, and other instruction set usage proper-
ties. By simulating the pipeline behavior of each basic block and using the profile
information to determine how often each basic block is executed, the performance
of the pipeline can also be estimated. This approach is extremely cost-effective
since each basic block is simulated only once. Figure 3 shows illustrates this pro-
cess.

instruction counts,

frequencies, etc.

profile

information

pipeline

performance
(cycle counts)

Figure 3. Using output from a pixified executable to estimate performance. The pixstats pro-
gram contains a model of the processor that may be partially parameterized, making
comparison of design changes very fast.

Pixie can also instrument a program so that the pixified program produces
traces of instruction and data references. These traces can be used to evaluate the
performance of the memory system using one of several cache system simulators,
such a Dinero or the R4000 cache simulator (cache4000). Figure 4 shows how the
memory system performance is analyzed. The overall processor performance can
be determined by combining the measurements of the memory system and the
pipeline. Thus, we have a fast and accurate method for evaluating the performance
of the system at the level of cycle counts.

8 HENNESSY AND HEINRICH

traces of
accesses
memory
memory cycles
system
parameters

Figure 4. Evaluating memory system performance by using the traces from the pixified pro-
gram.

Finally, the pixie approach allows the construction, debugging, and perfor-
mance analysis of compiler systems long before hardware is available. Instruc-
tion-level simulators often do not have sufficient performance for testing and
debugging compilers, since large programs that really stress compilers may run
fairly slowly; pixie, however, is sufficiently fast. Thus, besides its other benefits,
the pixie approach allows concurrent design and implementation of the processor
and compiler system. Since processor performance depends on the compiler tech-
nology, this approach is highly beneficial.

4.3 SYSTEM LEVEL SIMULATION

Sable provides a simulation environment that implements most of the system
aspects of a processor, including memory management, system instructions, inter-
nal and external exceptions, and an I/O system. Sable has two important uses:

1. It provides an environment for writing and debugging the operating system
concurrently with the design of the hardware. Sable can also be used to ana-
lyze the performance of operating system mechanisms.

2. Sable provides a way to test the system aspects of the processor. Since these
aspects include many of the asynchronous components of the system, it is par-
ticularly susceptible to bugs. By running the operating system and the system-
oriented tests, Sable provides a way to debug these aspects of the system, as
well as to generate test vectors that can be used in simulators provided at
lower levels (such as RTL).

Finally, Sable is also used as the basis for testing the multiprocessor aspects of
the system.

4.4 FUNCTIONAL VALIDATION STRATEGY

The complete functional validation strategy relies heavily on this hierarchy of
simulators. The key steps in validating the design are:
1. Selected user programs are run at the pixie and Sable levels, as well as used to

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 9

generate RTL test vectors.

2. Randomized user programs are generated, simulated, and used to generate
RTL test vectors.

3. The OS is run in the Sable environment using randomized interrupts to test
the system aspects of the design and generate RTL test vectors.

4. The ultimate test is to boot the OS on the RTL model; this requires weeks of
simulation time.
Overall, the functional validation of the R4000 required about 100 30-mips

machines in continuous use for about 200 days, for a total of 50 x 1015 cycles of
simulation time. Figure 5 shows the history of bugs during validation. Despite this
enormous investment, a small number of significant bugs remained. These bugs
did not prevent further debugging or the use of the part in prototypes; however,
several key bugs needed to be repaired before the part could go into production.

25 ==
20 +=

15 1
Outstanding

Bugs
10 4

5--

0 ¥ttt
-16-15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2
Months Before Tapeout

-1 0

Figure 5. Number of bugs discovered as tapeout approaches.

4.5 PERFORMANCE VALIDATION STRATEGY

At the level of user programs, the pixie approach combined with pixstats and a
cache simulator meant that billions of instructions (and memory references) could
be simulated to evaluate the instruction set, the pipeline, and the memory system.

The performance of critical OS routines, such as TLB miss handling and
interrupt vectoring, was evaluated with Sable. By comparing the cycle count dif-
ferences among the memory system simulator, Sable, and the RTL simulator, the
designers could ensure consistency of the cycle counts for key operations (such as

10 HENNESSY AND HEINRICH

a cache miss) across the levels of the design. Since such costs are important input
parameters for the high level simulators (e.g., the memory simulator), it is critical
to verify the assumed values against the actual costs that can be derived from
lower-level simulators.

The simulators discussed above provide very accurate analysis of the cycle
counts (as well as instruction counts) for both user and system programs (includ-
ing applications or benchmarks). To completely determine the processor perfor-
mance, we also need to validate that the processor will attain the desired clock
rate. Clock cycle verification for the R4000 was done primarily by using Spice on
the critical paths. A design methodology was used to expose such paths, together
with limited use of static timing analysis.

5. MAGIC: An Application-Specific, Programmable Processor

MAGIC is the communication controller for the Stanford FLASH multiprocessor
[3]. FLASH is a scalable, convergence architecture, meaning that it will support
both shared memory and message passing programming with underlying hard-
ware support. This support is implemented in the MAGIC chip, which thus
becomes extremely performance critical. The basic architectural structure of
FLASH is shown in Figure 6.

Grid of nodes

MIPS
R10000

Figure 6. Stanford FLASH architecture showing the critical position of the MAGIC chip
through which all data for the processor must flow.

The core of the FLASH design is MAGIC, a programmable communications
and protocol engine, implemented as a semicustom ASIC. MAGIC integrates the

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 11

interfaces to the main processor, memory system, I/O system, and network with a
programmable, special-purpose protocol processor responsible for running the
communication protocol. The combination of multiple interfaces, aggressive
macro-pipelining, and the necessity of handling multiple outstanding requests
from the main processor makes MAGIC inherently multithreaded, posing com-
plex verification and performance challenges.

5.1 MAGIC ARCHITECTURE

A high-level view of the MAGIC architecture is shown in Figure 7. The key archi-
tectural feature of MAGIC is the separation of the data-transfer logic from the
control logic. The data-transfer logic is implemented in hardware to achieve
highly-pipelined, low latency and high bandwidth data transfers and avoid extra
data copying on chip. To manage the complexity of shared memory and messag-
ing protocols, the control logic is handled by software code (called handlers) run-
ning on the protocol processor.

Processor Network I/O

I

Message Split Software
Message J Message Queue
Data Headers
Data
Memor Transfer Protocol
Logic Processor

Message Combine /

Processor Network 1/0

Figure 7. MAGIC Architecture showing how the programmable protocol pro-
cessor handles the interpretation of messages, while data transfer and
the input and output functions are handled in hardware. Separate par-
allel state machines are used to manage these independent functions.

12 HENNESSY AND HEINRICH

5.2 MAGIC’S PROTOCOL PROCESSOR

In addition to helping with the complexity and correctness of protocols, the use of
a programmable protocol processor increases flexibility. This flexibility allows
different protocols and communication paradigms, the implementation of novel
performance monitoring schemes, and the ability to debug or enhance protocols
even after the machine is built. To minimize the performance impact of flexibility,
MAGIC incorporates several features to make protocol processing more efficient.

First, the protocol processor is a simple two-issue RISC machine with no
hardware interlocks, no floating-point capability, no TLB or virtual memory man-
agement, and no interrupts or exceptions. Second, the instruction set is expanded
to include instructions for handling bit field operations common to directory-
based and messaging protocols [4]. The handlers that are run on the protocol pro-
cessor are generated from C using a port of gcc and a superscalar instruction
scheduler. The compilation tools are aware of the bit field instruction set optimiza-
tions and take full advantage of them. Finally, to avoid consuming excessive
memory bandwidth and to reduce protocol processor occupancy and handler
latency, the protocol processor accesses all code and data through dedicated
instruction and data caches, respectively.

When a request enters MAGIC and is selected for service, it is pushed
through a programmable table which dispatches the starting program counter for
the protocol processor. The dispatch table can also be programmed to initiate a
speculative memory operation on behalf of the request to reduce latency as much
as possible. The use of hardware dispatch further improves protocol processor
occupancy since software dispatch is a particularly costly operation, and handler
dispatch and execution can now operate concurrently in a macro-pipeline.

5.3 SIMULATION AND VERIFICATION CHALLENGES

Simulation of the MAGIC design is particularly difficult because of the high
degree of interaction among design elements. Tuning the protocol processor
instruction set depends on what operations it needs to do and how fast it needs to
do them; determining how fast it needs to do them requires accurate simulation of
a FLASH system, which depends on knowing how long protocol processor opera-
tions take.

The accurate simulation of FLASH is itself an enormous problem. The simu-
lations are highly concurrent (potentially 100’s of processors in a FLASH simula-
tion), resulting in large memory requirements and the need to properly model
contention within and among nodes to obtain accurate performance information.
This detailed modelling together with the desire to simulate the machine under
stress (large applications with much activity in the PP) compounds the problem by
slowing down the speed of simulation.

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 13

The high degree of concurrency results in an enormous state space, compli-
cating the verification of MAGIC as well. Not only do we need to verify all possi-
ble protocol processor code sequences, but we also need to verify the interaction
between the protocol processor and the other on-chip interface units.

5.4 THREE PART SIMULATION APPROACH

To attack these simulation and verification challenges, we adopt a three part simu-
lation approach. We start with FlashLite, our system-level simulator written in C
and C++, and successively refine our approach by increasing the detail of simula-
tion as the MAGIC design itself proceeds. FlashLite is an execution-driven sys-
tem simulator which uses the Tango Lite system as a reference generator [5]. Most
of the program is compiled and executed directly, resulting in reasonably fast sim-
ulation (10-100x slow down). FlashLite uses the execution-driven approach for
simulation accuracy, since we want the timing of simulation to be affected by both
the program and the timing of the simulated memory system.

At the top level, FlashLite models high-level protocol processor operations
such as sending or receiving messages and updating directory structures. The
other units on MAGIC are modelled in enough detail to implement and debug the
base cache-coherence protocol. This environment, shown in Figure 8, can also be
used to collect statistics about the frequency of operations done in the protocol
processor and the frequency of certain protocol cases.

PP Simulator
Instrumented Program s“{'ﬁT.Z{Xr

Directory
normal operations operations
simulated operatio

normal operations

simulated operatio

Memory
accesses
Network
Network Simulator
accesses

Figure 8. FlashLite Simulator: Stage I-customized simulator of the protocol processor
(PP).

The next stage of refinement replaces the high-level model of the protocol
processor with a simulator thread that emulates the actual compiled protocol code
and produces accurate delays. This model, shown in Figure 9, allows full debug-
ging of the protocol code (and the protocol processor compilation tools!) and can
find timing-related bugs in the protocol that modelling at the higher level could
not catch. In addition, it leads to detailed timing estimates for protocol processor
operations and provides statistics about the caching behavior of the protocol code
sequences.

14 HENNESSY AND HEINRICH

Program 0o BP Simulstor diemioRt:
Simulator of
normal operation directory
simulated operati processor
normal operation instruction Network
simulated operati set Simulator

Figure 9. FlashLite Simulator: Stage IT uses real protocol code and a custom instruction set simu-
lator for the protocol processor.

The third and final level of simulation puts everything together, fully simulat-
ing the interface between the main processor and MAGIC, including the cache
control of the main processor and its ability to issue multiple outstanding requests
to the memory system. With its modelling of the complex timing on the external
interfaces (processor bus, memory system, and network), and cycle accurate pro-
tocol processor simulation, FlashLite can now provide accurate information on
overall application performance.

PP Code Verilog simulator Memory
CPU simulation Simulator
RAY
normal operations Simulator
external operatio L of entire
normal operations Magic
. processor Network
external operatio Simulator

¢ Full interface between CPU and Magic:
—multiple outstanding requests
- complex timing on external interface

Figure 10. FlashLite Simulator: Stage III uses a simulator in Verilog for the Magic processor
including interface simulators for the R10000 processor, the memory system, and the
interconnection network.

5.5 ADVANTAGES OF THIS APPROACH

The most significant advantage of this approach is the benefit of concurrent engi-
neering. We were able to design the protocol processor, the communication proto-
cols, and the rest of FLASH in parallel. Having a high-level functional simulator

HARDWARE/SOFTWARE CODESIGN OF PROCESSORS 15

proved invaluable in the early design stages of MAGIC, particularly in providing
early performance feedback. FlashLite gave us good estimates of protocol perfor-
mance before the architectural design was completed, and gave us input into the
design of the protocol processor instruction set. Early simulations were also useful
in fixing global resource allocation problems that might have led to MAGIC-
induced deadlock.

Another often observed benefit is that our multiple levels of simulators act as
documentation and provide test generation for lower levels. In fact, the reference
generator portion of FlashLite has the capability to drive simulations of either the
FlashLite description of the MAGIC chip or the Verilog RTL description of the
chip. This allows us to debug the hardware using real parallel applications. A sim-
ilar environment allows individual unit designers to run directed or random tests
of their unit.

Finally, the MAGIC design approach balances hardware effort with software
effort. The hardwired data-transfer logic and RISC core with support for bit field
operations provide hardware performance, while the complex protocols are imple-
mented in software.

6. Concluding Remarks and Future Directions

By using a hierarchy of design descriptions and simulations it is possible to pro-
ceed with the hardware and software design simultaneously. This is critical to
achieving an improvement in the design time for the complete system. In addition,
unless the design of the hardware and software can be done concurrently, it is
essentially impossible to verify either the functionality or the performance of the
design.

A hierarchical simulation structure also allows the designer to trade-off the
cost of simulation versus the accuracy. Thus, extensive simulations can be done at
the highest level to estimate performance and quickly iterate and tune the design.
Furthermore, large numbers of cycles can be simulated at the higher levels and the
resultant test vectors used at lower levels of the design, which are much more
accurate. Overall, the approach dramatically improves the possibility of designing
a hardware and software system that is both functionally correct and achieves the
desired performance while maintaining a short design time.

Despite the significant advantages of this approach the complexity of a mod-
ern processor is enormous and it is critical that the design be close to perfect
before tape-out. The challenge of managing this complexity, ensuring correctness,
and still meeting a reasonable design schedule remains the fundamental hurdle in
modern processor design. For future designs, tools that help manage the design
complexity, including the complex interface between hardware and software, will
be crucial. Just as important will be experienced designers that understand the
relationship between design complexity, performance, and design time.

16 HENNESSY AND HEINRICH

7. References

1. Hennessy, J.L. and D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan
Kaufman, San Francisco, 1996.

2. Killian, E, “MIPS R4000 Technical Overview—64 Bits/100 MHz or Bust,” Hot Chips 11l Sym-
posium Record (August), Stanford University, 1.6-1.19, 1992.

3. Kuskin, Jeffrey et al., “The Stanford FLASH Multiprocessor”, In Proceedings of the 21st
International Symposium on Computer Architecture, pp. 302-313, April 1994.

4. Heinrich, Mark et al., “The Performance Impact of Flexibility in the Stanford FLASH Multi-
processor”, In Proceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 274-285, October 1994.

5. Goldschmidt, Stephen, Simulation of Multiprocessors: Accuracy and Performance, Ph.D.
Thesis, Stanford University, June 1993.

