
Active I/O Switches in System Area Networks

Ming Hao
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853

haom@csl.cornell.edu

Mark Heinrich
School of EECS

University of Central Florida
Orlando, FL 32816
heinrich@cs.ucf.edu

Abstract

We present an active switch architecture to improve
the performance of systems connected via system area
networks. Our programmable active switches not only
flexibly route packets between any combination of hosts
and I/O devices, but also have the capability of run-
ning application-level code, forming a parallel processor
in the SAN subsystem. By replacing existing SAN-based
switches with a new active switch architecture, we can
design a prototype system with otherwise commercially
available, commodity parts that can dramatically speed
up data-intensive applications and workloads on mod-
ern multi-programmed servers. We explain the program-
ming model and detail the microarchitecture of our active
switch, and analyze simulation results for nine benchmark
applications that highlight various advantages of active
switch-based systems.

1 Introduction
In this paper, we examine the effect of incorporat-

ing intelligent or active switches into an otherwise stan-
dard cluster connected via a system-area network (SAN).
SANs are becoming increasingly popular in servers and
systems with large I/O requirements because the SAN
network interface is being integrated into commodity
memory controllers, reducing the latency to and from
I/O devices, and increasing the bandwidth over tradi-
tional I/O solutions. Though there has been work on
programmable intelligent or active I/O devices, we will
show that there are several advantages (both technical
and economical) to active switch-based systems, and in
fact the use of active switches is orthogonal to the use of
intelligent I/O devices.

The systems we consider in this paper can be ab-
stracted as a group or cluster of compute nodes and stor-
age devices connected by a switched-based system-area
network such as InfiniBand [16] or PCI Express (formerly
3GIO) [24] (the exact choice of switch-based system area
network is not important). Figure 1 shows an example of
such a SAN-based cluster. HCA (host channel adapter)
and TCA (target channel adapter) are terminology from
the InfiniBand SAN architecture—other systems refer to

MemCtl Mem

Host Node

HCA

CPU

Switch

Controller

IO node

Switch

Switch

TCA

IO node

Host Node

Figure 1. A typical SAN-based cluster

these pieces as the NI and NIC, respectively. All commu-
nication between end nodes, whether it is message pass-
ing between compute nodes or an I/O operation between
a computing node and a storage device, must traverse
one or more network switches. The central position of
switches in the cluster gives them the potential to play
an active role in the system rather than simply routing
messages from source to destination. In particular, ac-
tive switches may contain one or more embedded proces-
sors that can execute application-level code that may pro-
cess messages more efficiently, save network or I/O band-
width, reduce host processor utilization, or reduce appli-
cation execution time. For the normal non-active system,
only compute nodes are user-programmable. Storage and
network devices can only be accessed through software
interfaces exported by the operating system and the net-
work switches are transparent to users. However, on ac-
tive switch systems, we view both switches and host pro-
cessors as user-programmable compute nodes, possibly
of different capabilities. In this system, the host proces-
sors and active switches cooperate to finish tasks faster
than either could do alone. The key is to decompose
potential applications into tasks that are best suited for
high-performance compute-nodes and tasks that are best
suited for active switch nodes located in the network and
closer to the I/O system. Of course, switches still need
to implement their core switching functions for both ac-
tive and non-active messages. We discuss more details of

1

the programming model in Section 2 and describe our ac-
tive switch microarchitecture in Section 3. Several active
switch applications and their performance are discussed
in Section 5. We find that active switch systems can
achieve speedup up to 5.9 on suitable applications, while
simultaneously dramatically lowering host processor uti-
lization and network bandwidth requirements.

2 Programming Model
Our active switch architecture has two main design

goals. First, the presence of active switches should not
degrade the performance of (the likely more common)
non-active messages. Second, active switches should be
easy to use, exporting a simple programming model to
the user. We use a combination of hardware and software
techniques to realize each of these goals. In Section 3, we
focus on hardware and detail our active switch architec-
ture. In this section, we outline the stream-based pro-
gramming model for our active SAN switch. Section 2.1
describes the overall environment and philosophy of our
model, while Section 2.2 focuses on the details of active
switch programming via a short example.

2.1 Active Switch Environment
Active switches are best suited for streaming applica-

tions, applications with small working sets, or those that
can be pipelined in some way. An active switch handler ,
the code running on the switch, accesses its input data in
a memory-mapped fashion as discussed in detail below.
The overall goal is to hide as many of the low-level hard-
ware details as possible from the programmer, simplifying
the task of writing switch handlers.

The key step needed to run applications on active I/O
switches in system area networks is that the conventional
program must be divided into two parts—one that runs
on the host processor as normal, and the other that runs
on the active switch. Incoming messages to the active
switch invoke handlers in the style of message-driven pro-
cessors [18, 19, 25], based on information in the 128-bit
header of the message. When an active message has a
switch as its destination, that switch extracts a handler
ID field from the header and uses it to index into a ta-
ble to get the corresponding program counter for that
handler and invokes it on an available switch processor.

For protection reasons, we assume that there is a
small run-time kernel for active switches that can initi-
ate necessary I/O requests and allocate memory for han-
dlers. Switch handlers are not allowed to allocate memory
freely. This is not a severe limitation since, as we shall
see, active switches typically process data from their on-
chip data buffers and only a small portion of their data
structures need to be allocated in memory. This embed-
ded kernel concept is used in the active disk model [1],
and researchers have recently begun work on splitting the

operating system into portions that run on the host pro-
cessor and portions that run on intelligent I/O devices or
switches [8]. For most of the benchmarks in this paper,
the I/O requests are initiated by the host processor and
the handlers process the data as they flow through the
switch (only our Tar benchmark initiates disk requests
from an active switch handler). This requires only mod-
est kernel support on the switch (less than in previous
active disk proposals).

2.2 Handler programming

Active switch handlers have common characteristics
that are determined by the switch architecture and loca-
tion within the cluster. First, they must not be compute-
intensive. This is obvious since the host processor is more
powerful and has larger caches, making it more amenable
to compute-intensive tasks. A less obvious reason is that
more computation on the switch results in higher switch
occupancies and lower network throughput. Second, han-
dlers should have a relatively small working set, or prefer-
ably, process data in streams. This follows from our de-
sign decision that an active switch should process data
from its on-chip buffers (or caches) as much as possi-
ble without copying data into its local memory and in-
curring extra memory overhead. Our results will show
that a few on-chip buffers and a small 1 KB data cache
are sufficient to achieve speedup on many applications.
However, because of this limited on-chip buffering, ac-
tive switch handlers perform better with stream-based or
small working sets. In addition, the need for fewer active
handler buffers leaves more buffers available to maintain
non-active switch throughput, and the streaming model
ensures that active buffers are released as soon as possi-
ble, simplifying buffer management.

Still, programming active switches can be challenging.
As we mentioned above, our programming model for ac-
tive switches attempts to hide as many of the hardware
details as possible from the programmer while keeping
a familiar programming paradigm. The key program-
ming model problem is how to address the stream data in
the on-chip buffers. Our solution is to memory-map the
buffers into a contiguous physical memory area. Thus,
handlers can use normal load and store instructions to
access the buffers and do not need to know which data
is stored in which buffer—they just need to know the
physical memory address. The physical memory address
is translated either into a (bufId, offset) pair or into
a normal physical address and sent either to the data
buffers or data cache, respectively. Our switch has an ad-
dress translation buffer (ATB) that performs the address-
to-bufId translation if that data is currently present in
one of the 16 on-chip buffers.

The following pseudo-code shows the common struc-
ture of a handler and demonstrates how a handler can

2

seamlessly access both the arguments sent by the host
and a file from a storage device via this memory-mapping
mechanism.

Byte *buf=ADDRESS, *arg=ADDRESS2;
int i,off = 0,file len,bufSz,MTU;
ReadArg(arg);

for(i=0; i<file len; i+=bufSz) {
for(j=0;j<bufSz;j+=MTU) {
ProcessData(buf+off,MTU);
off += MTU;
Deallocate Buffer(buf+off);
}

}
The handler is invoked by an active message from a host
or another active switch. The payload of the message
contains the arguments, which are written into a pre-
defined address (ADDRESS2 in this case) and accessed by
simply reading that address. The host maps the file to
be processed into memory at the location specified by
ADDRESS by explicitly issuing I/O operations into that
memory area and bufSz is the size of the disk read re-
quest. Since in non-active cases the host allocates a
buffer of size bufSz before it issues its disk request, the
switch can always send a reply to the host with a length
of bufSz without worrying about storage constraints on
the host, simplifying flow control. The MTU is the size
of the maximum transfer unit. The handler divides a
file len amount of data into smaller blocks of size MTU,
processes each block, and deallocates data buffers occu-
pied by that block when done. While data buffer allo-
cation and mapping is done automatically by the switch
hardware, programmers of the active switch need to in-
form the switch when to de-allocate data buffers. This
is done easily by calling the macro Deallocate Buffer
with an argument of the ending block address. The hard-
ware will take care of releasing data buffers holding valid
mapped addresses less than that end address. All our
benchmarks for evaluating active switches use this basic
structure. Only the ProcessData function is different
for different handlers. In our experience, programming
active switches is straightforward, made possible by the
programming model and the simple nature of most han-
dlers.

3 Active Switch Architecture
This section details the architecture of an active

switch. We will show that with the addition of a small
amount of hardware, a normal switch can become an ac-
tive switch, and as we will see in Section 5, the resulting
active switch improves the performance of data streaming
applications without affecting non-active data streams.

Figure 2 shows the architecture of an active switch
with 8 ports. Solid and dashed lines signify data and con-
trol lines, respectively. The shaded part of the figure is

CPU

C
ro

ss
ba

r

C
ro

ss
ba

r

In1

In8

Out1

Out8

Central Buffer

D−Cache

I−Cache

Non−active headers

Active headers

Arbiter1

8X9 9X8

Arbiter2

SendUnit

ATB

DB

 banks

Routing
Table

DBA

Dispatch

Jump Table

MemCtl

Figure 2. Eight-ported active I/O switch microarchitecture

a normal switch based on a central output queue scheme
similar to that in the IBM Switch-3 [23]. An on-chip
routing table stores routing information, either on which
output port of this switch messages arriving on some in-
put port should leave, or on which output port of the
next switch this message should leave, depending on the
routing scheme used. Unshaded components comprise
the “active” hardware added to the conventional switch,
including a hardware Dispatch unit that dispatches the
active messages to a switch processor; a jump table that
stores the starting program counters (PCs) of switch han-
dlers; an ATB that maps physical memory addresses to
buffer IDs; data buffers that play an integral role in the
processing of incoming and composing of outgoing mes-
sages; a data buffer administrator that aids in buffer al-
location and de-allocation; and, of course one or more
embedded switch processors with separate data and in-
struction caches. The data buffers are the data interface
between the active and non-active portions of the switch
and are connected to the Crossbar. The Send unit is used
to inform the Crossbar that a data buffer is ready to be
sent to one of the output ports.

Any message with a destination of the switch itself is
an active message, and the Crossbar guides the message
into an unused data buffer in the same way a non-active
message is routed to its destination port. The header of
the message is extracted and passed to the Dispatch unit
in parallel with the copy of the message payload into a
data buffer. The Dispatch unit extracts the PC according
to the handler ID in the header and schedules the handler
on a free switch processor. The Dispatch unit also maps
the buffer ID holding the message into a corresponding
entry in the ATB according to the destination address
field in the header. Because the data and control paths
are separate, the switch processor can start processing
without waiting for the data buffer copy to complete.
In most cases, the switch CPU needs to allocate a data

3

buffer to compose a new outgoing message. It sends the
header of this message to the Send unit, which informs
the Crossbar to schedule the message to its destination.
Note that the only modification to the non-active part
of the switch is logically expanding the Crossbar from
N ×N to (N + 1)×N . Some switches already have this
extra port for management packets.

Let us now explain each part of the active switch in
detail. We start with the data buffers—the central stag-
ing area for the switch processors. Each data buffer is an
independently managed chunk of memory equipped with
cache-line based valid bits to allow more parallelism and
pipelined data transfers. When a line of data is ready, its
corresponding valid bit is set. Accessing an invalid line
in a data buffer will stall the switch CPU until that line
becomes valid. Incoming data is placed in a data buffer
rather than the data cache to keep the cache design sim-
ple and its size small, and because data buffers can com-
pletely eliminate cold misses and also allow the overlap
of data copying and message processing. Buffer man-
agement in our programming model is relatively simple.
When a message is sent or the switch CPU is done with
its processing, the data buffer is freed. Further, because
of the streaming nature of active switch applications, only
a limited number of data buffers are needed. Most of the
applications we consider in Section 5 have only one input
data stream and one output data stream and need just
2 buffers. For collective reduction, which needs to pro-
cess multiple data streams, at least one buffer is needed
for every input stream. In our design, we have 16 data
buffers, each 512 bytes long (MTU of the network).

Though the data buffers afford many advantages, ac-
cessing them with a buffer ID and offset is inconvenient.
Further, it makes it difficult for a handler to deal with an
object larger than a data buffer. Therefore, we introduce
a direct-mapped ATB that maps a memory address into
a buffer ID and offset pair, creating the illusion of a flat
memory for switch programmers. This again takes ad-
vantage of the streaming nature of handlers, since data
typically comes into the switch in “order”. In our model,
each switch CPU has its own 16-entry ATB (one entry
per data buffer) that also assists with data buffer de-
allocation. When a handler needs to release data buffers,
it simply provides an address to the ATB, which trans-
lates it into the buffer IDs that map all valid addresses
less than the given address, and informs the DBA to de-
allocate the corresponding data buffers. Thus, a pro-
grammer need not remember the boundaries of the data
buffers and can de-allocate buffer space logically accord-
ing to the data objects it processes.

Our embedded switch processor model is a single-issue
MIPS-like core with extensions to support checking the
status of hardware components inside the switch, sending
data buffers to other nodes, and requesting or releasing

data buffers. To increase the performance of the switch
processor, we also include separate instruction and data
caches (though as we will see in Section 4 the data cache
is quite small). The switch CPU has its own read/write
ports to the data buffers so that it can access them in
parallel with the switch network ports.

In summary, with the addition of a limited amount
of hardware, a normal switch can become an active one
without interfering with non-active switch functions, and
still keep an easily-understood programming model.

4 Simulation Methodology
In this section we discuss the simulation environment

and architectural parameters we use to evaluate our ac-
tive switch system. The applications themselves are dis-
cussed with the results in Section 5. Our simulator mod-
els a MIPS-based host processor, its cache subsystem,
memory controller, and memory system in detail using
a simulator derived from [14]. We model a SAN switch
connected to the memory controller with the embedded
processor described earlier. The I/O system model is also
quite detailed as described below.

In our host processor model a load miss stalls the pro-
cessor until the first double-word of data is returned,
while prefetch and store misses will not stall the proces-
sor unless there are already references outstanding to four
different cache lines. The processor model also contains
fully-associative 64-entry instruction and data TLBs and
we accurately model the latency and cache effects of TLB
misses. Though the host processor model is relatively
simple, what really matters in this research is the rela-
tive performance of the host processor and the embedded
switch processor, and much of the simulation detail in
this study is in the memory, I/O system, and network.
We assume that the host processor runs at four times the
speed of the switch processor. Specifically, our main pro-
cessor runs at 2 GHz and is equipped with separate 32 KB
primary instruction and data caches, both of which are
two-way set associative. The secondary cache is unified,
512 KB, two-way set associative, and has a line size of
128 bytes. For our HashJoin database application, we
scale down the cache size so that we can simulate the ef-
fect of running problems with large table sizes by running
smaller table sizes that we can simulate within a reason-
able amount of time. For this class of applications we
use an 8 KB primary data cache and a 64 KB secondary
cache keeping the same line sizes and associativities.

Our simulator accurately models an RDRAM mem-
ory system for both the host and switch. The maximum
bandwidth of both systems is 1.6 GB/s. The latency of a
page hit is 100ns and 122ns for a page miss. Details can
be found in [11] . Our simulated switch models the exact
architecture shown in Figure 2. It supports 1 GB/s bi-
directional bandwidth and has a routing latency of 100ns,

4

similar to current InfiniBand switches. The routing algo-
rithm is virtual cut-through and the MTU is configurable
(512 bytes for all our experiments). The embedded active
switch processor runs at 500 MHz with a 4 KB, two-way
set-associative instruction cache with 64-byte lines and
a 1 KB two-way set-associative data cache with 32-byte
lines. Both caches are small and simple—supporting only
one outstanding request.

Our I/O subsystem includes a TCA, an ultra-320 SCSI
bus, and simple disks. The SCSI bus models the over-
head of arbitration and selection transactions and has
a peak throughput of 320 MB/s. The disk model in-
cludes three timing related parameters: seek time, rota-
tion speed and peak bandwidth. For all the experiments
in this paper, we use two disks with a total peak band-
width of 100 MB/s and we assume a sequential access
pattern because most of our applications deal with large
files. The network interface models an InfiniBand HCA
connected directly to the memory controller and imple-
ments a queue pair interface with the user program. Each
network link uses credit-based flow control and we use the
Raw packet format as described in the InfiniBand speci-
fication. The header is 128 bits, including a 64-bit active
header that contains a 6-bit message handler ID field and
a 32-bit address field to which the data buffer storing the
packet on the active switch is mapped.

I/O-related operating system overhead is the only
place where our simulator does not model events in detail
and instead charges fixed latencies derived from empirical
results from real systems. Though our simulator runs all
the library code involved in I/O accesses, it does not exe-
cute the lowest-level operating system code. We account
for I/O-related operating system overhead by charging
30us of fixed cost per request and 0.27us/KB for each un-
buffered disk request. These numbers were obtained from
measurement and calculation and were validated against
measurements presented in [9].

5 Applications and Results
In this section we present nine applications that can

benefit from active switches in system area networks. Dif-
ferent applications may benefit from different aspects of
active switches. We will explain in detail the important
features for each application in our analysis below. We
differentiate four cases for each benchmark. The case
running only on the host processor, using non-active SAN
switches is called “normal” or “normal+pref” if two out-
standing I/O requests are issued. Similarly, the case using
both the host processor and active switches is denoted
“active” or “active+pref” for the case where there are
two outstanding I/O requests. There are two figures for
each application. In the first, the performance of these
four cases is shown for three metrics: overall execution
time, normalized to the “normal” case; host processor

utilization, (1− idle time)/execution time; and host I/O
traffic, the total amount of data transferred in/out of the
host, also normalized to the “normal” case. In the second
figure, the execution time is broken down into CPU busy,
cache stall, and idle time. For normal cases, only the host
execution time breakdown is shown, denoted as “n-HP”
and “n+p-HP” (“n” for normal; “p” for prefetch; “HP”
for host processor). For the two active cases, both the
host and switch CPU execution time is broken down. We
use “a+SP” for the switch CPU in the “active” case and
“a+p-SP” for the “active+pref” case.

In Table 1 we summarize the applications and the
problem sizes that we simulate. We present descriptions
of each application with an analysis of the results below.

Table 1. Applications and Problem Sizes
Applications Input Data Size (Bytes)
MPEG filter 2202640

HashJoin 16M×128M
Select 128M
Grep 1146880
Tar 4M

Parallel sort 16M
MD5 256K

Collective Reduction 512

MPEG-filter. MPEG-filter is a video file filtering appl-
ciation. It can filter video streams according to the band-
width constraints on the customer end. This particular
benchmark is from the Distributed Multimedia Research
Group of Lancaster University, UK. It can perform many
kinds of filtering like removing certain types of frames,
removing high frequencies, or re-quantization. We use
this benchmark to show that with the appropriate par-
titioning of a program into host and handler portions,
active switches and hosts can cooperate in a pipelined
fashion to improve performance. In our experiments, we
perform two filtering tasks. One is frame filtering: all
B-type and P-type frames are filtered out, leaving only I-
type frames. The other is color reduction, which reduces
a colorful I-type frame to a mono frame that needs decod-
ing and re-encoding. The first filter performs only header
checking and not only involves less computation but also
filters input data and thus is very appropriate for execut-
ing on the switch. If an input video file has many B-type
and P-type frames, the handler can greatly reduce the
data sent to the host. Color reduction is placed on the
host side since it needs decoding and re-encoding, which
are compute-intensive. For the normal cases, all tasks
are done on the host. The input video file is 2202640
bytes long consisting of I-type frames and P-type frames.
About 63.5% of the total data are P-type frames. All I/O
requests are made in blocks of 64 KB.

Figure 3 shows the overall performance for each of our
four configurations and Figure 4 gives a breakdown of

5

exec time host utilization IO traffic
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
normal
normal+pref
active
active+pref

Figure 3. Filter

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

c
T

im
e

B
re

ak
do

w
n

busy
cache stall
idle

 n−HP n+p−HP a−HP a−SP a+p−HP a+p−S

Figure 4. Filter breakdown

execution time. The “normal” case performs the worst
partly because of I/O stall time. “normal+pref” is 1.13
times faster than “normal” because it can overlap the
computation and disk I/O latency and fully utilize the
host CPU. The two active cases achieve a speedup of
1.23 without prefetching and 1.36 with prefetching, re-
spectively, in comparison to the corresponding normal
cases. “normal+pref” has the highest host utilization
because prefetching makes it completely computation-
bound. The two active cases manage to keep both the
host and switch CPU busy, whereas the “normal” case
has the lowest utilization because of its synchronous disk
I/O stall time. For data filtering, both active cases re-
duced the data sent to the host by 36.5%. Figure 4 ex-
plains the origin of the speedup in the active cases. The
switch CPU is almost fully utilized, achieving a balanced
computing pipeline with the host CPU. In cases where
a perfect partition can not be achieved, we would like
the switch CPU under-utilized without blocking the host
CPU so that active cases will perform better than normal
cases. That is the case for all the following applications
except MD5, which shows the effects of an unsuccessful
application partitioning.

HashJoin with bit-vector filter. Both HashJoin and
Select (which follows) show improved performance in ac-
tive switch systems because of reduced cache stall time on
the host CPU due to the filtering of unnecessary records
in the switch. When the record size is bigger than the
secondary cache size, significant amounts of L2 misses
occur for database operations [2]. Active switches can
reduce those cold cache misses by filtering out unrelated
records inside the switch. Join is a frequently used SQL
operation, and a hash-based algorithm is one of the most
efficient joins. A further optimization for HashJoin is to
use a bit-vector to filter out unmatched records before ex-
ecuting the join algorithm [10]. Bit-vector filtering works
in the following way: prior to the initial scan of relation
R, which is the smaller one of the two relations to be
joined, a bit-vector is initialized by setting all bits to 0.
As each R tuple’s join attribute is hashed, the hashed
value is used to set a bit in the bit-vector. Then as re-
lation S is scanned, the appropriate bit in the bit-vector
is checked. If the bit is not set, the tuple from S can
be safely discarded. In our experiments, we assume that
memory is large enough to hold the smaller relation R.
We scaled down the input sizes of R and S to 16 MB
and 128 MB, respectively, and the size of the host CPU
caches by a factor of eight. Thus we can effectively sim-
ulate the behavior of a join of two tables with sizes of
128 MB and 1 GB, respectively. Since the data cache of
the switch is already only 1 KB and the bit-vector we use
in simulation is around 128 KB, we did not scale down
the switch data cache. The reduction factor of bit-vector
filtering is 0.24 and the record size is 128 bytes. In the
active case, the bit-vector is stored in the switch while
the relation R passes through the switch. When relation
S is scanned, the active switch filters unmatched records
from S according to the bit-vector and sends out those
records to the host with the corresponding bit set in the
vector. The actual join operation is done by the host.

Figure 5 shows the performance of HashJoin for our
four configurations and Figure 6 gives a detailed break-
down of execution time. As in MPEG-Filter, the “nor-
mal” case performs the worst because of I/O stalls.
Prefetching helps “normal+pref” to overlap the compu-
tation and I/O latency. Without prefetch, active switch
case has a speedup of 1.10 over the normal case while the
peformance is the same for the two prefetch cases. Still,
active cases have the smallest host utilization because
they offload part of the work to the switch, leaving the
host CPU free for other tasks. The “normal+pref” case
has the highest utilization because it overlaps computa-
tion with its I/O latency. Both active cases also reduced
the amount of data sent to the host by 76%. Figure 6
shows that the active switch reduces the number of cache
misses. Because the hash table is much larger than the
L2 cache and the hashing operation lacks locality, the

6

cache stall time comprises a significant part of the total
execution time—27.6% for the “normal+pref” case. In
the active cases, the switch uses its on-chip data buffer
to filter out those unmatched records and the host cache
miss stall percentage of “active+pref” is only 16.1%. The
switch CPU also suffers from cache misses because the
bit-vector is too big for its limited L1 data cache and it
does not have an L2 cache. However, this impact is small.

exec time host utilization IO traffic
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
normal
normal+pref
active
active+pref

Figure 5. Join

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

c
T

im
e

B
re

ak
do

w
n

busy
cache stall
idle

 n−HP n+p−HP a−HP a−SP a+p−HP a+p−S

Figure 6. Join breakdown

Select. Our database Select is a sequential range selec-
tion that checks if one integer field of a record falls within
a specific range. The input data table has a size of 128M
bytes with the same configuration as in HashJoin above.
In the active cases, selection is done inside the switch
and the host CPU just counts the number of matching
records.

Figure 8 shows the breakdown of execution time.
Again, the “normal” case performs the worst because
of high I/O stall time while the other three have al-
most identical performance because they can overlap the
computation with I/O latency and the execution time
is determined by the I/O subsystem. All host utiliza-
tions are small, indicating that this application is I/O-

bound. However, the average host utilization in the two
normal cases is 21 times larger than that in the two ac-
tive cases, which mainly comes from a reduction in host
cache misses. The I/O traffic of active cases is 25% of
non-active cases. Though the “Normal+pref” case per-
forms equally well in terms of execution time, Figure 8
clearly shows the reduction in cache misses for the host
CPUs in the active cases. Since L2 cache miss penalties in
modern processors are large and growing, active switches
can be beneficial here. Again, there are almost no cache
misses for switch CPUs since most of the data processing
happens in the data buffers.

exec time host utilization IO traffic
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
normal
normal+pref
active
active+pref

Figure 7. Select

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

c
T

im
e

B
re

ak
do

w
n

busy
cache stall
idle

 n−HP n+p−HP a−HP a−SP a+p−HP a+p−S

Figure 8. Select breakdown

Grep. Grep and the following application, Tar, show
that executing a portion of the application on the active
switch can reduce both host utilization and total exe-
cution time. We use GNU Grep 2.0, a popular utility
that searches input files for lines containing a match to
a specified pattern. A basic Grep execution follows three
steps: parsing command-line options; setting up a DFA
(Deterministic Frontier Analysis) structure; and search-
ing. Our active version of Grep leaves the first step on
the host and executes the other two steps on the active

7

switch. In our experiment, Grep searches only one file
for the simple string “Big Red Bear”. There are only 16
matched lines out of a file with a size of 1146880 bytes.
The I/O request size is 32 KB.

exec time host utilization IO traffic
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
normal
normal+pref
active
active+pref

Figure 9. Grep

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

c
T

im
e

B
re

ak
do

w
n

busy
cache stall
idle

 n−HP n+p−HP a−HP a−SP a+p−HP a+p−S

Figure 10. Grep breakdown

Figure 9 shows the overall execution time, host utiliza-
tion, and host I/O traffic of Grep and Figure 10 gives a
breakdown of total execution time. Without prefetching,
the active version runs 1.14 times faster than the nor-
mal version because the Grep handler can start search-
ing as soon as the first data enters the switch, while
the “normal” version has to wait for the entire 32 KB
chunk. Prefetching helps “normal+pref” hide the I/O
latency and performs better than the “active” case be-
cause the latter can not fully hide the I/O latency. The
“active+pref” case still performs best because of its prox-
imity to the I/O devices and corresponding lower over-
head to initiate I/O requests. As there is very little to
do for the host in the active cases, they have utilization
close to 0. As for I/O traffic, the handler only transfers
back to the host the 16 matched lines, filtering almost all
the data. Figure 10 confirms that with the parameters
we simulate, Grep is an I/O-bound application.

Tar. In our experiments, we use Tar with “-cf” options
that create an archive file from a set of input files. We
partition GNU tar as follows: the host portion of active
Tar is responsible for parsing the command-line options
and generating a header for each input file. The headers
are stored into the output tar file. The handler on the
active switch reads in the input files and outputs them
directly to the archive with the headers created by the
host. The handler does not need to perform any pro-
cessing on the input data packets. It redirects the out-
put tar file to a remote node, completely bypassing the
host. Figure 11 shows the performance of Tar under our
four configurations and Figure 12 shows a breakdown of
total execution time. Similarly, the “normal” case per-
forms worst because of I/O stall time. The other three
cases have almost the same execution time, but the active
cases have close to 0 host utilization, allowing the host to
perform other tasks. Since the host is bypassed, the I/O
traffic from the host consists only of the headers for each
input file, which are only 512 bytes long. In Figure 12,
we can see that the low host CPU utilization in the active
cases does not come from offloading the workload to the
switch. Rather, most of the busy time in the normal cases
is disk I/O-related overhead like interrupt processing, all
of which is eliminated in the active switch version.

exec time host utilization IO traffic
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
normal
normal+pref
active
active+pref

Figure 11. Tar

Parallel Sort. We use Parallel Sort to show how an ac-
tive switch can redistribute the data according to some
criteria and reduce both host CPU utilization and net-
work traffic. Our Parallel Sort works in the same way as
a one-pass parallel sort on data with a unified key distri-
bution [3]. Each participating host reads in a portion of
the data and performs data redistribution according to a
range assigned to each node. After this stage, each node
sorts its local data using any sorting algorithm. In this
experiment, we sort 16M data items on 4 nodes. The
data format follows the Datamation benchmark where
each record is 100 bytes long with a key of 10 bytes. For

8

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

c
T

im
e

B
re

ak
do

w
n

busy
cache stall
idle

 n−HP n+p−HP a−HP a−SP a+p−HP a+p−S

Figure 12. Tar breakdown

the normal cases, each node reads in 1/4 of the total data
and then redistributes the data among all the nodes. For
the active cases, the redistribution is done by the switch
handler so that each node only gets the records assigned
to it. Our experiment only simulates the data distribu-
tion phase since there is no difference between the active
and normal cases in the sorting phase.

Figure 13 shows the performance of Parallel Sort and
Figure 14 breakdowns the execution time. The results
are similar to those of Grep and we will not repeat the
analysis details here. It is worth pointing out that by dis-
tributing the input data via the active switch, the amount
of data in/out of each node in the active cases is only 40%
of that in the normal cases for 4 nodes. The limit is 1/3
following the formula p/(3p − 2) where p is the number
of participating hosts.

exec time host utilization IO traffic
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
normal
normal+pref
active
active+pref

Figure 13. Sort

MD5. MD5 calculates the message digest of a set of in-
put files. For MD5 the active switch cases are slower than
than the normal cases. Total execution time is longer
when using active switches because it is difficult to find an
appropriate partitioning of this compute-intensive code
between the host processor and the active switch that is
simple enough for the switch to run, yet not one where

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

c
T

im
e

B
re

ak
do

w
n

busy
cache stall
idle

 n−HP n+p−HP a−HP a−SP a+p−HP a+p−S

Figure 14. Sort breakdown

the switch performs all the computation. However, we
will re-visit the MD5 application when we discuss multi-
ple embedded switch processors per active switch.

Collective Reduction. In addition to improving I/O-
intensive applications, active SAN switches can also im-
prove the performance of the SAN when used as a paral-
lel cluster, by intelligently processing messages between
compute nodes. We introduce a Collective Reduction ap-
plication that shows the power of computation in active
switches for some communication patterns. Collective
reduction is one kind of collective communication that
is at the heart of many parallel algorithms and applica-
tions. There are three main types: Distributed Reduce,
Reduce-to-all and Reduce-to-one. All three reductions
combine the vector on each compute node using a spec-
ified operation (often maximum, minimum, sum, prod-
uct, or logical bit-wise operations). The difference among
them lies in how the result vector is redistributed. For
Distributed Reduce, each node gets part of this result
vector; for Reduce-to-one, there is no need for redistribu-
tion; for Reduce-to-all, each node gets the whole result
vector. Table 2 shows the two reductions that we use.

Table 2. Collective Reduction
Operations Before After

Distr. Red.
x

(0)
0 . . . x

(p−1)
0

...
...

x
(0)
p−1 . . . x

(p−1)
p−1

y0

. . .
yp−1

Reduce-to-one x(0) . . . x(p−1) y

For small vectors, if the communication cost of a mes-
sage of length n is modeled as α+nβ, the lower bound for
the latency of collective reduction on p compute nodes is
dlog2(p)e(α + λ) where λ is the computation cost for re-
ducing two vectors [22]. With active switches, we propose
a new way to do collective reduction that can beat this
lower bound. It works in a straightforward way: if all the
compute nodes are connected with one switch (a small
system), each node sends an active message containing

9

its own vector to the switch. The switch does the reduc-
tion and sends the result vector to the appropriate place
according to the type of the reduction. The resulting la-
tency is α+γ where γ is the cost added by the switch. The
γ in the case of combining 8 512-byte long vectors in our
model is close to the fixed overhead of message commu-
nication α. The active switch can achieve this small cost
because it can access messages coming from all the ports
in parallel and has little overhead to start the computa-
tion and access message data. Further, the switch can
start computation without waiting for the whole message
to be copied into the data buffer.

In the case of a system with multiple active switches,
the active switch systems also have better scalability than
normal systems. We can organize the switches logically in
a tree and have each leaf switch combine the vectors from
compute nodes connected to it and send the result vector
to its parent switch. Finally, the root switch receives
the final result vector and sends it to the appropriate
nodes according to the type of reduction. Because of the
active switch can overlap the switch CPU execution with
its duties as a normal switch, the whole latency will be
α + γ + dlogN/2 (p)eδ, where N is the number of ports
on the switch and assuming that half of the ports of leaf
switches are used to connect to compute nodes. δ is the
incremental cost added by each level of switch. Active
switch systems scale better than normal systems because
its scaling factor is logN/2(p) instead of log2(p).

We only show results for Reduce-to-one and Dis-
tributed Reduce here since the results for Reduce-to-all
are similar to those for Reduce-to-one. Figure 15 and Fig-
ure 16 show the execution time for both the normal and
active cases for these two benchmarks. The normal case
implements a minimum spanning tree algorithm and the
operation used by the reduction is addition. For Reduce-
to-one, the switch that calculates the final vector sends it
back to node 0. For Distributed Reduce, we use another
handler that does nothing but re-distribute the final vec-
tor among the nodes. We assume each switch has 16
ports and 8 of them are used to connect compute nodes.
Each node has a vector of size 512 bytes. The message
receiver uses polling instead of interrupts, which favors
the normal case since active switches can eliminate most
of the interrupts. Results are shown up to 128 nodes. We
see that active switch systems achieve speedup up to 5.61
for Reduce-to-one and 5.92 for Distributed Reduce.

Multiple Switch Processors. All simulation results
above assume there is only one switch processor per ac-
tive switch. It is natural to add more processors inside a
switch to take advantage of coarse parallelism from mul-
tiple data streams. Next, we take the earlier MD5 appli-
cation and show the performance impact of adding more
embedded switch processors. In our current design, we
support up to 4 switch processors per active switch. Each

8 16 32 64 128
0

1

2

3

4

5

6

7

8
x 10

4 Collective Reduce−to−one operation

E
xe

c
tim

e(
ns

)

Number of nodes

active
normal

Figure 15. Collective Reduce-to-one operation

8 16 32 64 128
0

2

4

6

8

10

12

14
x 10

4 Collective Distributed Reduce operation

E
xe

c
tim

e(
ns

)

Number of nodes

active
normal

Figure 16. Collective Distributed Reduce operation

switch CPU has its own data and instruction caches.
The Original MD5 uses block chaining to ensure sensi-

tivity to block order that prevents arbitrary parallelism.
MD5 can be slightly altered to run on multiple CPUs.
There should be a predetermined finite number of blocks
processed from independent seeds, such that the I-th
block is part of the “I mod K”-th chain. The result-
ing K digests themselves form a message, which can be
MD5-encoded using a single-block algorithm. To support
multiple switch CPUs, we add a switch CPU Id field in
the message header to aid the Dispatch unit. Figure 17
shows the results for this modified MD5 algorithm using
2 and 4 switch processors per active switch. For the pur-
pose of comparison, the results with one switch CPU and
the normal case are also included. Instead of an overall
slowdown, the active switch system now has a speedup
of 1.18 with 4 CPUs and I/O prefetching and 1.50 with
4 CPUs and no I/O prefetching.

6 Related Work
The use of active or intelligent devices to offload tasks

from the host processor has been widely explored by re-
searchers. This work can be roughly divided into two
classes. In the first class, device functionality is limited

10

normal active active2 active4
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

N
or

m
al

iz
ed

 e
xe

c
tim

e

without pref
with pref

Figure 17. Performance of MD5 with multiple switch CPUs

in the sense that they either have very specific func-
tions or execute only system codes and are not user-
programmable. The I/O processor in the IBM 360 al-
lowed users to download channel programs that made I/O
requests on behalf of the host programs [20]. Network
attached storage devices use embedded processors to im-
plement some system-oriented functions like quality-of-
service [6] or perform some file system and security func-
tions [13]. There are also many network devices in this
class. For example, the Alacritech NIC can offload part
of TCP/IP stack processing from the host processor [4].

The second class of devices is less limited and fully
user-programmable. Our active switch design falls into
this class. There are also many active disks proposals
that belong to this group. Among them, Riedel et al. [21]
propose a disk model with an embedded processor and
evaluate its performance on data mining and image pro-
cessing applications; Anurag et al. [1] propose a similar
active disk system that includes a disk OS and a stream-
ing programming model; Keeton et al. also propose a
similar model [17]. All these efforts center on taking ad-
vantage of the large number of disks in servers to form a
powerful parallel computing engine. There are network
devices in this class as well. The Myrinet NIC has em-
bedded processors that can execute user programs. Many
research efforts take advantage of this computing power
in different situations [5, 7, 12].

The main differences in our approach are that the intel-
ligence lies in the switch rather than in the end devices,
and the switch architecture contains customized hard-
ware to separate data from control and improve switch
throughput. The location of our active switches within
the system yields several advantages over active I/O de-
vices. For one, while active I/O devices can necessar-
ily only improve performance for their particular type of
traffic (disk I/O for active disks, network traffic for active
NICs), the position of the active switch allows it to po-
tentially improve not only all types of I/O traffic, but as
we have shown, even improve host-to-host intra-cluster

network traffic. In addition, since scaling to larger sys-
tems requires adding more switches, active switch-based
systems naturally scale with the machine size. Finally,
the cost of the embedded switch CPUs in active switches
can be amortized across multiple I/O devices. Since pro-
cessor performance is increasing faster than individual
disk or network I/O performance, it will be possible to
actively process four streams (for example) from four pas-
sive I/O devices with a single switch, rather than invest-
ing in four active I/O devices. If active I/O devices do
become prevalent, they can also be used within our active
switch system, creating a two-level active I/O system.

Researchers have also explored so-called active
networks—a novel approach to network architecture in
which the switches of the network perform customized
computations on the messages flowing through them.
Though this idea is similar to ours in some respects, its
main focus is in supporting or introducing new services
for wide-area networks using existing network infrastruc-
ture. The long distance nature and lack of centralized
control in these proposals result in difficult implemen-
tation problems. Our focus is on much smaller, more
tightly-coupled and managed system area networks and
how to improve the performance of the servers built from
these networks.

7 Conclusions
In this paper, we propose an active switch architec-

ture for system area networks that can intelligently pro-
cess messages passing through it on one or more user-
programmable embedded processors. Executing code on
the SAN switch can reduce host utilization; reduce net-
work bandwidth, host I/O interface bandwidth, and host-
memory bandwidth; and improve overall performance ei-
ther by offloading computation from the host processor
or by filtering unneeded data. We also show how ac-
tive switches are versatile enough to improve host-to-
host, host-to-device, and device-to-host communication
that can not be done by intelligent devices alone.

We propose a detailed hardware design of an active
switch that can seamlessly integrate into existing conven-
tional switch architectures without interfering with non-
active messages. A key feature of our switch is the use
of on-chip data buffers that eliminate much of the need
for large private data caches and avoid wasteful memory
copies. The cache line-based valid bits and the separa-
tion of the control and datapath of the embedded switch
CPU allow more parallelism and are crucial to both the
performance and scalability of our system.

To program an active switch, we adopt a hard-
ware/software co-design approach that hides much of the
details of the switch hardware from the programmer, cre-
ating a familiar programming environment. The partition
of a program into host and handler portions is the most

11

important step. A good partition is one where the han-
dler is small, can filter data, and where both the host and
handler code can work in a balanced, pipelined fashion.

To evaluate our active switch concept and hardware
design, we developed an execution driven simulator that
models all the major hardware components in detail. We
show execution time, host utilization, and bandwidth re-
sults for 9 benchmarks that demonstrate numerous bene-
fits of active switches—up to 5.9 speedup for some appli-
cations. Even where there is little or no speedup, reduc-
tions in host utilization and system bandwidth require-
ments allow for other tasks to be performed concurrently.
Thus, active switches can play a key role in improving
overall throughput in modern multi-programmed servers.

Acknowledgments

This research was supported by Cornell’s Intelligent
Information Systems Institute and NSF CAREER Award
CCR-9984314.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:

Programming model, algorithms and evaluation.
In Proceedings of the Eighth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 81–91, Octo-
ber 1998.

[2] A. Ailamaki et al. DBMSs on a modern processor:
Where does time go?, InInternational Conference on
Very Large Databases, September 1999.

[3] A. C. Arpaci-Dusseau et al. High-Performance Sort-
ing on Networks of Workstations, In SIGMOD ,
pages 243-254, May 1997.

[4] Accelerating Server and Application Performance.
http://www.alacritech.com/html/techwhitepaper.html

[5] A. Bilas, C. Liao, and J. P. Singh. Using Network
Interface Support to Avoid Asynchronous Protocol
Processing in Shared Virtual Memory Systems. In
ISCA, pages 282-293, May 1999.

[6] E. Borowsky et al. Using attribute-managed storage
to achieve QoS. In Presented at 5th Intl. Workshop
on Quality of Service, June 1997.

[7] D. Buntinas, D. K. Panda, and P. Sadayappan.
Performance Benefits of NIC-Based Barrier on
Myrinet/GM, InWorkshop on Communication Ar-
chitecture for Clusters, April 2001.

[8] E. V. Carrera et al. Impact of Next-Generation I/O
Architectures on the Design and Performance of Net-
work Servers. In Proceedings of the First Workshop
on Novel Uses of System Area Networks, pages 27–
34, February 2002.

[9] L. Chung et al. Windows 2000 Disk I/O Perfor-
mance. Microsoft Research Technical Report MS-
TR-2000-55, June 2000.

[10] D. J. DeWitt, R. Gerber. Multiprocessor Hash-
Based Join Algorithms. In Proceedings of the 11th
Conference on Very Large Databases, pages 151–164,
Stockholm, Sweden, August 1985.

[11] Direct RDRAM 256/288-Mbit Specification.
http://www.rdram.com/documentation/.

[12] M. E. Fiuczynski and B. N. Bershad. SPINE - A
Safe Programmable and Integrated Network Envi-
ronment. In 16th Symposium on Operating System
Principles, October 1997.

[13] G. Gibson et al. File server scaling with network-
attached secure disks. In Proceedings of the ACM
International Conference on Measurement and Mod-
eling of Computer Systems, June 1997.

[14] J. Gibson et al. FLASH vs. (Simulated) FLASH:
Closing the Simulation Loop. In Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 49–58, November 2000.

[15] M. Heinrich and R. Manohar. Active Fabric: An
Architecture for Programmable, Scalable I/O Sub-
systems. Cornell Computer Systems Lab Technical
Report CSL-TR-1998-990, October 1998.

[16] InfiniBand Architecture Specification, Volume 1.0,
Release 1.0. InfiniBand Trade Association, October
24, 2000.

[17] K. Keeton, D.A. Patterson, and J.M. Hellerstein.
A case for intelligent disks (idisks). In SIGMOD
Record , 27(3), July 1998.

[18] J. Kuskin et al. The Stanford FLASH Multiproces-
sor. In Proceedings of the 21st International Sym-
posium on Computer Architecture, pages 302–313,
April 1994.

[19] M. D. Noakes, D. A. Wallach, and W. J. Dally. The
J-Machine Multicomputer: An Architectural Evalu-
ation. In Proceedings of the 20th International Sym-
posium on Computer Architecture, pages 224–235,
May 1993.

[20] D. Patterson and J. Hennessey. Computer Architec-
ture: A Quantitative Approach, Morgan Kaufman,
2nd edition, 1996.

[21] E. Riedel, G. A. Gibson, and C. Faloutsos. Active
Storage For Large-Scale Data Mining and Multime-
dia. In Proceedings of the 24th international Confer-
ence on Very Large Databases (VLDB ’98), August
1998.

[22] M. Shroff and R. A. van de Geijn. CollMark: MPI
Collective Communication Benchmark, In Proceed-
ings of the International Conference on Supercom-
puting 2000 , December 1999.

[23] Craig B. Stunkel et al. A new switch chip for
IBM RS/6000 SP systems. In Proceedings of the
1999 ACM/IEEE conference on Supercomputing
(CDROM), January 1999.

[24] Third Generation I/O Architecture.
http://www.intel.com/technology/3GIO/

[25] T. von Eicken et al. Active Messages: A Mechanism
for Integrated Communication and Computation. In
Proceedings of the 19th International Symposium on
Computer Architecture, pages 256–266, May 1992.

12

