
Active Memory Techniques for ccNUMA Multiprocessors

Daehyun Kim and Mainak Chaudhuri
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853

{daehyun, mainak}@csl.cornell.edu

Mark Heinrich
School of EECS

University of Central Florida
Orlando, FL 32816
heinrich@cs.ucf.edu

Abstract

Our recent work on uniprocessor and single-node mul-
tiprocessor (SMP) active memory systems uses address re-
mapping techniques in conjunction with extended cache co-
herence protocols to improve access locality in processor
caches. We extend our previous work in this paper and
introduce the novel concept of multi-node active memory
systems. We present the design of multi-node active mem-
ory cache coherence protocols to help reduce remote mem-
ory latency and improve scalability of matrix transpose and
parallel reduction on distributed shared memory (DSM)
multiprocessors. We evaluate our design on seven appli-
cations through execution-driven simulation on small and
medium-scale multiprocessors. On a 32-processor sys-
tem, an active-memory optimized matrix transpose attains
speedup from 1.53 to 2.01 while parallel reduction achieves
speedup from 1.19 to 2.81 over normal parallel executions.

1. Introduction

Active memory systems provide a promising approach
to overcoming the memory wall [19] for applications with
irregular access patterns not amenable to techniques like
prefetching or improvements in the cache hierarchy. The
central idea in this approach is to perform data-parallel com-
putations or scatter/gather operations invoked via address
re-mapping techniques in the memory system to either of-
fload computation directly or to reduce the number of pro-
cessor cache misses. However, both approaches introduce
data coherence problems either by allowing more than one
processor in memory to access the same data or by access-
ing the same data via two different re-mapped addresses. In
our previous work [1, 9], we have shown that with the aid
of a flexible active memory controller, conventional hard-
ware cache coherence protocols can be effectively extended
to transparently support a number of address re-mapping
techniques and achieve significant speedup on both unipro-
cessor and single-node multiprocessor (SMP) systems. In

this paper, we expand our previous work to multi-node
hardware distributed shared memory (DSM) systems us-
ing the same active memory controller with an integrated
commodity network interface, while changing only the pro-
tocol software that is run on the memory controller. We
call the resulting multi-node systems Active Memory Clus-
ters (AMC), whose architecture is introduced in [6].

We discussMatrix Transpose[9, 20] andParallel Re-
duction[4, 9] as two representative multi-node active mem-
ory techniques in Section 3. Our implementation requires
novel extensions to DSM cache coherence protocols and is
detailed in Section 4. We also discuss protocol design prob-
lems particular to multi-node active memory techniques, in-
cluding issues like page placement and deadlock avoidance.
In Sections 5 and 6 we present detailed simulation results
on seven applications that demonstrate how well our ac-
tive memory system scales compared to conventional par-
allel executions. For a 32-processor AMC system, AM-
optimized applications enjoy speedup from 1.53 to 2.01 for
matrix transpose and from 1.19 to 2.81 for parallel reduc-
tion over normal parallel executions.

The results presented here are the first known results
for address re-mapping techniques in multi-node systems—
techniques that are made possible only by our approach of
employing novel extensions to DSM cache coherence pro-
tocols running on a flexible memory controller—and show
that active memory clusters can effectively eliminate remote
memory accesses for certain classes of applications, without
sacrificing the performance of other (non-active) programs.

2. Related Work
Previous work in active memory systems can be divided

into projects with data parallel PIMs such as DIVA [2], Ac-
tive Pages [13], FlexRAM [8] and those with active memory
controllers such as Impulse [20] and our previous work on
flexible active memory controllers [1, 9]. This paper fol-
lows the latter approach.

The Impulse controller also uses address re-mapping
techniques, but relies on software flushes rather than the

hardware cache coherence protocol to solve the data coher-
ence problem associated with address re-mapping. In addi-
tion, the Impulse project has focused solely on uniprocessor
systems, whereas our work leveraging cache coherence has
shown improvements for both uniprocessor and single-node
multiprocessor (SMP) systems, and, in this paper, on multi-
node systems as well. Our parallel reduction technique was
initially proposed in a non-active memory context in [4], but
also used software flushes to guarantee data coherence and
required changes to both the main processor and its cache
subsystem. We follow the same idea, but our leveraging
of the cache coherence protocol eliminates flushes and pro-
vides transparency in the programming model and scalabil-
ity to multiprocessor systems without any changes to the
main processor or its caches.

This paper extends our previous active memory tech-
niques to multi-node systems. Some initial results of
running non-active memory SPLASH-2 applications [18]
are presented in [6], which shows that our Active Mem-
ory Cluster system has comparable performance to hard-
ware DSM systems for non-active memory applications (the
small differences are due to the network speed and do not
affect single-node systems). The main contribution of this
paper over our previous work is that it investigates the scal-
ability of the active memory techniques in multi-node DSM
systems and the corresponding DSM protocol issues, while
[9] focuses on the role of the cache coherence protocol in
single-node active memory systems and [6] on the perfor-
mance of our memory controller for non-active memory ap-
plications.

Finally, our active memory techniques take advantage
of writeback triggered data operations, which is similar to
techniques used in the ReVive [14] and Memory Sharing
Predictor [10] proposals in the sense that these two also
trigger checkpointing/logging-related operations and shar-
ing predictions, respectively, when the home node receives
certain types of coherence messages.

3. Multi-node Active Memory Techniques
In this section, we discuss two classes of active memory

operations introduced in this paper:Matrix Transposeand
Parallel Reduction. Matrix transpose and parallel reduc-
tion are common operations in many parallel applications.
Unfortunately, they suffer from a large number of remote
memory accesses in DSM systems. We show how active
memory operations can improve performance by reducing
the number of remote memory accesses. We also show why
a cache coherence problem arises with these operations, and
explain how we solve the problem.

3.1. Matrix Transpose

Consider a matrixA stored in memory in row-major or-
der. An application accesses the matrixA first in row-wise

fashion, and then in column-wise fashion. The size of the
matrixA is N ×N and the application is parallelized onP
processors. An example code is given here.
/* Row-wise access phase */
for i = id*(N/P) to (id+1)*(N/P)-1

for j = 0 to N-1
sum += A[i][j];

BARRIER
Transpose(A, A’);
BARRIER

/* Column-wise access phase */
for i = id*(N/P) to (id+1)*(N/P)-1

for j = 0 to N-1
sum += A’[i][j];

BARRIER
Transpose(A’, A);

BARRIER

If a processorPid wants to access the matrixA column-
wise, it results in poor cache behavior because the matrix
A is stored in row-major order. To improve cache perfor-
mance, programmers typically use aTiled Transposetech-
nique, as shown in the above example. Before accessing the
matrix A column-wise, we transpose the matrixA into a
matrixA′. Then, instead of accessing the matrixA, we can
access the matrixA′ row-wise. Though tiling the transpose
phase reduces the number of cache misses, this software
transpose technique still has some overhead. Whenever we
change the access pattern from row-wise to column-wise or
vice versa, we need to perform the transpose phase, which
costs processor busy time, memory access time and syn-
chronization time (in the barriers). The remote memory ac-
cesses during the transpose phase especially become a bot-
tleneck. Our active memory technique eliminates the trans-
pose phase, and hence reduces this overhead. An example
code optimized by the active memory technique is given be-
low.
/* Active Memory initialization phase */
A’ = AMInstall(A, N, N, sizeof(Complex));

/* Row-wise access phase */
for i = id*(N/P) to (id+1)*(N/P)-1

for j = 0 to N-1
sum += A[i][j];

BARRIER

/* Column-wise access phase */
for i = id*(N/P) to (id+1)*(N/P)-1

for j = 0 to N-1
sum += A’[i][j];

BARRIER

Our active memory controller provides a matrix trans-
pose via an address re-mapping technique [20] that maps
AT to an additional physical address spaceA′, called the
Shadow Space. The shadow matrixA′ is not backed by any
real physical memory. Instead, it is composed by the mem-
ory controller on the fly, based on information such as ma-
trix size and element size provided via the one-timeAMIn-
stall library call. Thus, the matrix transpose is carried
out by the memory controller, not by the main processor,

removing the software transpose overhead and eliminating
a large number of cache misses. Note that the initialization
phase does not perform a matrix transpose. It only commu-
nicates the information used to compose the shadow matrix
A′ to the memory controller.

This matrix transpose operation gives rise to a coherence
problem between the original matrixA and the shadow ma-
trix A′. Any two corresponding elements of the matrixA
and the shadow matrixA′ should be coherent with each
other, yet the processors may be caching them at two sepa-
rate locations. We solve this problem by extending the DSM
cache coherence protocol. The details of the protocol are
discussed in Section 4.1.

3.2. Parallel Reduction
Parallel Reduction maps a set of elements to a single ele-

ment with some underlying operation. Consider an example
of reducing every column of a matrixA to a single element,
thereby obtaining a single vectorx at the end of the com-
putation. The size of the matrixA is N × N and there are
P processors. A simple parallel code is shown below. Pro-
cessorP0 initializes the vectorx (not shown). The value
e is the identity element under the operation⊗ (e.g. 0 is
the identity for addition and 1 is the identity for multiplica-
tion). In an actual implementation thei andj loops would
be interchanged to get better cache behavior.
/* Privatized reduction phase */
for j = 0 to N-1

private x[id][j] = e;
for i = id*(N/P) to (id+1)*(N/P)-1

private x[id][j] =
private x[id][j] ⊗A[i][j];

BARRIER

/* Merge phase */
for j = id*(N/P) to (id+1)*(N/P)-1

for i = 0 to P-1
x[j] = x[j] ⊗private x[i][j];

BARRIER

Subsequent uses of x

The matrixA is distributed row-wise as suggested by the
computational decomposition in the code (i.e. the firstN/P
rows are placed onP0, the nextN/P rows onP1 etc). Also
private x of each processor is placed in the local mem-
ory of that processor. Thus, the reduction phase does not
have any remote memory accesses. However, the merge
phase assigns mutually exclusive index sets of the result
vector to each processor and hence every processor suffers
from (1− 1

P) portion of remote misses while accessing the
private x of other processors. This communication pattern
is inherently all-to-all and does not scale well. Prefetching
may improve performance to some extent, but the remote
read misses remain in the critical path, influencing over-
all performance. Our active memory technique eliminates
these remote read misses by completely removing the merge
phase. The example code optimized by our active memory
technique is shown below.

/* Active Memory initialization phase */
x’ = AMInstall(x, N, sizeof(long long));

/* Reduction phase */
for j = 0 to N-1

for i = id*(N/P) to (id+1)*(N/P)-1
x’[j] = x’[j] ⊗A[i][j];

BARRIER

Subsequent uses of x

The result vectorx is mapped to a shadow vectorx′ in
the initialization phase. The processors perform the reduc-
tion phase only to the shadow vectorx′. The merge phase is
removed as shown in the above code. In our active memory
technique, the merge operations are done by the memory
controller, not by the main processors. When each cache
line of the shadow vectorx′ is written back to memory,
the memory controller performs the merge operation [4].
Therefore, the active memory technique can save processor
busy time by eliminating the merge phase, and remote mem-
ory access time since the writebacks are not in the critical
path of execution.

This technique has a coherence problem similar to the
matrix transpose discussed in Section 3.1. We solve the
problem by extending the cache coherence protocol to keep
the vectorsx andx′ coherent. The protocol is discussed
separately in Section 4.2.

4. Implementation
This section details the implementation of our active

memory system, focusing on active memory protocol de-
sign. Our implementation satisfies two major design goals:
flexibility andperformance. Flexibility is achieved by ex-
ecuting software protocol code tailored to service different
kinds of active memory operations. To achieve high per-
formance, we run the protocol code on a customized dual-
issue embedded protocol processor augmented with a spe-
cial data path unit satisfying the needs of active memory
operations [9]. To support a multi-node cluster architecture,
introduced in [6] as Active Memory Clusters (AMC), our
memory controller is equipped with a network interface in
addition to a processor interface. In forthcoming network
architectures such as InfiniBand [7], or 3GIO [17], the net-
work interface will be moved closer to the main CPU, at-
tached directly to or integrated with the memory controller.

The coherence protocol for the baseline system can
correctly execute any normal (non-active memory) shared
memory application. It is an MSI write-invalidate bitvec-
tor protocol similar to that in the SGI Origin 2000 [11].
The directory entry is 64 bits wide with five state bits (AM,
pending shared, pending dirty exclusive, dirty and local).
The AM bit is used by our active memory protocol exten-
sions, and is explained in the following sections. The pend-
ing states are used to mark the directory entry busy when
requests are forwarded by the home node to the current ex-
clusive owner. The dirty bit is set when a memory line is

cached by one processor in the exclusive state. The local
bit indicates whether the local processor caches the line and
is used to quickly decide whether an invalidation or inter-
vention needs to go over the network interface. The sharer
vector is 32 bits wide. The remaining bits are left unused for
future extensions of the protocol. As in the Origin protocol,
our protocol collects the invalidation acknowledgments at
the requester. However, we support eager-exclusive replies
where a write reply is immediately sent to the processor
even before all invalidation acknowledgments are collected.
Our relaxed consistency model guarantees “global comple-
tion” of all writes on release boundaries thereby preserving
the semantics of flags, locks and barriers.

4.1. Matrix Transpose
In this section, we explain the implementation of the

matrix transpose protocol. Consider the example in Sec-
tion 3.1.A is anN ×N original matrix andA′ is a shadow
matrix address re-mapped to the matrixA. ProcessorPid

accesses the matrixA if it wants to access data row-wise, or
the matrixA′ if the access pattern is column-wise.

Every memory request is forwarded to the home node
and processed by the home node memory controller. The
memory controller first consults the directory entry. We use
the same directory entry as in the base protocol. A cache
line can be in one of 8 possible states—unowned or in-
valid, shared, dirty, pending shared, pending dirty exclusive,
AM, AM pending shared, and AM pending dirty exclusive.
These states are divided into two groups: normal states (un-
owned, shared, dirty, pending shared, pending dirty exclu-
sive) and AM states (AM, AM pending, AM pending dirty
exclusive). If a cache line is in a normal state, the mean-
ing of the state is the same as that in the base protocol. If
a cache line is in an AM state, it means that the re-mapped
address space is being used. (e.g. if the requested cache
line is in the original matrixA and it is in an AM state, the
corresponding re-mapped cache lines in the shadow matrix
A′ are being cached.)

If the requested cache line fromA is in any of the normal
states, our memory controller executes the base protocol.
Note that for normal memory operations our active mem-
ory protocol has only the additional overhead of checking
whether the AM bit is set or not, but this does not slow
down conventional applications since this check is not on
the critical path.

If the requested cache line is in the AM state, there is
a potential data coherence problem. Because re-mapped
cache lines in the shadow address space are already being
cached, if we simply reply with the requested cache line it
may result in data inconsistency. To solve this problem,
our protocol enforces mutual exclusion between the nor-
mal and shadow address spaces. First, we set the requested
cache line in the pending state so that subsequent requests to
the line will be refused until the current request completes.

Based on information like matrix size and matrix element
size provided by the one-timeAMInstall call, we calcu-
late each re-mapped address and consult its directory entry.
If it is in the dirty exclusive state, we send an intervention to
its owner and retrieve the most recent copy of the data. If it
is in the shared state, we send invalidation requests to all the
sharers and gather the acknowledgments. After we invali-
date all the re-mapped cache lines, we can safely reply with
the requested cache line. Finally, we update the directory
entries of the requested cache line and the re-mapped cache
lines. The requested cache line is set in the shared or dirty
state based on the request type and the re-mapped cache
lines in the AM state. This will guarantee data coherence in
the future. During the entire procedure, if we encounter any
cache line in the pending state, we send a negative acknowl-
edgment to the requester. We adopt the same scheme as in
Origin 2000 protocol for forward progress, so our protocol
ensures that the retry will eventually succeed.

The matrix transpose operation takes place in two cases:
when a processor requests a shadow cache line or when a
shadow cache line is written back to memory. For a shadow
cache line request toA′, our active memory controller gath-
ers data elements from the original normal spaceA to as-
semble the requested shadow cache line. The address calcu-
lations are accelerated by specialized hardware in the mem-
ory controller and the gather operation eliminates the soft-
ware transpose overhead from the main processors.

When a shadow cache line is written back to memory, the
memory controller disassembles the shadow cache line and
writes the data elements back to the original space. This op-
eration has significant performance benefit because it saves
remote memory accesses. First, it is performed during a
writeback operation, and hence is not in the critical path of
the execution. Second, it writes back data elements from
the shadow space to the normal space, so the next time a
processor accesses the data elements in the normal space
it does not need to access the (potentially remote) shadow
space.

4.2. Parallel Reduction
In this section, we discuss the protocol extensions to

support parallel reduction. Please refer to the example in
Section 3.2. In the first phase of execution every proces-
sor reads and writes the shadow cache lines ofx′. When a
processor reads a shadow cache line in the shared state, the
local memory controller immediately replies with a cache
line filled with identity valuese. It does not notify the home
node because the algorithm guarantees that every shadow
cache line will be written eventually. If the processor wishes
to write a shadow cache line, the local memory controller
still replies immediately with a cache line filled with val-
ues e. The main processor receives the cache line, but
the write does not complete globally until all address re-
mapped memory lines are invalidated from other caches,

and all the necessary acknowledgments are gathered. To
do this, the local memory controller also forwards the write
request to the home node. The home node memory con-
troller consults the directory entry of the requestedx′ cache
line as well as the correspondingx cache line. The protocol
execution observes one of the following four cases.

The first case occurs when the correspondingx cache
line is in the dirty state. The home node notifies the re-
quester that the number of acknowledgments is one, sends
an intervention to the owner, and sets the shadow directory
entry in the pending exclusive state to indicate that the first
shadow request for this cache line has been received and the
intervention has been sent. Later, after the dirty line is re-
trieved and written back to memory, the home node sends
out the acknowledgment to every requester marked in the
shadow directory entry and clears the pending bit. Only
after the requesters receive the acknowledgments does the
corresponding write complete.

The second possibility is that thex cache line is in the
shared state. The home node replies with the number of
sharers to the requester and sends out invalidation requests.
The sharers send their acknowledgments directly to the re-
quester.

The third case arises when the requestedx′ cache line
is in the pending exclusive state—the first case above de-
scribes why and when the directory entry transitions to this
state. In this case the home node notifies the requester that
the number of acknowledgments is one.

The last case is the simplest. In this case the directory
entries of both thex andx′ cache lines are clean. So the
home node notifies the requester that the expected number
of acknowledgments is zero. In all the cases the home node
marks the requester in the shadow directory entry and sets
the AM bit in the normal directory entry.

The merge phase takes place at the home node when it
receives a writeback to a shadow cache line. The home node
clears the source node of the writeback from the shadow
directory entry, performs the reduction operation and writes
the result back to memory. The last writeback clears the
AM bit in the normal directory entry. At this point, the
correspondingx cache line in memory holds the most recent
value.

Finally, we examine what happens when a read or a write
request arrives for a normal cache line ofx. If the AM bit
in the corresponding directory entry is clear, the behavior
of our active memory controller is exactly the same as the
base protocol. However, if the AM bit is set, it means that
the corresponding shadow cache line is cached in the dirty
exclusive state by one or more processors. Note that in this
protocol there are only two stable states for a shadow cache
line, namely, invalid and dirty exclusive. Also, from the
protocol execution discussed above it is clear that the same
shadow cache line can have simultaneous multiple writ-

ers. To satisfy the request for thex cache line, the home
node sends out interventions by reading the owners from
the shadow directory entry and keeping the normal direc-
tory entry in the pending state of the appropriate flavor until
the last intervention reply arrives. Every intervention reply
arrives at the home node and clears the source node from
the shadow directory. At this time, the home node also car-
ries out the reduction between the intervention reply and the
resident memory line. The final intervention reply triggers
the data reply carrying the requestedx cache line to the re-
quester.

4.3. Design Issues
In this section, we summarize implementation-specific

issues particular to multi-node active memory systems. Our
discussion touches on three topics, shadow page placement,
cache line invalidation, and deadlock avoidance.

P3P1 P2

. . .

SC

SC
SC

0

7
6

SCSC1. . .

Normal Space A Shadow Space A’

NC

P3

P2

P1

P0

P0

Figure 1. Page Placement for Transpose

Shadow page placement is a unique problem to multi-
node active memory systems. To understand the problem,
let us consider a memory snapshot from the matrix trans-
pose protocol execution in Figure 1. While servicing a re-
quest for a normal cache lineNC, the home node ofNC
needs to consult the directory entries of the corresponding
shadow cache lines,SC0, . . . , SC7. A naive shadow page
placement would necessitate network transactions to look
up the shadow directory entries and this overhead can be
a serious bottleneck. We solve this problem by placing
the normal space and the corresponding shadow space on
the same node. Figure 1 shows an example of a four node
system. The normal space is partitioned row-wise and the
shadow space is column-wise. This page placement guar-
antees that for any normal cache line request the home node
memory controller can locate all the directory entries of the
corresponding shadow cache lines on the same node. In ad-
dition, the same is true for shadow cache line requests. We
adopt the same method for the parallel reduction technique,
although there the address re-mapping is one-to-one instead
of one-to-many.

The next design issue we discuss is related to invalida-
tion messages. Since our system collects invalidation ac-
knowledgments at the requester, the acknowledgment mes-
sage typically carries the address of the requested cache line
(i.e. the cache line that is being written). But in active mem-

ory techniques the re-mapped shadow cache lines have dif-
ferent addresses from the corresponding normal cache line
addresses. So, the invalidation addresses can be different
from the requested addresses. If a normal cache line request
invalidates one or more shadow cache lines, a problem will
arise at the requester while gathering the invalidation ac-
knowledgments. The same problem will also happen for
shadow cache line requests. Note that the invalidation ac-
knowledgments are directly sent by the invalidating node to
the requester and they carry the address of the invalidated
line, not the address of the originally requested line. In nor-
mal systems, these two addresses are the same because one
cache line corresponds to a system-wide unique physical
address. We propose two solutions to this problem. The
first solution is to pack two addresses (the invalidation ad-
dress and the requested address) in the header of the invali-
dation request message from the home node to the invalidat-
ing node, so that the invalidating node can set the requested
address in the acknowledgment header. The second solution
is to carry out an address re-mapping operation again at the
invalidating node to compute the corresponding requested
address. We exploit our flexibility and use the second solu-
tion since it does not require changes to the message header
structure.

Finally, the possibility of generating multiple interven-
tions from a single request in active memory protocols has
ramifications on the deadlock avoidance strategy. Also, un-
like the baseline protocol, many of the active memory pro-
tocol handlers require more than one data buffer for trans-
ferring cache line sized data to and from the memory sys-
tem, and hence careful data buffer management schemes are
needed. However, we solve both the problems similarly to
conventional DSM systems—a handler running out of any
necessary resource (e.g. a data buffer or an outgoing net-
work queue slot) suspends execution and reschedules itself
at a later point in time instead of waiting for that resource.
This ensures forward progress by allowing the memory con-
troller to handle outstanding requests and break deadlock
cycles.

5. Applications and Simulation Methodology
In this section we discuss the applications we use to eval-

uate the performance of our active memory system and the
simulation environment we use to collect the results.

5.1. Applications
To evaluate the two multi-node active memory tech-

niques we use a range of applications—some are well-
known benchmarks while others are microbenchmarks writ-
ten to exhibit the potential of a particular technique. In Ta-
ble 1 we summarize the applications and the problem sizes
we use in simulation.

We use FFT from SPLASH-2 [18], FFTW [3], and a mi-
crobenchmark called Transpose to evaluate the performance

Table 1. Applications and Problem Sizes
Applications Problem Sizes

SPLASH-2 FFT 1M points
FFTW 8K×16×16 matrix

Transpose 1K×1K matrix
Dense MMM 256×256 matrix

Spark98Kernel 64K×64K matrix, 1M non-zeros
SparseFlow 512K nodes and 1M edges

MSA 64×128K matrix

of the matrix transpose techniques. We parallelized FFTW
for multi-node shared memory systems. The microbench-
mark reads and writes to a matrix and its transpose, and
hence is highly memory-bound. The normal executions of
all these applications are optimized with tiling and padding.
Tiling is used to reduce cache misses, especially remote
cache misses, during the transpose phase. Padding is used
to reduce conflict misses in the cache. Without these opti-
mizations, active memory techniques result in even larger
speedup than that presented in Section 6.

To evaluate parallel reduction we use the dense matrix
multiplication (Dense MMM) kernel, a modified Spark98
kernel that parallelizes one call to LocalSMVP [12], a mi-
crobenchmark called SparseFlow that computes a function
on the in-flow of every edge incident on a node and sums
up the function outputs as the net in-flux at each node
in a sparse multi-source flow graph, and a microbench-
mark called Mean Square Average (MSA) that calculates
the arithmetic mean of squares of the elements in every col-
umn of a matrix. All four applications use addition as the
underlying reduction operation.

5.2. Simulation Environment

The main processor runs at 2 GHz and is equipped with
separate 32 KB primary instruction and data caches that are
two-way set associative and have a line size of 64 bytes.
The secondary cache is unified, 512 KB, two-way set as-
sociative and has a line size of 128 bytes. We also assume
that the processor ISA includes prefetch and prefetch ex-
clusive instructions. In our processor model a load miss
stalls the processor until the first double-word of data is re-
turned, while store misses will not stall the processor un-
less there are already references outstanding to four differ-
ent cache lines. The processor model also contains fully-
associative 64-entry instruction and data TLBs and we ac-
curately model the latency and cache effects of TLB misses.
Our simulation environment is derived from that in [5],
which was validated against a real DSM multiprocessor.

The embedded active memory processor is a dual-issue
core running at the 400 MHz system clock frequency. The
instruction and data cache behavior of the active memory
processor is modeled precisely via a cycle-accurate simula-
tor similar to that for the protocol processor in [5]. Our ex-
ecution driven simulator models contention in detail within

the active memory controller, between the controller and
its external interfaces, at main memory, and for the system
bus. The access time of main memory SDRAM is fixed at
125 ns (50 system cycles), similar to that in recent com-
mercial high-end servers [15, 16]. We assume processor
interface delays of 1 system cycle inbound and 4 system cy-
cles outbound, and network interface delays of 16 system
cycles inbound and 8 system cycles outbound. We simulate
16-port crossbar switches in a fat-tree topology with a node-
to-network link bandwidth of 1 GB/s, which are all typical
of current system area networks. Since the latency of SAN
routers is improving quickly, we present results for slow
(150 ns hop time) as well as fast (50 ns hop time) routers.

6. Simulation Results
This section presents our simulation results for each of

the active memory techniques. We analyze parallel execu-
tion time and scalability for both normal and active memory
systems. We also explore the effects of network latency on
the achieved speedup.

6.1. Matrix Transpose

We present the results for the three matrix transpose ap-
plications described in Section 5.1. Figure 2 shows the com-
parison of parallel execution time for both normal and ac-
tive memory applications with two different network hop
times running on a 32-processor system. Transpose shows
the best speedup (relative to 32P normal executions) of 1.69
with 50 ns hop times and 2.01 with 150 ns. SPLASH-2
FFT and FFTW show speedup of 1.53, 1.82 with 150 ns
hop times and 1.34, 1.69 with 50 ns hops, respectively. Re-
call that we optimized the normal applications with tiling
and padding to avoid naive comparisons, yet active memory
systems still show significant speedup. It is also interesting
to note that the active memory executions with slow net-
works even outperform the normal executions with a three
times faster network.

Transpose SPLASH−2 FFT FFTW
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 3

2
P

ro
ce

ss
or

s

Synch
Write
Read
Busy

N1

A1

N2

A2

N1

A1

N2

A2

N1

A1

N2

A2

N1: Normal execution with 150ns hop time
A1: AM−optimized execution with 150ns hop time
N2: Normal execution with 50ns hop time
A2: AM−optimized execution with 50ns hop time

Figure 2. Matrix Transpose on 32 Processors

As explained in Section 3, the matrix transpose tech-
nique improves performance by eliminating the transpose

phase, significantly reducing read stall time by eliminating
cache misses—both local and remote. We found that the
number of second level cache misses is reduced by 51%,
49% and 40% in Transpose, SPLASH-2 FFT and FFTW, re-
spectively. Our technique also enhances TLB performance.
Long-strided memory accesses in the normal applications
hurt TLB performance, while shorter stride accesses in the
active memory system yield better TLB performance. The
simulation results show that the active memory system re-
moves more than 95% of TLB misses. However, caching
TLB entries in the primary data cache and L2 cache alle-
viates TLB miss penalties for the normal applications, and
therefore saving TLB misses is a smaller performance ef-
fect than saving cache misses. We also save processor busy
time because the main processors do not need to execute
the transpose phase. Each application shows a 65% (Trans-
pose), 12% (SPLASH-2 FFT) and 19% (FFTW) reduction
in busy time. Finally, we reduce synchronization stall time
by 52%, 83% and 82% with 150 ns hop times and 46%, 67%
and 83% with 50 ns hops, in Transpose, SPLASH-2 FFT
and FFTW, respectively. There are several reasons for this.
First, normal applications have more barriers because they
need barriers before and after the transpose phase. Sec-
ond, while the active memory technique distributes mem-
ory accesses over the entire program execution, normal ap-
plications generate bursts of memory accesses (especially
remote accesses) during the transpose phase, which results
in system-bus and network congestion. Congested memory
systems give rise to load imbalance and result in high syn-
chronization stall times.

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of Processors

Sp
ee

du
p

AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 3. Scalability of Transpose

Next we show the scalability of the in-memory transpose
technique. Figures 3, 4 and 5 show the speedup of Trans-
pose, FFTW and SPLASH-2 FFT relative to uniprocessor
normal execution with two different network hop times as
the number of processors increases. These results show that
our active memory system scales significantly better than
normal memory systems. In all configurations—for differ-
ent numbers of processors and network hop times—our ac-
tive memory system always outperforms the normal system.
Further, the performance gap between our system and nor-

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of Processors

Sp
ee

du
p

AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 4. Scalability of FFTW

1 2 4 8 16 32
0

5

10

15

20

25

30

35

Number of Processors

Sp
ee

du
p

Prefetched AM with h=50ns
Prefetched Normal with h=50ns
AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 5. Scalability of SPLASH-2 FFT

mal systems widens as the number of processors increases.
For instance, for FFTW with a 150 ns hop time, our sys-
tem is 6% faster than the normal system on 1 processor, but
82% faster for 32 processors. The scalability of our active
memory system comes mainly from saving remote memory
accesses. Here, the ratio between local miss saving and re-
mote miss saving is important. For instance, while we save
only local misses in a 1-processor system, we can save half
local misses and half remote misses in a 2-processor system.
Though the total number of reduced cache misses might be
the same, we can get better speedup on a 2-processor system
because we save the larger remote cache miss penalties.

Figure 5 includes results for a software prefetched
SPLASH-2 FFT. To the extent that it can hide remote miss
latencies, software prefetching has a similar effect to our
active memory technique. The benefit of active memory
systems is reduced if software prefetching is used in nor-
mal applications. The speedup of our technique over the
normal application in a 32-processor system with 50 ns hop
time is 1.17 in the prefetched version, and 1.34 in the non-
prefetched case. However, note that our active memory
system still shows better performance than normal mem-
ory systems. First, our system also takes advantage of the
prefetch optimization. Note that the active memory speedup
of the prefetched version is 32.10 while the non-prefetched
active memory speedup is 28.72 in a 32-processor system.
Second, though software prefetching can tolerate remote

cache miss penalties, it still generates the same number of
memory accesses. Our technique actually reduces the num-
ber of memory accesses. This difference results in lower
memory system congestion, and smaller synchronization
stall times than normal systems. The simulation results
show a 79% reduction of synchronization stall time in our
system.

6.2. Parallel Reduction
We present the results for the four parallel reduction ap-

plications described in Section 5.1. All the applications
use software prefetching to hide remote memory latency as
much as possible. Figure 6 shows the comparison of par-
allel execution time with two different hop times for both
normal and active memory applications running on a 32-
processor system. As we have already mentioned, the ac-
tive memory technique benefits by saving both processor
busy time and read stall time, the latter being the dominant
factor. With a 150 ns hop time, MSA achieves a speedup of
1.64 over the 32-processor normal execution while Sparse-
Flow, Dense MMM, and Spark98Kernel enjoy speedup of
2.81, 1.19, and 1.30, respectively. The reduction in busy
time for the four applications is respectively 27.6%, 63.7%,
8.61%, and 13.8%. We also found that for each application
the reduction in L2 cache remote read stall time is 93.77%
(MSA), 89.22% (SparseFlow), 93.98% (Dense MMM), and
24.49% (Spark98Kernel).

MSA SparseFlow DenseMMM Spark98Kernel
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 3

2
P

ro
ce

ss
or

s

Synch
Write
Read
Busy

N1

A1

N2

A2

N1

A1

N2

A2

N1

A1

N2

A2

N1

A1

N2

A2

N1: Normal execution with 150ns hop time
A1: AM−optimized execution with 150ns hop time
N2: Normal execution with 50ns hop time
A2: AM−optimized execution with 50ns hop time

Figure 6. Parallel Reduction on 32 Processors

The surprisingly high reduction in the execution time of
SparseFlow stems from the sparse structure of the write op-
erations to the reduction vector. In normal executions even
if a cache line does not contribute anything to the final re-
duced vector, every data point is visited in the merge phase.
This is necessary since the reduction takes place entirely in
software and at the software level it is impossible to know
(especially when the reduced vector is sparsely written)
which cache lines ultimately contribute to the final reduced
value. On the other hand, in the active memory technique
the reduction is exposed to the memory controller and the
memory controller touches only those cache lines that con-

tribute to the final reduced value because the shadow cache
lines requested by the processors correspond only to these
“useful” normal cache lines. Dense MMM has a dominant
busy time and the reduction phase forms a small portion of
the total execution time. As a result, Amdahl’s Law lim-
its the achievable performance gain. Spark98Kernel mostly
suffers from load imbalance due to its sparse read pattern
that cannot be handled efficiently with static partitioning.
Still, our technique is able to reduce some of its busy and
read stall time. Even with a faster network, this active
memory technique continues to achieve a substantial reduc-
tion in parallel execution time for all applications except
the compute-bound Dense MMM. The speedup over nor-
mal 32-processor executions for MSA, SparseFlow, Dense
MMM, and Spark98Kernel are 1.55, 2.71, 1.15, and 1.33.

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of Processors

Sp
ee

du
p

AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 7. Scalability of Dense MMM

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of Processors

Sp
ee

du
p

AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 8. Scalability of MSA

Figures 7 and 8 show the speedup of Dense MMM and
MSA relative to uniprocessor normal execution as the num-
ber of processors vary. Figures 9 and 10 show similar
curves for Spark98Kernel and SparseFlow. It is clear that
the active memory optimization achieves significantly bet-
ter scalability than the normal applications. For 150 ns
hop times on 32 processors, AM-optimized MSA, Dense
MMM, Spark98Kernel, and SparseFlow enjoy speedup of
25.16, 27.91, 14.18, and 21.51, respectively, while the
normal applications (not using AM optimization) achieve
speedup of only 15.39, 23.47, 10.93, and 7.64. Decreas-
ing the hop time to 50 ns boosts the speedup of the AM-

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of Processors

Sp
ee

du
p

AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 9. Scalability of Spark98Kernel

1 2 4 8 16 32
0

5

10

15

20

25

30

Number of Processors

Sp
ee

du
p

AM with h=50ns
AM with h=150ns
Normal with h=50ns
Normal with h=150ns

Figure 10. Scalability of SparseFlow

optimized applications to 27.97, 29.12, 20.42, and 26.15,
respectively, while the normal applications achieve speedup
of 18.02, 25.22, 15.33, and 9.65. As the number of proces-
sors increase, the performance gap between active memory
optimization and normal execution widens. Since the to-
tal volume of memory accesses in the merge phase remains
constant as the number of processors varies, withP pro-
cessors1

P fraction of the accesses remain local while the
remainingP−1

P fraction are remote memory accesses. It is
clear that this remote memory fraction increases with in-
creasingP . The merge phase of the parallel reduction oper-
ation therefore suffers from an increasing number of remote
memory accesses as the system scales. With active memory
optimization, however, all these accesses are moved from
the critical path of execution to the writeback messages.
Therefore, the scalability of the merge phase is greatly en-
hanced, resulting in the widening performance gap between
active memory optimization and normal execution as the
system scales.

7. Conclusions
Certain classes of scientific applications written for

cache-coherent distributed shared memory multiprocessors
suffer from all-to-all communication patterns that ulti-
mately get translated into remote cache misses even with
proper page placement algorithms. In this paper we fo-
cus on two such classes of parallel kernels, namely, ma-

trix transpose and parallel reduction. We adopt the address
re-mapping technique, previously used to improve locality
of cache accesses in uniprocessor and single-node multi-
processors (SMPs), to reduce the remote miss overhead in
multi-node systems using these two kernels.

This paper shows that our single-node active memory
controller can be used in multi-node active memory clus-
ters without any hardware modifications by designing the
appropriate extensions to the DSM cache coherence pro-
tocol. We detail the novel cache coherence protocols that
solve the data coherence problems inherent in address re-
mapping techniques. We also discuss issues unique to
multi-node re-mapping techniques such as shadow page
placement and deadlock avoidance. Our simulation re-
sults show that the multi-node active memory techniques
we present scale significantly better than the normal appli-
cations. For a 32-processor system, AM-optimized applica-
tions enjoy speedup from 1.53 to 2.01 for matrix transpose
and from 1.19 to 2.81 for parallel reduction over normal ex-
ecutions that do not use active memory optimization. The
end result is a completely transparent and highly scalable
system that can efficiently support otherwise non-scalable
parallel operations without introducing new hardware cost
over single-node active memory systems and without affect-
ing the performance of non-active memory programs. Our
system is also flexible enough to support new multi-node
active memory operations—the designer needs only to write
the necessary coherence protocol extensions.

Acknowledgments

This research was supported by Cornell’s Intelligent
Information Systems Institute and NSF CAREER Award
CCR-9984314.

References
[1] M. Chaudhuri, D. Kim and M. Heinrich. Cache Coherence

Protocol Design for Active Memory Systems. InProceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 83–89, June
2002.

[2] J. Drapper et al. The Architecture of the DIVA Processing-In-
Memory Chip. InProceedings of the 16th ACM International
Conference on Supercomputing, pages 14–25, June 2002.

[3] M. Frigo and S. G. Johnson. FFTW: An Adaptive Software
Architecture for the FFT. InProceedings of the 23rd Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, pages 1381–1384, 1998.

[4] M. J. Garzaran et al. Architectural Support for Parallel Reduc-
tions in Scalable Shared-Memory Multiprocessors. InPro-
ceedings of the 10th International Conference on Parallel Ar-
chitectures and Compilation Techniques, September 2001.

[5] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing
the Simulation Loop. InProceedings of the Ninth Interna-
tional Conference on Architectural Support for Programming

Languages and Operating Systems, pages 49–58, November
2000.

[6] M. Heinrich, E. Speight, and M. Chaudhuri. Active Memory
Clusters: Efficient Multiprocessing on Commodity Clusters.
In Proceedings of the 4th International Symposium on High-
Performance Computing, Lecture Notes in Computer Science
(vol. 2327), pages 78–92, Springer-Verlag, May 2002.

[7] InfiniBand Architecture Specification, Volume 1.0, Release
1.0. InfiniBand Trade Association, October 24, 2000.

[8] Y. Kang et al. FlexRAM: Toward an Advanced Intelligent
Memory System.International Conference on Computer De-
sign, October 1999.

[9] D. Kim, M. Chaudhuri, and M. Heinrich. Leveraging Cache
Coherence in Active Memory Systems. InProceedings of
the 16th ACM International Conference on Supercomputing,
pages 2–13, June 2002.

[10] A.-C. Lai and B. Falsafi. Memory Sharing Predictor: The
Key to a Speculative Coherent DSM. InProceedings of the
26th International Symposium on Computer Architecture,
pages 172–183, May 1999.

[11] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. InProceedings of the 24th Interna-
tional Symposium on Computer Architecture, pages 241–251,
June 1997.

[12] D. R. O’Hallaron, J. R. Shewchuk, and T. Gross. Architec-
tural Implications of a Family of Irregular Applications. In
Fourth IEEE International Symposium on High Performance
Computer Architecture, pages 80–89, February 1998.

[13] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A
Computation Model for Intelligent Memory. InProceedings
of the 25th International Symposium on Computer Architec-
ture, 1998.

[14] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors. InProceedings of the 29th
International Symposium on Computer Architecture, May
2002.

[15] SGI 3000 Family Reference Guide.
http://www.sgi.com/origin/3000/

[16] Sun Enterprise 10000 Server–Technical White Paper.
http://www.sun.com/servers/white–papers/

[17] Third Generation I/O Architecture.
http://www.intel.com/technology/3GIO/

[18] S. C. Woo et al. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations. InProceedings of
the 22nd Annual International Symposium on Computer Ar-
chitecture, pages 24–36, June 1995.

[19] Wm. A. Wulf and S. A. McKee. “Hitting the Memory
Wall: Implications of the Obvious”. InComputer Architec-
ture News, 23(1):20–24, March 1995.

[20] L. Zhang et al. “The Impulse Memory Controller”,IEEE
Transactions on Computers, Special Issue on Advances
in High Performance Memory Systems, pages 1117–1132,
November 2001.

