
Abstract—Scalable cache coherence protocols have become the
key technology for creating moderate to large-scale shared-
memory multiprocessors. Although the performance of such
multiprocessors depends critically on the performance of the
cache coherence protocol, little comparative performance data is
available. Existing commercial implementations use a variety of
different protocols including bit-vector/coarse-vector protocols,
SCI-based protocols, and COMA protocols. Using the program-
mable protocol processor of the Stanford FLASH multiprocessor,
we provide a detailed, implementation-oriented evaluation of four
popular cache coherence protocols. In addition to measurements
of the characteristics of protocol execution (e.g. memory over-
head, protocol execution time, and message count) and of overall
performance, we examine the effects of scaling the processor
count from 1 to 128 processors. Surprisingly, the optimal protocol
changes for different applications and can change with processor
count even within the same application. These results help iden-
tify the strengths of specific protocols and illustrate the benefits of
providing flexibility in the choice of cache coherence protocol.

I.  INTRODUCTION

In the late 1980s and early 1990s, the development of directory-
based cache coherence protocols allowed the creation of cache-
coherent distributed shared-memory (DSM) multiprocessors. These
DSM multiprocessors are also called Cache Coherent Non-Uniform
Memory Access (CC-NUMA) machines, reflecting the disparity
between access times to local and remote memories. The availability
of cache coherence, and hence software compatibility with small-
scale bus-based machines, popularized the commercial use of DSM
machines for scalable multiprocessors. 

A. Cache Coherence Protocol Design Space

Commercial CC-NUMA multiprocessors use variations on three
major protocols: bit-vector/coarse-vector [10][17][28], SCI [4][9]
[19], and COMA [5]. In addition, a number of other protocols have
been proposed for use in research machines [2][7][20] [23][29]. The
research protocols have tended to focus on changing the bit-vector
directory organization to scale more gracefully to larger numbers of
processors. All existing scalable cache coherence protocols rely on
the use of distributed directories [1], but beyond that the protocols
vary widely in how they deal with scalability, as well as what tech-
niques they use to reduce remote memory latency. 

Cache coherence protocols can be evaluated on how well they
deal with the following four issues:

Protocol memory efficiency: how much memory overhead does
the protocol require? Memory usage is critical for scalability. We
consider only protocols that have memory overhead that scales effi-
ciently with the number of processors. To achieve this efficient scal-

ing, some protocols use hybrid solutions (such as a coarse-vector
extension of a standard bit-vector protocol), while others keep shar-
ing information in non-bit-vector data structures to reduce memory
overhead. The result is that significant differences in memory over-
head can still exist in scalable coherence protocols.

Direct protocol overhead: how much overhead do basic protocol
operations require? This often relates to how directory information is
stored and updated, as well as attempts to reduce global message traf-
fic. Direct protocol overhead is the execution time for individual pro-
tocol operations, measured by the number of clock cycles needed per
operation. This research splits the direct protocol overhead into two
parts: the latency overhead and the occupancy overhead. In DSM
architectures, the node controller contributes to the latency of each
message it handles. More subtly, after the controller sends the reply
message it may continue with bookkeeping or state manipulations.
This type of overhead is controller occupancy, and does not affect the
latency of the current message, but it may affect the latency of subse-
quent messages because it determines the rate at which the node con-
troller can handle messages. Keeping both latency and occupancy to
a minimum is critical in high performance DSM machines [14].

Message efficiency: how well does the protocol perform as mea-
sured by the global traffic generated? Most protocol optimizations try
to reduce message traffic, so this aspect is accounted for in message
efficiency. The existing protocols vary widely in this dimension. For
example, COMA tries to reduce global traffic and improve perfor-
mance by migrating cache lines. Other protocols sacrifice message
efficiency (e.g., coarse-vector) to achieve memory scalability while
maintaining protocol simplicity. Still others add traffic in the form of
replacement hints to maintain precise sharing information. 

Protocol scalability: Protocol scalability depends on both mini-
mizing message traffic and on avoiding contention. In the latter area,
some protocols (such as SCI) have explicit features to reduce conten-
tion and hot-spotting in the memory system.

B. Evaluating the Cache Coherence Protocols

The tradeoffs among these coherence protocols are extremely
complex. No existing protocol is able to optimize its behavior in all
four of the areas outlined above. Instead, a protocol focuses on some
aspects, usually at the expense of others. While these tradeoffs and
their qualitative effects are important, the bottom line remains how
well a given protocol performs in practice. Determining this requires
careful accounting of the actual overhead encountered in implement-
ing each protocol. 

Perhaps the most difficult aspect of such an evaluation is perform-
ing a fair comparison of the protocol implementations. Because most
DSM machines fix the coherence protocol in hardware, comparing
different DSM protocols means comparing performance across dif-
ferent machines. This is problematic because differences in machine
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architecture, design technology, or other artifacts can obfuscate the
protocol comparison [24]. Fortunately, the FLASH machine [16]
being built at Stanford University provides a platform for such a
study. FLASH uses a programmable protocol engine that allows the
implementation of different protocols while using an identical main
processor, cache, memory, and interconnect. This focuses the evalua-
tion on the differences introduced by the protocols themselves.
Nonetheless, such a study does involve the non-trivial task of imple-
menting and tuning each cache coherence protocol. 

This research provides an implementation-based, quantitative
analysis of the performance, scalability, and robustness of four scal-
able cache coherence protocols running on top of a single architec-
ture, the FLASH multiprocessor. The four coherence protocols
examined are bit-vector/coarse-vector, dynamic pointer allocation,
SCI, and COMA. Each protocol is a complete implementation that
runs without modification both under simulation and on the real
FLASH machine. This is critical in a comparative performance eval-
uation since each protocol is known to be correct and to handle all
deadlock avoidance cases, some of which can be subtle and easily
overlooked in a paper design high-level protocol implementation.
Through this comparison, this research demonstrates the utility of a
programmable node controller that allows flexibility in the choice of
cache coherence protocol. The results of this study can also be used
to guide the construction of future, more robust, scalable coherence
protocols.

II.  CACHE COHERENCE PROTOCOLS

This section describes our implementation of the four different
protocols. All of the protocols use a distributed directory: the infor-
mation about different memory blocks is kept in different directories
that are distributed with the memory modules. A memory block is the
smallest cacheable unit of storage; each block may be cached in one
or more processor’s caches. The node containing the memory and
directory information for a single memory block is called the home.

A. Bit-vector/Coarse-vector

The bit-vector protocol [6] is designed to be fast and efficient for
small to medium-scale machines, and is the simplest of all the cache
coherence protocols. For each cache line in main memory, the bit-
vector protocol keeps a directory entry that maintains all of the nec-
essary state information for that cache line. Most of the directory
entry is devoted to a series of presence bits from which the bit-vector
protocol derives its name. A presence bit is set if the corresponding
node’s cache currently contains a copy of the cache line, and cleared
otherwise. 

In systems with large numbers of processors, P, increasing the
number of presence bits becomes prohibitive because the total direc-
tory memory scales as P2, and the width of the directory entry
becomes unwieldy from an implementation standpoint. To scale the
bit-vector protocol to these larger machine sizes the bit-vector proto-
col can be converted into a coarse-vector protocol [10]. The coarse-
ness of the protocol is defined as the number of nodes each presence
bit represents. Our 64-bit directory entry contains 48 presence bits, so
a 64-processor machine has a coarseness of two, and a 128-processor
machine has a coarseness of four. For the coarse-vector protocol, a
presence bit is set if any of the nodes represented by that bit are cur-
rently sharing the cache line. The coarse-vector protocol therefore
keeps imprecise sharing information, compromising message effi-
ciency for memory efficiency and continued scalability. With a 64-bit

directory entry, the bit-vector/coarse-vector protocol maintains a
6.25% memory overhead at all machine sizes.

The simplicity of the bit-vector/coarse-vector protocol transitions
is the main reason for its popularity. The Stanford DASH
multiprocessor [18] and the HAL-S1 [28] both implement a bit-vec-
tor protocol. Although these machines implement bit-vector at the
directory level, they both have a built-in coarseness of four, since
each bit in the directory entry corresponds to a single node that is
itself a 4-processor symmetric multiprocessor (SMP). In both these
machines a snoopy protocol is used to maintain coherence within the
cluster, and the bit-vector directory protocol maintains coherence
between clusters. The more scalable SGI Origin 2000 [17] imple-
ments a bit-vector/coarse-vector protocol where the coarseness tran-
sitions immediately from one to eight above 128 processors. 

B. Dynamic Pointer Allocation

The dynamic pointer allocation protocol [23] maintains precise
sharing information up to very large machine sizes. Its directory
entry maintains state bits similar to those kept by the bit-vector pro-
tocol, but instead of having a vector of presence bits, the directory
entry serves only as a directory header, with additional sharing infor-
mation maintained in a linked list structure. For efficiency, the direc-
tory header contains a local bit indicating the caching state of the
local processor, as well as a field for the first sharer on the list. It also
contains a pointer to the remaining list of sharers. The remainder of
the sharing list is allocated from a static pool of data structures called
the pointer/link store that contains a pointer to another sharer and a
link to the next element in the sharing list. Initially the pointer/link
store is linked together into a large free list. 

When a processor reads a cache line, the controller removes a new
pointer from the head of the free list and links it to the head of the
linked list being maintained by that directory header. This is analo-
gous to the setting of a presence bit in the bit-vector protocol. When a
cache line is written, the controller traverses the linked list of sharers
and sends invalidation messages to each sharer in the list. When it
reaches the end of the list, the entire list is reclaimed and placed back
on the free list.

Unfortunately, the dynamic pointer allocation protocol has an
additional complexity. Because the pointer/link store is a fixed
resource, it is possible to run out of pointers. To avoid the costly pro-
cess of forcibly reclaiming pointers by selectively invalidating pro-
cessor caches, the dynamic pointer allocation protocol makes use of
replacement hints. In DSM machines, several cache coherence proto-
cols can benefit by knowing when a line has been replaced from a
processor’s cache, even if the line was only in a shared state.
Dynamic pointer allocation uses replacement hints to traverse the
linked list of sharers and remove entries from the list. Replacement
hints prevent an unnecessary invalidation and invalidation acknowl-
edgment from being sent the next time the cache line is written, and
return unneeded pointers to the free list where they can be re-used.
However, replacement hints do have a cost in that they are an addi-
tional message type that has to be handled by the system.

The directory memory overhead of dynamic pointer allocation is
the same as that for the bit-vector protocol, with additional memory
required for the pointer/link store. Simoni [23] recommends the
pointer/link store have a number of entries equal to eight to sixteen
times the number of cache lines in the local processor cache. Assum-
ing a processor cache size of 1MB, a pointer/link store multiple of
sixteen, and 64MB of memory per node, the memory overhead of the
dynamic pointer allocation protocol is 7.03%.



C. Scalable Coherent Interface

The Scalable Coherent Interface (SCI) protocol is also known as
IEEE Standard 1596-1992 [22]. The goal of the SCI protocol is to
scale gracefully to large numbers of nodes with minimal memory
overhead. The main idea behind SCI is to keep a linked list of shar-
ers, but unlike the dynamic pointer allocation protocol, this list is
doubly-linked and distributed across the nodes of the machine. The
directory entry for SCI is 1/4 the size of the directory entries for the
two previous protocols because it contains only a pointer to the first
node in the sharing list.

To traverse the sharing list, the protocol must follow the pointer in
the directory header through the network until it arrives at the indi-
cated processor. That processor must maintain a “duplicate set of
tags” data structure that mimics the current state of its processor
cache. The duplicate tags structure consists of a backward pointer,
the current cache state, and a forward pointer to the next processor in
the list. The official SCI specification implements this data structure
directly in the secondary cache of the main processor, and thus SCI is
sometimes referred to as a cache-based protocol. In practice, since
the secondary cache is under tight control of the CPU and needs to
remain small and fast for uniprocessor nodes, most SCI-based archi-
tectures implement this data structure as a duplicate set of cache tags
in the main memory system of each node. 

The distributed nature of the SCI protocol has two advantages:
first, it reduces the memory overhead considerably because of the
smaller directory headers and the fact that the duplicate tag informa-
tion adds only a small amount of overhead per processor, propor-
tional to the number of processor cache lines rather than the much
larger number of local main memory cache lines; second, it reduces
hot-spotting in the memory system. Assuming 64 MB of memory per
node, a 1 MB processor cache, and a cache line size of 128 bytes, the
memory overhead of the SCI protocol is 1.66%. 

SCI can reduce hot-spotting compared to other protocols by
changing the distribution of requests in the system. In the previous
two protocols, unsuccessful attempts to retrieve a highly contended
cache line repeatedly re-issue to the same home memory module. In
SCI, the home node is asked only once, at which point the requesting
node is made the head of the distributed sharing list. The requesting
node retries by sending all subsequent requests to the old head of the
list, rather than the home node. Many nodes in turn may be in the
same situation, asking only their forward pointers for the data. Thus,
the SCI protocol forms an orderly queue for the contended line, dis-
tributing the requests evenly throughout the machine. This even dis-
tribution of requests often results in lower application
synchronization times.

The distributed nature does come at a cost though, as the state
transitions of the SCI protocol are quite complex due to the non-ato-
micity of most protocol actions. Nonetheless, because it is an IEEE
standard, has low memory overhead, and can potentially benefit from
its distributed nature, various derivatives of the SCI protocol are used
in several machines including the Sequent NUMA-Q [19] machine,
the HP Exemplar [4], and the Data General Aviion [9]. 

D. Cache Only Memory Architecture

The Cache Only Memory Architecture (COMA) protocol is fun-
damentally different from the protocols discussed earlier. COMA
treats main memory as a large cache, called an attraction memory
(AM), and provides automatic migration and replication of main
memory at a cache line granularity. COMA can potentially reduce

the cost of processor cache misses by converting high-latency remote
misses into low-latency local misses. The notion that the hardware
can automatically bring needed data closer to the processor without
advanced programmer information is the allure of the COMA proto-
col.

Our version of COMA is a flat COMA or COMA-F [26] protocol
that assigns a static home for the directory entries of each cache line
just as in the previous protocols. If the cache line is not in the local
AM, the statically assigned home is immediately consulted to find
out where the data resides. COMA-F removes the disadvantages of
the hierarchical directory structure of the original COMA protocol
and makes it possible to implement COMA on a traditional DSM
architecture. For brevity we refer to our COMA-F protocol simply as
COMA.

Unlike the other protocols, COMA needs extra “reserved” mem-
ory on each node to efficiently support cache line replication. With-
out reserved memory, COMA could only migrate data, since any new
data placed in one AM would displace the last remaining copy of
another cache line. In COMA, one copy of each cache line is desig-
nated the master copy, which is carefully tracked on displacements to
prevent losing the last remaining copy of the line. By adding reserved
memory, COMA can replicate data and need only take additional
action if it is displacing a master copy. Extra reserved memory is cru-
cial in keeping the number of AM displacements to a minimum. [15]
shows that for many applications half of a direct-mapped AM should
be reserved memory. 

Our COMA protocol uses dynamic pointer allocation as its under-
lying directory organization. The only difference in the data struc-
tures is that COMA keeps additional tag and state fields in the
directory header to identify which global cache line is currently in the
AM. Our AM is direct-mapped for both simplicity and speed.
Because COMA must perform a tag comparison of the cache miss
address with the address in the AM, COMA can potentially have
higher miss latencies than the previous protocols. If the line is in the
local AM then ideally COMA will be a win since a potential slow
remote miss has been converted into a fast local miss. If however, the
tag check fails and the line is not present in the local AM, COMA has
to go out and fetch the line as normal, but it has delayed the fetch of
the remote line by the time it takes to perform the tag check. 

Despite the complications of extra tag checks and master copy dis-
placements, the hope is that COMA’s ability to turn remote capacity
or conflict misses into local misses will outweigh any of these poten-
tial disadvantages. Several machines implement variants of the
COMA protocol including the Swedish Institute of Computer Sci-
ence’s Data Diffusion Machine [11], and the KSR1 [5] from Kendall
Square Research.

III.  SIMULATION METHODOLOGY

The Stanford FLASH multiprocessor [16] is an ideal experimental
vehicle for studying the performance impact of cache coherence pro-
tocols. A FLASH node looks like a standard CC-NUMA node, with
one exception—FLASH replaces the hard-wired node controller with
a flexible, programmable engine called MAGIC. MAGIC contains an
embedded protocol processor that runs software code sequences, or
handlers, to implement the cache coherence protocol. By taking
advantage of FLASH’s flexibility, we can write handlers for each of
our four cache coherence protocols and run them on the protocol pro-
cessor. Thus, we can hold constant the other aspects of the FLASH
architecture (i.e., processor, memory, and network characteristics)
and change only the cache coherence protocol the machine is run-



ning. The result is an implementation-oriented, unbiased evaluation
of the cache coherence protocols in this study.

One of the FLASH design goals was to maintain the advantages of
implementing coherence protocols in software, but operate at the
speed of hardware cache-coherent machines. Table I shows read
latencies in nanoseconds for FLASH and current commercially avail-
able DSM machines. The table shows three read times: a local cache
read miss, a remote read miss where the data is supplied by the home
node, and a remote read miss where the data must be supplied by a
dirty third node. All times assume no contention and are measured
from the time the cache miss first appears on the processor bus to the
time the first word of the data reply appears on the processor bus. All
data is supplied by the machine’s designer via personal communica-
tion or publication [3][8][17][27]. 

The main point here is that despite running its protocols in “soft-
ware”, FLASH has read latencies comparable to (and often better
than) commercially available hardware cache-coherent machines.
The strong baseline performance of FLASH is an important compo-
nent of this study. If FLASH were running in a realm where node
controller bandwidth was consistently a severe bottleneck, then the
performance of the cache coherence protocols would be determined
almost entirely by their direct protocol overhead. In a more balanced
machine like FLASH, direct protocol overhead is only one aspect of
the protocol comparison, and other aspects of the comparison like
message efficiency and protocol scalability features come into play. 

A. Simulation Parameters

At the time of this writing, a four-processor FLASH machine is up
and running, but to obtain performance and scalability results up to
128 processors we use execution-driven simulation for this study.
The processor simulator is Mipsy, an emulation-based simulator that
is part of the SimOS suite [21] and interfaces directly to FlashLite,
the system-level simulator. Mipsy models the processor and its
caches, while FlashLite models everything from the processor bus
downward. FlashLite uses a lightweight threads package that accu-
rately models the timing of the actual FLASH system hardware, and
properly simulates contention at all interfaces. The protocol proces-
sor thread of FlashLite is itself an instruction set emulator that runs
the compiled protocol code that runs on the real machine. To factor
out the effect of protocol instruction cache misses, we simulate a per-
fect MAGIC instruction cache in this study, rather than the normal
16 KB MAGIC instruction cache. Other system parameters are taken
directly from the FLASH machine [13].

In this study, Mipsy simulates a single-issue 300 MHz processor
with blocking reads and non-blocking writes. The processor has split
first-level instruction and data caches of 32 KB each and a combined

TABLE I
READ LATENCIES OF CURRENT DSM MACHINES (ns)A

Remote Read

Machine Protocol
Local 
Read

Clean at 
Home

Dirty 
Remote

DG NUMALiine SCI 165 2400 3400

FLASH Flexible 190 960 1445

HAL S1 BV 180 1005 1305

HP Exemplar SCI 450 1315 1955

SGI Origin 2000 BV/CV 200 710 1055

A. Remote times assume the average number of network hops for 32
processors (except for HAL-S1 which only scales to 16 processors). 

1 MB, 2-way set-associative secondary cache with 128 byte cache
lines. Though the processor has blocking reads, it supports non-
blocking prefetch operations, allowing us to use prefetched versions
of our applications to simulate a more aggressive processor design.
Moreover, all the protocols operate in a relaxed consistency mode
that allows write data to be returned to the processor before all inval-
idation acknowledgments have been collected. The combination of
prefetching and a relaxed consistency mode can elicit occupancy-
induced protocol performance problems that might remain latent in
lower-performance environments.

B. Applications

To properly assess the scalability and robustness of cache coher-
ence protocols it is necessary to choose applications that scale well to
large machine sizes. This currently limits us to the realm of scientific
applications, but does not limit the applicability of our results. (See
[25] for results at smaller machine sizes with multiprogramming and
operating system workloads). Our applications are selected from the
SPLASH-2 application suite [30]. In particular, this study examines
FFT, Ocean, Radix-Sort, LU, Barnes-Hut, and Water. All applications
except Barnes-Hut and Water use hand-inserted prefetches to reduce
read miss penalty.

So that the applications achieve reasonable parallel performance,
their problem sizes are chosen to achieve a target minimum parallel
efficiency at 128 processors. Parallel efficiency is defined as speedup
divided by the number of processors. An application’s problem size
is determined by choosing a target minimum parallel efficiency of
60% for the best version of the application running the best protocol
at 128 processors. In addition, multiple versions of each application
are examined, varying from highly-optimized to less-tuned versions.
Most of the applications have two main optimizations that are selec-
tively turned off: data placement, and an optimized communication
phase. As another variation, the less-tuned versions of the applica-
tions are also run with smaller 64 KB processor caches. Since this
cache size is smaller than the working sets of some of our applica-
tions, these configurations place different demands on the cache
coherence protocols than the large-cache configurations, and lead to
some surprising results.

IV.  RESULTS

This section presents the results of our protocol comparisons.
Although this section does not discuss every simulation result in the
study, the results presented are representative of the entire set and
show the range of performance observed for each of the cache coher-
ence protocols. The full set of results can be found in [12].

A. Direct Protocol Overhead

To help understand the application performance results, it is first
useful to examine what happens on a cache read miss under each pro-
tocol. Figure 1 shows the protocol processor latencies and occupan-
cies for two common read miss cases: a local read miss, and a remote
read miss satisfied by the home node. The remote read miss is sepa-
rated into the portion of the request handled at the requester on the
way to the home, the portion handled by the home itself, and the
reply handled back at the requester. Note also that the latency in
Figure 1 is not the overall end-to-end miss latency, but rather just the
handler component (path length) of that part of the miss. 

Figure 1 shows that the latency for the local read miss case is
about the same in all the protocols, as are the latencies incurred at the
home for the remote read case and at the requester on the read reply.



The real latency difference appears in the portion of the remote read
miss incurred at the requester. The bit-vector and dynamic pointer
allocation protocols do not keep any local state for remote lines so
they simply forward the remote read miss into the network with a
latency of 3 protocol processor cycles. COMA and SCI, however, do
keep local state on remote lines, and consulting this state results in a
significant extra latency penalty. Although COMA and SCI incur
larger latencies at the requester on remote read misses, this is the cost
of trying to gain an advantage at another level—COMA tries to con-
vert remote misses into local misses and SCI tries to keep a low
memory overhead and reduce contention by distributing its directory
state.

The latency differences between the protocols are small compared
to the occupancy differences shown on the right-hand side of
Figure 1. In the local read case, bit-vector, COMA, and dynamic
pointer allocation have only marginally larger occupancies than their
corresponding latencies. But SCI incurs almost five times the occu-
pancy of the other protocols on a local read miss. For the remote read
case at the requester SCI again suffers a huge occupancy penalty. In
addition, both SCI and COMA have large occupancies at the
requester on the read reply, although in this case COMA has the
highest controller occupancy. The reasons behind the higher occu-
pancies of SCI and COMA at the requester are discussed in turn,
below.

SCI’s high occupancy at the requester is due to its cache replace-
ment algorithm. SCI does not use replacement hints, but instead
maintains a set of duplicate cache tags. On every cache miss, whether
local or remote, SCI must roll out the block that is being displaced
from the cache after first handling the current miss. The details of
SCI roll out are discussed in [12] and account for the large occupan-
cies incurred at the requester in the first two cases in Figure 1. The 23
cycle occupancy at the requester on the reply stems from the way SCI
maintains its distributed linked list of sharing information. After the
data is returned to the processor, the requesting node must notify the
old head of the sharing list that it is no longer the head. The process
of looking up the duplicate tag information to check the cache state,
and then sending the change-of-head message accounts for the addi-
tional occupancy on the read reply. 

COMA incurs 10 cycles of occupancy above and beyond its
latency for the portion of a remote read miss handled at the request-
ing node. Besides the normal update of its AM data structures,
COMA has to deal with the case of a conflict between the direct-
mapped AM and the 2-way set associative processor secondary
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Fig. 1. FLASH protocol latency and occupancy comparison. Latency is the 
handler path length to the first send instruction, and occupancy is the total 
handler path length.

cache, adding some additional overhead to the handler. The largest
controller occupancy for COMA, however, is incurred at the
requester on the read reply. COMA immediately sends the data to the
processor cache, incurring only one cycle of latency, but then it must
check to see if any AM replacements need to be performed, and if so,
send off those messages. Because this is the case of a reply generat-
ing additional requests, careful resource checks have to be made to
avoid deadlock. Once the AM replacement is sent, the handler must
then write the current data reply into the proper spot in the AM.
Although this particular case incurs high occupancy in COMA, the
good news is that it is not incurred at the home, and it occurs on a
reply that finishes a transaction, rather than a request which may be
retried many times, incurring large occupancy each time. 

B. Message Overhead

While the direct protocol overhead described above is handler-
specific, protocol message overhead is application-specific. In partic-
ular, message overhead is strongly dependent on application sharing
patterns, and specifically on the number of readers of a cache line in
between writes to that line. However, examining the average mes-
sage overhead across all the applications yields a few interesting
points.

In uniprocessor systems, both COMA and dynamic pointer alloca-
tion send 1.3 times the number of messages of the other protocols.
This extra overhead is caused by the replacement hints used to keep
precise sharing information in those protocols. However, precise
sharing information begins to reap benefits at 64 processors when the
bit-vector protocol transitions to a coarse-vector protocol. At 64 and
128 processors, coarse-vector sends 1.03 and 1.47 times more mes-
sages than dynamic pointer allocation, respectively. 

COMA and SCI maintain about a 1.3 times average message over-
head over bit-vector/coarse-vector until the machine size reaches 128
processors. One of the main goals of the COMA protocol is to reduce
the number of remote read misses and therefore message count. The
fact that COMA's message overhead remains higher than bit-vec-
tor/coarse-vector for all but the largest machine sizes foreshadows
somewhat the COMA application results. For scalable performance,
SCI is willing to tradeoff message efficiency for scalability and
improved memory efficiency. 

C. Application Performance

Most of the graphs in this section show normalized execution time
versus the number of processors, with the processor count varying
from 1 to 128. For each processor count, the application execution
time under each of the four cache coherence protocols is normalized
to the execution time for the bit-vector/coarse-vector protocol for that
processor count. In other words, the bit-vector/coarse-vector bars
always have a height of 1.0, and shorter bars indicate better perfor-
mance. 

C.1  FFT

Figure 2 shows the results for prefetched FFT. The results indicate
that the choice of cache coherence protocol has a significant impact
on performance. For machine sizes up to 32 processors both the bit-
vector and dynamic pointer allocation protocols achieve perfect
speedup. Their small read latencies and occupancies are too much to
overcome for the SCI and COMA protocols, both of which are hurt
by their higher latencies at the requester on remote read misses, their
larger protocol processor occupancies, and their increased message
overhead. The relative performance of both SCI and COMA



decreases as the machine scales from 1 to 32 processors because the
amount of contention in the system increases and these higher occu-
pancy protocols are not able to compensate. 

Surprisingly, the optimal protocol for prefetched FFT changes
with machine size. For machine sizes up to 32 processors, bit-vector
is the best protocol, followed closely by dynamic pointer allocation.
But at 64 processors and above, where the bit-vector protocol turns
coarse, the relative execution times of the other protocols begin to
decrease to the point where dynamic pointer allocation is 1.36 times
faster, SCI is 1.09 times faster, and COMA is 1.05 times faster than
coarse-vector at 128 processors. While the bit-vector protocol sends
the fewest messages for machine sizes between 1 and 32 processors,
it sends the most messages for any machine size larger than 32 pro-
cessors. At 64 processors coarse-vector sends 1.4 times more mes-
sages than dynamic pointer allocation, and at 128 processors coarse-
vector sends 2.8 times more messages than dynamic pointer alloca-
tion. Even though the bit-vector/coarse-vector protocol handles each
individual message efficiently (with low direct protocol overhead), at
large machine sizes there are now simply too many messages to han-
dle, and performance degrades relative to the other protocols that are
maintaining precise sharing information.

To examine the effect of protocol performance on less-tuned
applications, we show the results for prefetched FFT without explicit
data placement directives in Figure 3. Qualitatively, for machine
sizes up to 64 processors, the results for FFT without data placement
are similar to the optimized results in Figure 2. The performance of
SCI and COMA relative to bit-vector is slightly worse than in opti-
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Fig. 2. Results for prefetched FFT.

Fig. 3. Results for prefetched FFT with no data placement.
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mized FFT. The lack of careful data placement results in fewer local
writes and more handlers per miss, factors that punish the protocols
with higher direct protocol overhead. 

Although the results for machine sizes up to 64 processors are
similar, the results at 128 processors are drastically different. Most
importantly, there is now over 2.5 times difference between the per-
formance of the best and the worst cache coherence protocol. At 128
processors, coarse-vector is now considerably worse than the three
other protocols—dynamic pointer allocation is 2.56 times faster, SCI
is 2.34 times faster, and COMA is 1.83 times faster. The root of the
performance problem is once again increased message overhead, as
coarse-vector sends over 2.3 times as many messages as dynamic
pointer allocation. Without data placement this message overhead is
causing more performance problems because the extra messages are
contributing to more hot-spotting at the node controller.

For all machine sizes, even without data placement, COMA does
not perform as well as expected. Given COMA’s ability to migrate
data at the hardware level without programmer intervention, conven-
tional wisdom would argue that COMA should perform relatively
better without data placement than with data placement. Unfortu-
nately, for the previous version of FFT without data placement,
COMA performs worse than it does for the most optimized version
of FFT with explicit data placement, despite higher AM hit rates.
Since large processor caches seem to mitigate any potential COMA
performance advantage, Figure 4 shows the results for a version of
FFT without data placement with a processor secondary cache size of
64 KB. With smaller caches there are far more conflict and capacity
misses, and COMA is expected to thrive. 

Surprisingly, COMA’s performance is much worse than expected
despite AM hit rates for remote reads around 70% at small machine
sizes, and 45% at the largest machine sizes. At 64 and 128 processors
the coarse-vector protocol is 2.39 times and 2.34 times faster than
COMA, respectively. But note that the coarse-vector protocol is also
over 2.64 times faster than dynamic pointer allocation. Even though
COMA is expected to perform well with small caches, the same
small caches give rise to a large number of replacement hints.
Replacement hints invoke high-occupancy handlers that walk the
linked list of sharers to remove nodes from the list. The combination
of large numbers of replacement hints and high-occupancy handlers
leads to hot-spotting at the home node. 

At 128 processors, SCI is the fastest protocol because it is least
susceptible to hot-spotting, running 1.22 times faster than coarse-
vector despite its higher direct protocol overhead. Once again,
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Fig. 4. Results for prefetched FFT with no data placement, an unstaggered 
transpose phase, and 64 KB processor caches.



coarse-vector is penalized by increased message overhead, sending
1.52 times as many messages as SCI. Interestingly, the SCI and
dynamic pointer allocation protocols send the same number of mes-
sages, clearly demonstrating that message overhead is not the final
word on performance since SCI performs over 3.2 times faster.

C.2  Ocean

Figure 5 shows the protocol performance for prefetched Ocean.
Again, for machine sizes up to 32 processors the bit-vector and
dynamic pointer allocation protocols perform about the same, but the
higher overhead SCI and COMA protocols lag behind. At 32 proces-
sors, the bit-vector protocol is 1.25 times faster than SCI and 1.22
times faster than COMA. COMA’s AM hit rates are higher than for
optimized FFT (at about 10%) but still not high enough to overcome
its larger remote read latency. 

At large machine sizes the overhead of COMA and SCI both
increase sharply. At 128 processors, dynamic pointer allocation is
1.22 times faster than coarse-vector, 1.78 times faster than COMA,
and 2.06 times faster than SCI. In this optimized version of Ocean
the performance problem at large processor counts is message over-
head for SCI and a combination of low AM hit rate and protocol
overhead-induced hot-spotting for COMA. SCI sends 2.9 times the
number of messages as dynamic pointer allocation, and more surpris-
ingly, 1.6 times more messages than the coarse-vector protocol with
its imprecise sharing information. 

Since COMA’s AM hit rate is already high with large processor
caches, we expected smaller processor caches to improve COMA’s
relative performance by increasing both capacity and conflict misses.
Figure 6 shows the results for such a run with a 64 KB secondary
cache. At 8 processors COMA is now indeed the best protocol—1.23
times faster than the bit-vector protocol, 1.31 times faster than
dynamic pointer allocation, and 1.87 times faster than SCI. The AM
hit ratio for remote reads is an impressive 89%. COMA successfully
reduces the read stall time component of execution time, and thereby
improves performance. But even though the AM hit ratio remains
high at 85% for 16 processors and 84% for 32 processors, COMA’s
overhead begins to increase with respect to the bit-vector protocol,
because as in FFT, with smaller caches come replacement hints and
with larger machine sizes comes occupancy-induced hot-spotting at
the node controller. Nonetheless, COMA remains the second-best
protocol as the machine size scales. Dynamic pointer allocation and
SCI are also suffering from increased replacement traffic, but COMA
is still reducing the read stall time component while the other proto-
cols have no inherent mechanisms to do so. 
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Fig. 5. Results for prefetched Ocean.

C.3  Radix-Sort

Radix-Sort is fundamentally different from the other applications
in this study because remote communication is done through writes.
The other applications are optimized so that write traffic is local and
all communication takes place via remote reads. In Radix-Sort, each
processor distributes the keys by writing them to their final destina-
tion, causing not only remote write traffic, but highly-unstructured,
non-uniform remote write traffic as well. Consequently, the relative
performance of the cache coherence protocols for Radix-Sort
depends more on their write performance than their read perfor-
mance. 

The results for Radix-Sort are shown in Figure 7. The poor perfor-
mance of COMA immediately stands out from Figure 7. At 32 pro-
cessors the bit-vector protocol is 1.78 times faster than COMA, and
at 64 processors the coarse-vector protocol is 2.14 faster than
COMA. Even though the use of a relaxed consistency model elimi-
nates the direct dependence of write latency on overall performance,
the effect of writes on both message traffic and protocol processor
occupancy is still present, and in COMA is the fundamental reason
for its performance being the poorest of all the protocols for Radix-
Sort. 

There are two main reasons for increased write overhead in the
COMA protocol. First, only the master copy may provide data on a
write request. This simplifies the protocol, but it means that on a
write to shared data the home cannot satisfy the write miss as it can
in the other protocols, unless the home also happens to be the master.
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Fig. 6. Results for prefetched Ocean with no data placement and 64 KB pro-
cessor caches.
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Fig. 7. Results for prefetched Radix-Sort.



Second, Radix-Sort generates considerable writeback traffic because
of its random write pattern. This also results in a large number of
dirty displacements from COMA’s attraction memory, which unlike
the writebacks in the other protocols, require an acknowledgment so
that the master ownership may be tracked. Both the additional hop on
writes and the additional acknowledgments increase COMA’s mes-
sage overhead with respect to the other protocols. At 32 processors
COMA sends 1.66 more messages than the dynamic pointer alloca-
tion protocol, and at 64 processors that number jumps to 2.05 times
the number of messages. 

At 64 processors, Radix-Sort is performing well under all proto-
cols except COMA. But at 128 processors, the higher message over-
head and the write occupancies of the coarse-vector protocol degrade
its performance considerably. For the COMA and coarse-vector pro-
tocols the speedup of Radix-Sort does not improve as the machine
size scales from 64 to 128 processors. But under dynamic pointer
allocation and SCI, Radix-Sort continues to scale, achieving a paral-
lel efficiency of 52% at 128 processors under dynamic pointer alloca-
tion. Dynamic pointer allocation is 1.32 times faster than the coarse-
vector protocol at 128 processors, and SCI is 1.11 times faster.

C.4  LU

The most optimized version of blocked, dense LU factorization
spends very little of its time in the memory system, especially when
the code includes prefetch operations. For this reason, the choice of
cache coherence protocol makes little difference for optimized,
prefetched LU, and we focus instead on other LU variations.

The version of LU shown in Figure 8 does not have data place-
ment and uses full barriers between phases of the computation.
Unlike the optimized LU, there are significant differences in protocol
performance at 128 processors. This application is a dramatic exam-
ple of how SCI’s inherent distributed queuing of requests can
improve access to highly contended cache lines and therefore
improve overall performance. As Figure 8 shows, at 128 processors,
synchronization time is dominating this version of LU, and the lack
of data placement results in severe hot-spotting on the nodes contain-
ing highly-contended synchronization variables. The protocol pro-
cessor utilizations shown in Table II show the effect of the SCI
protocol in the face of severe application hot-spotting behavior.
While SCI has a much higher average protocol processor utilization,
the maximum utilization on any node is drastically smaller, and the
variance between the two is by far the lowest of any of the protocols.
The result is that despite having the largest message overhead, SCI

B
V

C
O

M
A D
P

SC
I

1

B
V

C
O

M
A D
P

SC
I

8

B
V

C
O

M
A D
P

SC
I

16

B
V

C
O

M
A D
P

SC
I

32

B
V

C
O

M
A D
P

SC
I

64

B
V

C
O

M
A D
P

SC
I

128

Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Synch

Write

Read

Busy

Fig. 8. Results for prefetched LU with no data placement, and full barriers 
between the three communication phases.

has the least synchronization stall time and is the best protocol at
large machine sizes—2.25 times faster than the coarse-vector proto-
col at 128 processors.

The results for the same version of LU from the previous section,
but with smaller 64 KB processor caches are shown in Figure 9. Like
the other small cache configurations, dynamic pointer allocation and
COMA suffer the overhead of an increased number of replacement
hints. Replacement hints exacerbate the hot-spotting present in an
application since they on average return more often to the node con-
troller which is being most heavily utilized. The SCI results are again
the most interesting. For all but the largest machine size, bit-vector is
about 1.2 times faster than SCI. Again, at small cache sizes SCI’s dis-
tributed replacement scheme has both high direct protocol overhead
and large message overhead. SCI’s message overhead is consistently
1.4 times that of bit-vector/coarse-vector at all machine sizes. But at
128 processors, despite its message overhead, SCI is by far the best
protocol (over 1.6 times faster than the others) because of its inherent
resistance to hot-spotting.

C.5  Barnes-Hut and Water

The results for Barnes-Hut are shown in Figure 10. The perfor-
mance results for Water are similar to Barnes-Hut, and are not
shown. Full details can be found in [12]. All the protocols perform
quite well below 64 processor machine sizes, achieving over 92%
parallel efficiency in all cases, with the exception of COMA’s 82%
parallel efficiency at 32 processors. The only sizable performance
difference for these small machine sizes is at 32 processors where
dynamic pointer allocation is 1.14 times faster than COMA. In this
case, COMA is adversely affected by hot-spotting at one of the node
controllers. While the average protocol processor utilization is 8.4%
for COMA at 32 processors, the most heavily used protocol proces-
sor has a utilization of 42.3%. A significant fraction of the read
misses (37%) in Barnes-Hut are “3-hop” dirty remote misses—a case

TABLE II
SCI’S AVERSION TO HOT-SPOTTING AT 128 PROCESSORS

Protocol
Average

PP Utilization
Maximum

PP Utilization

bit-vector/coarse-vector 1.7% 85.1%

COMA 4.9% 69.5%

dynamic pointer allocation 2.2% 60.9%

SCI 22.0% 32.2%
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Fig. 9. Results for prefetched LU with no data placement, full barriers 
between the three communication phases, and 64 KB processor caches.



where COMA has a higher direct protocol overhead than the other
protocols—and the AM hit rate of 30% is not enough to balance out
this overhead increase.

At larger machine sizes, load imbalance becomes the bottleneck in
Barnes-Hut, and application synchronization stall times dominate the
total stall time. The bit-vector/coarse-vector is by far the best proto-
col at both 64 and 128 processors. Unlike the previous applications,
Barnes-Hut has many cache lines that are shared amongst all of the
processors. Long sharing lists help the bit-vector/coarse-vector pro-
tocol because there is a larger chance that it will not be sending
unnecessary invalidations on write misses. Long sharing lists also
hurt dynamic pointer allocation and COMA, because replacement
hints have to traverse a long linked list to remove a node from the
sharing list, resulting in a high occupancy protocol handler. This can
degrade performance by creating a hot-spot at the home node for the
replaced block. SCI is indirectly hurt by long sharing lists for two
reasons: invalidating long lists is slower on SCI than the other proto-
cols due to its serial invalidation scheme, and cache replacements
from the middle of an SCI sharing list have higher overhead than a
replacement from a sharing list with two or fewer sharers.

V.  CONCLUSIONS

This implementation-based, quantitative comparison of four scal-
able cache coherence protocols has shown that none of the protocols
in this study always perform best—in fact, there are cases where each
protocol performs best, and where each protocol performs worst. The
results demonstrate that protocols with small latency differences can
still have large overall performance differences because controller
occupancy is a key to robust performance in CC-NUMA machines. 

Several themes have emerged to help determine which protocol
may perform best given certain application characteristics and
machine configurations. First, the bit-vector protocol is difficult to
beat at small-to-medium scale machines before it turns coarse. Sec-
ond, with small processor caches both COMA and dynamic pointer
allocation perform poorly because of occupancy-induced contention
caused by replacement hints. Third, although the other three proto-
cols incur less protocol processor occupancy than the SCI protocol,
SCI incurs occupancy at the requester rather than the home, making
it less susceptible to hot-spotting and therefore more robust for less-
tuned applications. Fourth, for applications with a small, fixed num-
ber of sharers running on machines with large processor caches, the
dynamic pointer allocation protocol performs well at all machine
sizes, and is the best protocol at the largest machine sizes. Fifth, the
COMA protocol can achieve very high AM hit rates on applications
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Fig. 10. Results for Barnes-Hut.

that do not perform data placement, but its higher remote read miss
latencies and protocol processor occupancies often remain too large
to overcome. Finally, increased message overhead is often the root of
the performance difference between the protocols at large machine
sizes, but when hot-spotting or high-occupancy handlers are present,
these effects dominate instead. 

Surprisingly, this study finds that the optimal protocol changes as
the machine size scales—even within the same application. In addi-
tion, changing architectural aspects other than machine size (like
cache size) can change the optimal coherence protocol. Both of these
findings are of particular interest to commercial industry, where
today the choice of cache coherence protocol is made at design time
and is fixed by the hardware. These results argue for programmable
protocols on scalable machines, or the creation of a new, more robust
cache coherence protocol. 
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