
1

The Effects of Latency and Occupancy in
Distributed Shared Memory Multiprocessors

Chris Holt, Mark Heinrich, Jaswinder Pal Singh, Edward Rothberg, and John Hennessy

(submitted to JPDC, also Stanford University Technical Report CSL-TR-95-660)

Abstract

Many designers of distributed shared memory (DSM) multiprocessors are proposing the use of commodity parts, not only in the proces-
sor and memory subsystem but also in the communication architecture. While the desire to use commodity parts in the communication archi-
tecture offers potential advantages in cost and design time, the impact on the performance of applications is unclear. In this paper we study
this performance impact through detailed simulation and analytical modeling, using a range of important applications and computational
kernels.

We characterize the communication architectures of DSM machines by four parameters, similar to those in the logP model. The l
(latency) and o (controller occupancy, or controller bandwidth) parameters are the keys to performance in these machines, with the g (gap or
node-to-network bandwidth) parameter not being a bottleneck in recent and upcoming machines. Conventional wisdom is that latency is the
dominant performance bottleneck in DSM machines. We show, however, that controller occupancy also has a substantial impact on applica-
tion performance, for the occupancies that are being proposed for a range of cache-coherent DSM machines. Moreover, performance is
affected more by the contention that controller occupancy induces than the latency it adds. As expected, techniques to reduce the impact of
network latency make controller occupancy a greater bottleneck. What is surprising, however, is that the performance impact of occupancy
is substantial even for highly tuned applications and even in the absence of latency hiding techniques. Scaling the problem size is often used
as a technique to overcome limitations in communication latency and bandwidth. We show that in many structured computations occupancy-
induced contention is not alleviated by increasing problem size, and that there are important classes of applications for which the perfor-
mance lost by using higher latency networks or higher occupancy controllers cannot be regained easily, if at all, by scaling the problem size.

1 Introduction
Distributed shared memory (DSM) multiprocessors are converging to a family of architectures that resemble the generic

system shown in Figure 1.1. This architecture consists of a number of processing nodes connected by a general interconnec-
tion network. Each node contains a processor, its cache subsystem, and a portion of the total main memory of the machine. The
processing node also contains a communication controller, which is responsible for managing the communication between its
node and other nodes. Our interest in this paper is in the specific class of cache-coherent DSM machines, which provide com-
munication and coherence at cache-line granularity.

There are many ways to build cache-coherent DSM machines, arising from differences in desired performance and cost
characteristics and the extent to which a design uses commodity parts rather than customized hardware. In keeping with cur-
rent trends, we assume the use of a commodity microprocessor, cache subsystem, and main memory. The major sources of
variability are in the network and in the communication controller, which together constitute the communication architecture
of the multiprocessor.

Candidate networks vary in their latency and bandwidth characteristics as well as in their topologies. They range from the
low-latency, high-bandwidth networks used in massively parallel processors (MPPs), all the way to commodity local area net-

Figure 1.1. Generic DSM architecture

DRAM μPμPMain
Memory

Network

2nd-Level
Cache

2nd-Level
Cache

DRAM μP

MAGIC

μPMain

Comm.
Controller

Memory

MAGIC
Comm.

Controller

2nd-Level
Cache

2nd-Level
Cache

2

works (LANs). On the controller side, there are two important and related variables. One is the location where the communica-
tion controller is integrated into the processing node. This can be the cache controller, the memory subsystem, or the I/O bus.
The other design variable is how customized the communication controller is for the tasks it performs; for instance, it may be
a hardware finite state machine, a special-purpose processor that runs protocol code in response to communication-related
events, or an inexpensive general-purpose processor.

Because of their differences in design cost and design effort, all of these types of systems are interesting. Current and pro-
posed architectures for cache-coherent distributed shared memory have different design goals along these axes, and thus there
are examples of real machines or proposed machines at almost every point in this design space. The question we address in
this paper is how the characteristics of the network and controller affect the performance of parallel programs written for these
machines. That is, as we move from more tightly-integrated and specialized communication architectures to less tightly-inte-
grated and more commodity-based systems, how significant is the loss in parallel performance over a range of computations?
We address this question by studying a range of important computations and communication architectures through a combina-
tion of detailed simulation and analytical modeling.

We characterize the communication architectures of DSM multiprocessors by a few key parameters that are similar to those
in the logP model [CKP+93]. More detailed design decisions and machine parameters, which are crucial to establishing an
architectural context, are held constant in our evaluation. We describe this architectural context in the next section. Section 3
describes the framework and methodology we use to study the effectiveness of different types of DSM architectures. Section 4
and Section 5 present and analyze our results, and Section 6 concludes the paper.

2 Architectural Context
Using the logP model, we abstract the communication architecture of a parallel machine in terms of four parameters. The l

parameter in the logP model is the network latency from the moment the first bits of a message enter the network at a source
node to the moment the first bit of the message arrives at the destination node, o is the overhead of sending a message, g is the
gap (reciprocal of node-to-network bandwidth), and P is the number of processors. The only difference between our model
and logP is in the o parameter. In logP, the overhead, o, is the time during which the main processor is busy initiating or receiv-
ing a message and cannot do anything else. In most DSM machines, however, protocol processing is off-loaded to a separate
communication controller, and the main processor is free to continue doing independent work while the controller is occupied.
The o parameter in our DSM model, then, stands for the occupancy of the communication controller per protocol action or
message; that is, the time for which the controller is tied up with one action and cannot perform another. Alternatively, occu-
pancy can be viewed as the reciprocal of the communication controller’s message bandwidth. Since controller bandwidth may
be confused with (the very different) network bandwidth parameter, however, we prefer to use the term controller occupancy.

We fix the number of processors, P, at 64 in this paper, so that we are studying moderate-scale DSM machines. Each pro-
cessor is 200 MHz statically-scheduled dual-issue superscalar, for which we assume an effective IPC of 1.5 (without memory
effects). The other three parameters that characterize the communication architecture—latency, occupancy, and bandwidth or
gap—all have complicated aspects to them, and we make certain simplifying assumptions. Let us discuss each parameter indi-
vidually, before setting the range in which we vary these parameters.

Latency: The latency of a message through the network depends, among other things, on how many hops the message trav-
els in the network. For the moderate-scale machines that we consider, the overhead of getting the message from the processor
into the network and vice versa dominates the topology-related component of the end-to-end latency seen by the processor. We
therefore ignore topology, and compute network latency as the average network transit time between two nodes in the net-
work. The average network transit time is defined to be the average time to traverse an 8 x 8 mesh, assuming no network con-
tention.

Occupancy: The occupancy that the controller incurs for a request affects performance in two ways. First, it contributes
directly to the end-to-end latency of the current request because the request must pass through the controller. Second, it can
contribute indirectly to the end-to-end latencies of subsequent requests, through contention for the occupied controller. Occu-
pancy is more difficult to represent as an abstract parameter than network latency for two reasons. First, we have to decide
which types of transactions invoke actions on the controller and how much occupancy they incur. Second, the occupancy of a
remote miss is actually distributed between two (or three) of the controllers in the system, and the occupancies of each of those
individual transactions may not be the same. While we would like to represent occupancy by a single parameter o, occupancy
in real machines often depends on the type of the transaction. Let us examine these two modeling challenges separately.

Clearly, all events related to internode communication and protocol processing incur controller occupancy. These events
include cache misses that need data from another node, processor references that require the communication of state changes
to other nodes, and incoming requests and replies from the network containing data and protocol information. We assume that
cache misses that access local memory and do not generate any communication do not invoke the controller and thus incur no

3

occupancy [SFL+94]. We also assume that the state lookup that determines if a cache miss needs to invoke the controller is
free, and we assume uniprocessor nodes so that the communication controller has to handle the requests of only one local pro-
cessor. All of these assumptions minimize the burden on the communication controller and hence expose more fundamental
limitations. Machines with multiple processors per node and machines where the controller handles local memory references
may perform worse than the results presented in this paper for the same values of controller occupancy, indicating that for
some architectures controller occupancy may be even more important than we will show it to be.

In many machines, particularly those in which the communication controller runs software code sequences for protocol
processing, the occupancies of the controller are different for different types of protocol actions. We make the following
assumptions about occupancy. When the communication controller is simply generating a request into the network or receiv-
ing a reply from the network it incurs occupancy o. When the communication controller is the home of a network request it
incurs occupancy 2o, because it has to retrieve data from memory and/or manipulate coherence state information [HKO+94].
In this case we assume the memory access happens in parallel with the operation of the controller. If the state lookup at the
home reveals that the requested line is dirty in the home node’s cache, the communication controller incurs an extra fixed
occupancy C while retrieving the data from the processor’s cache. If the requested line is dirty in a third processor’s cache, the
home node incurs an occupancy of 2o and forwards the request to that processor, and the communication controller at that
node incurs an occupancy of 2o+C. The only other time occupancy is incurred is when the communication controller at the
home node services a write request and sends invalidations to all nodes that are sharing the data. In this case the controller
incurs an additional occupancy of two processor clocks per invalidation that it sends.

Bandwidth or gap: The gap (g) parameter specifies the node-to-network bandwidth. It determines how fast data can be
transferred through the network interface, i.e. between the communication controller and the network itself. While we explic-
itly vary l and o in this paper, we do not vary node-to-network bandwidth. Instead, we fix it at 400 MB/s peak, which corre-
sponds to MPP networks on current-generation machines. We compute the node-to-network bandwidth requirements of the
individual applications in Section 4.3 and we show that a bandwidth of 400 MB/s is large enough to never be the performance
bottleneck in our experiments. For coherence messages that do not carry data, the occupancy of the communication controller
always dominates this gap limitation. For messages that carry data, this gap can theoretically become the bottleneck before
controller occupancy for the two lowest occupancies we examine. We never observed the symptomatic filling of network inter-
face buffers, however, both because our processor model allows only a limited number of outstanding requests, and because
transactions that do not involve data are usually interspersed with those that do.

Given these assumptions about l, o and, g, let us examine the path and cost of a read miss to a cache line that is allocated on
a remote node and is clean at its home. The request travels through the communication controller on the requesting node (o),
traverses the network (l), travels through the communication controller at the home where the request is satisfied (2o),
traverses the network again (l), and finally travels back through the communication controller at the source node (o). Including
the fixed external interface delays into and out of each controller (Kin, Kout). This request has a total round-trip latency (with-
out any contention) of Kin + o + Kout + l + Kin + 2o + Kout + l +Kin + o + Kout, or 2l + 4o + 6K if we assume Kin = Kout = K. If
the line were dirty in the home node’s cache, there would be an extra fixed cost of C at the home for retrieving the data from
the cache. For a line that is dirty in the cache of a third processor (not the requestor or the home), the latency would be
3l + 6o + C + 8K.

Table 2.1. DSM Design Space

Controller Occupancy
(200 MHz Processor Clocks)

Network Latency
 (200 MHz Processor Clocks)

Tightly-Coupled
MPP
l=50

Low Latency

Distributed
MPP

l=100, 200, 400
Medium Latency

LANs
Aggressive ATM Current ATM

l=800 l=1600
High Latency Very high Latency

Hardwired Controller

o ≤ 14 pclocks, Low Occupancy

L1

O1

L2, L4, L8

O1

L16

O1

L32

O1

Customized Co-processor

28 ≤ o ≤ 56 pclocks, Medium Occupancy

L1

 O2, O4

L2, L4, L8

O2, O4

L16

O2, O4

L32

O2, O4

General-purpose Co-processor on Memory Bus

o=112 pclocks, High Occupancy

L1

O8

L2, L4, L8

O8

L16

O8

L32

O8

General-purpose Co-processor on I/O Bus

o=224 pclocks, Very high Occupancy

L1

O16

L2, L4, L8

O16

L16

O16

L32

O16

4

The network latency l and the controller occupancy o are the variables in the above times. We study a range of values for
each variable, as shown in Table 2.1, covering a variety of interesting architectural alternatives. Our latencies l vary from
tightly-coupled, low-latency MPP networks, through physically distributed MPP networks, all the way to commodity LANs
composed of ATM switches. Although our highest value of latency corresponds to the latency of an ATM switch, it does not
represent actual ATM networks because the 400 MB/s bandwidth we assume is much higher than current ATM bandwidth.
Small values of occupancy represent communication controllers which are tightly-integrated, hardwired state machines. Such
controllers appear in MIT’s Alewife machine [ABC+95], the KSR1 machine [KSR92], the Stanford DASH
multiprocessor [LLG+92], and Silicon Graphics’s Origin 2000 [LLA+97]. As o increases the controller becomes less hard-
wired and more general-purpose, from specialized co-processors like those in the Stanford FLASH multiprocessor [KOH+94]
the Sun S3.mp [NAB+95], and the Sequent NUMA-Q [LC96], through inexpensive off-the-shelf processors on the memory
bus as in Typhoon-1 [RPW96], to a controller on the I/O bus of the main processor like those in SHRIMP [BLA+94], and the
IBM SP2 [SSA+95]. The entries in Table 2.1 correspond to specific values in our range of latencies and occupancies, which
like all cycle times in this paper are expressed in 200 MHz processor clocks (pclocks). The L1, O1 point is our base architec-
ture, corresponding to a machine with a tightly-coupled network (l=50 pclocks) and a hardwired communication controller
(o=14 pclocks). The other entries in the table correspond to the cross product of machines obtained by doubling network
latency (L2=100, L4=200, L8=400, L16=800, L32=1600 pclocks) and doubling controller occupancy (O2=28, O4=56,
O8=112, O16=224 pclocks). Each table entry or controller-network combination represents a potentially viable architecture
based on cost/performance tradeoffs, including each of the examples mentioned earlier in this paragraph. The absolute range
of controller occupancies studied is less than the range of network latencies because most current and proposed machines fall
within the O1 to O16 range. However, as we shall see, using higher occupancy controllers surprisingly can have a more sub-
stantial effect on performance than using higher latency networks.

With this context established, we now present our framework for studying the effects of varying l and o on system perfor-
mance over a range of important parallel computations.

3 Framework and Methodology

3.1 How We Approach the Problem
Our goal is to understand the impact of latency and occupancy on the effectiveness of a DSM system, and thus evaluate

how much performance we lose as we relax the aggressiveness of our communication architectures along these dimensions.
The first question we must resolve is how to evaluate this. We measure parallel performance as parallel efficiency, which is the
speedup over a sequential implementation on a uniprocessor execution divided by the number of processors used. One possi-
bility, then, is simply to examine how performance on a fixed problem size degrades as l and/or o are increased. This provides
useful insights, and may be the most important question to a user who cares about that particular problem size. While this met-
ric does provide useful insights and we use it for part of our results, it is not sufficient since for a given number of processors,
most sources of reduced parallel efficiency, including the ratio of communication to computation and the load imbalance,
depend strongly on the problem size that is used. Typically, sources of overhead like the communication to computation ratio
decrease with increasing problem size. In fact, even the nature of the dominant overhead—e.g. whether it is communication or
load imbalance—can change with problem size. We therefore believe that the best way to cast the effectiveness question is:
Given an application, a number of processors, and values for l and o that characterize the network and controller, what is the
minimum sized problem that can deliver a desired level of parallel efficiency?

The remaining issue is the choice of the “desirable” parallel efficiency. Typically, the larger the desired efficiency the larger
the problem size needed for a given combination of l and o. The efficiency level we choose is therefore an important determi-
nant of the constant factors in the expression for the required problem size. The desirable efficiency level may also change the
relative importance of different performance bottlenecks, and hence the growth rate of the required problem size with l and o.
In most cases, however, if the dominant bottleneck does not change, then the chosen level of efficiency will not affect the
growth rate of the required problem size but only the starting point. We therefore use a desired parallel efficiency of 60% in
this paper in an effort to set a fairly aggressive yet achievable performance target.

Some machine designers argue that cost-performance is the best overall figure of merit [WH95]. Though this may be an
important factor in the decision to purchase machines, it is difficult to pinpoint the costs of machines at every point in our
design space, especially as advances in technology cause the costs to change over time. Instead, we stick with a pure perfor-
mance metric. If designers want to spend less money and get cheaper, slower networks, our results will still indicate the perfor-
mance of shared memory programs running on those less aggressive architectures. In fact, cost can be factored in separately
with our performance results to use cost-performance as a metric.

5

Finally, given the large communication latencies on DSM machines, it is natural to try to hide these latencies when possi-
ble. Latency can be hidden by various techniques, all of which exploit the availability of additional bandwidth and require that
the processor allows multiple outstanding references. To hide write latency, we assume that the architecture supports a relaxed
memory consistency model [cite Kourosh]. To hide read latency, we use software-controlled prefetching. Since read latencies
are more difficult to hide, we use two versions of our applications where applicable: one that tries to hide read latency with
programmer-inserted prefetches, and the other that does no prefetching at all.

3.2 Simulation Environment
The results presented in this paper are gathered from a detailed multi-threaded memory simulator that interfaces to the

Tango Lite event-driven reference generator [Golds93]. The simulator models contention in detail within the communication
controller, between the controller and its external interfaces, at main memory, and at the system bus. For the communication
controller’s internal queue sizes and fixed interface delays, we use the values from the Stanford FLASH multiprocessor design
as being representative given current technology [HKO+94]. The input and output queue sizes in the controller’s processor
and network interfaces are uniformly set at 16 entries. We assume processor interface delays of 2 pclocks inbound and
8 pclocks outbound, and network interface delays of 16 pclocks inbound and 8 pclocks outbound. These constitute the K terms
discussed in Section 2, although we note that Kin and Kout are not equal. The total round trip interface delay encountered on a
remote clean miss is 58 pclocks and is assumed to remain fixed as controller and network characteristics are varied. We also
fix the access time of main memory at 140 ns (28 pclocks), a fairly aggressive number. Fixing the interface delays and the
memory access time is realistic, and allows us to focus on the performance of the communication architecture.

The processor controls its own cache, and we assume that it takes 30 pclocks for the communication controller to retrieve
state information and data from that cache when necessary. This is the value of C used in our simulations (see Section 2), and
is also obtained from the Stanford FLASH multiprocessor. The caches are 1 MB in size, two-way set associative, and have a
line size of 128 bytes. We also assume that the processor has both prefetch and prefetch exclusive instructions. In our proces-
sor model a load miss stalls the processor until the first double-word of data is returned, while prefetch, prefetch exclusive, and
store misses will not stall the processor unless there are already references outstanding to four different cache lines. While this
upper bound of only four outstanding cache lines can limit the amount of latency that a processor can hide with bandwidth, it
is nonetheless more aggressive than the current situation in most commodity microprocessors.

Validation: To validate our simulator, we compared the simulator to an existing moderate-scale shared memory multipro-
cessor, the Stanford DASH machine [LLG+92]. We use a 32 processor DASH system, arranged in 8 nodes connected by a
mesh network topology. Each DASH node is a cluster of 4 processors sharing a common memory bus. The CPUs run at
33 MHz, and the system bus is 16 MHz. The primary instruction and data caches are 64 KB each, with a unified 256 KB
direct-mapped secondary cache. Our simulator does not support clustering, but we modified its other parameters to match the
architectural characteristics of DASH. The results of the comparison are shown in Table 3.1. In each case, the speedups pre-
dicted by the simulator were within 12% of the actual values obtained on DASH, and within 5% for half of the trials. The sim-
ulated speedups are in fact usually lower than those of the real machine. This is encouraging from our perspective because it
suggests our speedups are not necessarily optimistic. One reason why the simulated speedups tend to be low is that the simula-
tor models only a large first-level cache which helps uniprocessor performance more than parallel performance. Although only
16 and 32 processor numbers are shown in the table, we compared smaller numbers of processors as well, with similar results.

3.3 Applications

The applications we use in our study are summarized in Table 3.2. They include three complete applications (Barnes-Hut,
Ocean, and Water) and three computational kernels (FFT, LU, and Radix). The programs were chosen because they represent
a variety of important scientific computations with different communication patterns and requirements. Barnes is representa-
tive of the class of hierarchical N-body methods, which are used in astrophysics, electrostatics, and plasma physics, among

Table 3.1. Comparison of Application Speedups Between the Stanford DASH Multiprocessor and the Simulator

Application

16 processors 32 processors

DASH Simulator DASH Simulator

Barnes (16K particles) 11.6 11.1 22.4 22.1

Ocean (514x514 grid) 10.3 9.5 19.4 18.8

Radix (4M keys) 13.1 11.8 26.4 23.5

FFT (1M points) 11.6 11.2 19.2 21.5

6

other domains. Ocean is representative of many computational fluid dynamics applications on regular grids, and uses a multi-
grid equation solver. Water is representative of computational chemistry applications which compute particle interactions
based on a cutoff radius. FFT forms the computational core of a variety of applications, including image and signal processing
as well as climate modeling. We use an optimized, high-radix version of FFT. The most common need for large dense LU fac-
torization is in radar cross-section problems; however, for our purposes dense LU factorization is very similar to more widely
used sparse matrix factorization techniques (such as blocked Cholesky factorization [Roth93]), and of several other matrix
factorization and eigenvalue methods. Finally, Radix is a widely used sorting algorithm. Descriptions of the applications can
be found in: Barnes [HS94]; Radix and Ocean [WSH94]; Water [WOT+95]; FFT and LU [RSG93]. The applications are quite
highly optimized to improve communication performance, and particularly to reduce spurious hot-spotting or contention
effects that adversely impact controller occupancy. The codes for the applications are taken from the SPLASH-2 application
suite [WOT+95], although Radix was modified to use a tree data structure (rather than a linear key chain) to communicate
ranks and densities efficiently.

4 Results for a Fixed Problem Size
First, it is useful to examine how the parallel efficiency of an application changes with l and o for the problem size that

yields the desired level of efficiency on our most aggressive architecture. This lends important insight into how latency and
occupancy interact, and how much each contributes to performance degradation. It also helps to guide our search for the larger
problem sizes needed to retain the desired efficiency.

4.1 Intuition
As l and o increase for a given problem size, parallel efficiency clearly should decrease. But can we predict how it decreases

for the different applications? Excluding load imbalance and the time spent waiting at synchronization points, the time taken
by a parallel application can be broken down into two components: local computation, including cache and local memory
accesses, and communication. Communication cost can be further broken down into the cost due to round-trip latency and the
cost added by contention for a resource of limited bandwidth (non-zero occupancy). If we assume perfect load balancing of
both computation and communication, and that local caching effects stay the same regardless of the number of processors
used, then parallel efficiency is determined by the following formula:

where Tcomp is the uniprocessor computation time, Vcomm is the total volume of communication (number of communication
misses incurred on all processors), and TL and TC are the average stall times due to latency and contention, respectively, for
each communication.

To compare the effects of increases in controller occupancy with those of increases in network latency, we define TL as the
communication latency, which is the round-trip overall latency, assuming no contention, for a remote miss that is satisfied by
the main memory of the home node (computed as 2l+4o+6k in Section 2). For a fixed problem size and number of processors,
both Tcomp and Vcomm are constant. TL varies linearly with l and o. The remaining question is how the contention component,
TC, varies with l and o. If controller occupancy does not cause any contention and contributes only to end-to-end latency, then
TC = 0 in Eq. 4.1, which means that a decrease in parallel efficiency caused by an increase in controller occupancy is indistin-
guishable from holding controller occupancy constant and making a corresponding increase in network latency. On the other
hand, if higher occupancy causes contention for the controller, we would expect that a larger occupancy has a correspondingly
larger value of TC, and parallel efficiency would no longer be linearly dependent on o. Thus the parallel efficiency for a larger
occupancy would be less than for a smaller occupancy, even if the overall communication latency TL is the same in both cases.

Table 3.2. Applications and Their Communication Patterns

Application Description Communication Pattern
Barnes Barnes-Hut hierarchical N-body simulation irregular, hierarchical

Ocean Multigrid large scale ocean simulation nearest neighbor iterative, hierarchical

Water Molecular dynamics simulation structured, many-to-many

FFT Radix Six-Step Fast Fourier Transform regular, all-to-all, blocked matrix transpose

LU Blocked dense LU decomposition structured, one-to-many

Radix Integer radix sort irregular, all-to-all

n

(4.1)
Tcomp

Tcomp Vcomm TL TC+()×+

7

To understand the performance impact of l and o, in this section we seek answers to the following questions: (i) starting
from the base L1, O1 architecture (L1 = MPP network, O1 = hardwired controller), how does increasing network latency
degrade performance for the base problem size, both with and without prefetching; and (ii) to what extent does controller
occupancy cause contention in addition to contributing latency, both with and without prefetching, and how does this conten-
tion affect parallel efficiencies. Other interesting questions that we answer in the process are: What are the problem sizes
needed to obtain 60% parallel efficiency for our applications on the base architecture, which represents an aggressive current-
generation multiprocessor; and what are the node-to-network bandwidth requirements for these problem sizes?

4.2 A Case Study
In this section we outline the framework we use to discuss our fixed problem size results in the context of a single applica-

tion. We choose FFT because it is a simple, well-understood program. For both the prefetched and non-prefetched versions of
the program, we obtain results for varying latency and occupancy through detailed simulation. Many of the important insights
emerge in the course of this case study. In Section 4.3 we present results for all our applications, and compare them with those
obtained for FFT.

The results presented here are graphs of parallel efficiency vs. communication latency for both non-prefetched and
prefetched versions of FFT. Each graph shows a family of curves, one for each value of occupancy o, ranging from O1 (a hard-
wired controller on the memory bus) to O16 (a general purpose processor on the I/O bus). Each curve shows how parallel effi-
ciency changes with increasing communication latency (TL = 2l+4o+6k). The points along each curve show network latency l
increasing by factors of two from L1 (tightly-coupled MPP latency) to L32 (current ATM network latency). All graphs in this
paper have this same format. If there is no contention at the controllers (TC = 0), then with TL as the x-axis we see from Eq. 4.1
that the curves for different values of o should be identical. Different curves for different values of o indicate occupancy-
induced contention.

Without Prefetching: Figure 4.1(a) graphs parallel efficiency vs. communication latency for our base FFT problem size
(256K points). For FFT, the required problem size for 60% efficiency on 64 processors is small enough in our most aggressive
architecture that artifacts of its interactions with processor cache line size throw it off the growth rate curve. We therefore use
an efficiency of 80% for FFT, though the growth rates would have been the same if we had used 60% with a smaller cache line
size that did not cause these artifacts. The first interesting result is that varying controller occupancies generates multiple effi-
ciency curves, indicating that the contention component of occupancy is indeed important, even without prefetching and even
though the program is optimized to reduce contention. The curves also begin to flatten as o is increased, which indicates that
the controller starts to saturate, and its high utilization becomes the performance bottleneck in the machine.

Note that the parallel efficiencies nearly converge at high values of l, implying that at today’s ATM latencies, controller
occupancy does not have a large impact on overall performance for this problem size without prefetching. Conversely, for a
range of MPP and distributed MPP network latencies (small values of l), controller occupancy is a critical determinant of over-
all performance. What may be surprising are the values of controller occupancy at which the efficiency curves begin to diverge
at low l. At the smallest value of network latency (L1), a hardwired controller (O1) is 1.10 times to 1.43 times faster than a
customized co-processor (O2 to O4). The slowest customized co-processor is in turn 1.42 times faster than a general-purpose
processor on the memory bus (O8), and 2.26 times faster than a general-purpose processor on the I/O bus (O16). Not only is Tc

Figure 4.1. FFT base problem size results for both the (a) non-prefetched and (b) prefetched versions

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

��
�

�

�

�

�� �

�

�

�

�� � �

�

�

�� � �
�

�

�� � � �
�

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3
|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�� �

�

�

�

�� �
� �

�

8

non-zero, it increases as the controller occupancy o increases. Furthermore, it is increases in Tc that account for the efficiency
lost while communication latency is held constant and controller occupancy is increased.

With Prefetching: Figure 4.1(b) shows that with prefetching, there are also multiple efficiency curves (TC > 0) that flatten
out as o increases. Unlike the non-prefetched case, the efficiencies no longer converge because the contention component of
occupancy affects overall performance even at high network latencies. Prefetching improves performance more at low o and
up to moderate l than it does at higher values of o and l. Beyond a certain l, we cannot hide all the network latency, and
increases in latency begin to hurt the prefetched case at the same rate as the non-prefetched case, causing the efficiency curves
to take on similar shapes from this point on. At medium o, the controller becomes a bottleneck, as it is unable to match the
increased bandwidth needs of prefetching. With the fastest MPP networks we use, a hardwired controller (O1) is 1.60 times
faster than a general purpose processor on the memory bus (O8), and 2.36 times faster than a general purpose processor on the
I/O bus. To support prefetching in DSM machines then, it is crucial to keep the occupancy of the controller low.

Discussion: Let us look at the graphs from the perspective of an architect. Starting at today’s ATM network latencies (L32),
if we could reduce our network latency in half to reach the current goal of ATM networks, how much performance would we
gain? The answer here depends on the occupancy of our controller and whether or not latency-hiding techniques are used. In
the non-prefetched case a machine with a hardwired controller (O1) shows a 1.56 times improvement in parallel efficiency as
network latency is halved from L32 to L16, while a machine with an O16 controller makes a 1.20 times improvement. In the
prefetched case the improvement is 1.26 with an O1 controller and 1.05 with an O16 controller. While the relative gains in per-
formance can be great, the absolute performance of both of these systems is still low compared to the base L1, O1 architecture.

Now suppose we start from the most efficient L1, O1 machine, and see how much we lose by relaxing each parameter.
Beyond a very efficient customized controller on the memory bus (O2), controller occupancy is crucial to performance both
with and without prefetching. For low occupancy controllers, going to a higher-latency network (say, doubling network
latency) also hurts performance significantly, though with prefetching the performance impact is smaller. Once the controller
is a general-purpose processor on the memory or I/O bus (an O8 or O16 machine), doubling network latency does not signifi-
cantly affect performance. Surprisingly, starting from a very efficient L1, O1 or L1, O2 machine, doubling controller occu-
pancy hurts performance more than doubling network latency (in the prefetched case the base architecture is 1.06 times faster
versus 1.01 times faster, respectively), even though the communication latency of the occupancy doubled machine is less than
that of the latency doubled machine. As designers of tightly-coupled machines, if the cost considerations for doubling the two
parameters are similar, we might favor keeping occupancy low and sacrificing some network latency.

Another way to view the impact of contention on performance is to compare, for different controller occupancies, the aver-
age observed remote read miss latency with the expected uncontended remote read miss latency. These results are shown for
non-prefetched FFT in Figure 4.2. The observed latency is taken from the simulation results, while the expected latency is
simply the communication latency as defined in Section 2 (2l + 4o + 6K in most cases). The observed latencies of the O1 and
O2 architectures are almost identical to their corresponding communication latencies. For all controller occupancies except
O16, the observed latency converges to the communication latency at the highest network latencies, as expected. But starting
at an O8 controller, the observed latency becomes noticeably larger than the communication latency at all network latencies.
For example, an L1, O16 machine has an observed latency which is over 2.5 times slower than the expected read miss latency.

Figure 4.2. Observed remote read miss latency versus Communication Latency for non-prefetched FFT

� O1
� O2
� O4
� O8
� O16

|
0

|
500

|
1000

|
1500

|
2000

|
2500

|
3000

|
3500

|
4000

|
4500

|
5000

|0

|500

|1000

|1500

|2000

|2500

|3000

|3500

|4000

|4500

|5000

 Communication Latency

 A
vg

 O
bs

er
ve

d
La

te
nc

y

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
� �

�

�

�

��
�

�

�

�

9

We found that for FFT, without prefetching, controller occupancy is critical at low network latencies but not at high laten-
cies, while with prefetching it is critical at all latencies. Since high-latency networks make it all the more important to hide
latency, occupancy is in effect critical at all values of network latency. The trend toward lower latency networks further
increases the impact of occupancy. An interesting result is that it is usually the contention component of controller occupancy
(Tc), not its latency component (its contribution to TL), that dominates its contribution to performance degradation, both with
and without prefetching. We find that for most of our applications, for controller occupancies above O2—which represents an
efficient, customized co-processor—70%-95% of the performance degradation due to increasing occupancy is attributed
solely to its contention component for almost all values of network latency.

4.3 Modeling
A natural question is if it is possible to generate the efficiency curves presented in Section 4.2 using queueing models,

rather than relying on simulation results, especially for an analytically describable application like FFT. We address this ques-
tion by developing an application independent queueing model for parallel efficiency based on Eq. 4.1. Recall from Eq. 4.1
that parallel efficiency is determined by four parameters: Tcomp, the uniprocessor computation time, Vcomm, the number of
communication misses, TL, the component of the average remote miss time due to latency, and TC, the component of the aver-
age remote miss time due to contention. Let us look at how we model each of these parameters.

Tcomp: Since Tcomp is just the uniprocessor computation time, it remains constant across different communication architec-
tures. To determine Tcomp we use the same simulated uniprocessor time we use to calculate parallel efficiency.

Vcomm: Without prefetching, Vcomm, the number of remote misses, also remains constant across different communication
architectures. Since the problem sizes for each application and the cache configuration for each machine are also fixed in
Section 4.2, we simply extracted the number of remote read misses from the simulation results for the L1, O1 machine. In our
model, we assume that the latency of remote writes is completely hidden by the write buffer, and therefore writes do not affect
parallel efficiency. Modeling the effects of prefetching across different communication architectures is much less accurate than
assuming no prefetching, so we model only the non-prefetched versions of the applications.

TL: This is the easiest parameter to model. We simply compute TL using the 2l + 4o + 6K formula developed in Section 2. If
the misses are expected to be dirty at the home, TL is 2l + 4o + 6K + C, and if the misses are dirty remote, then a TL of 3l + 6o
+ 8K + C is used.

TC: As we saw in Section 4.2, the amount of controller-induced contention in these applications is both significant and
highly dependent on the underlying communication architecture. To model the amount of contention in the system, we treat
each communication controller as a queueing system. Messages arrive from either the network or the processor, queue up, and
are serviced by the controller. Since messages do not experience contention while in the network, but only entering and leav-
ing the network, TC is measured by the amount of time spent in the queue for the controller. We also make the assumption that
the number and types of messages seen by each controller are the same. This is a reasonable assumption provided both the
workload and data distribution are balanced across processors (true in FFT which we are presenting results for here), and
allows us to focus on modeling only one controller, calculating the average time spent in its queue, and using that number as
the value of TC for all processors.

We implemented two different queueing models: one which assumes an infinite controller input queue (M/M/1), and one
which assumes that a maximum number of messages can be queued at the communication controller (M/M/1/M), depending
on the size of the write buffer. The service time for both models is the average occupancy incurred during a read miss, deter-
mined by extracting the number and types of protocol messages issued during a simulation of the particular machine configu-
ration, and computing a weighted average of their occupancies. The average arrival rate is the number of messages that arrive
at the controller divided by the parallel execution time, assuming no contention. Note that the arrival rate includes all the mes-
sages that the controller must execute to handle the cache coherence protocol, not just those specifically needed to handle the
remote read misses.

The predicted TC vs. communication latency for both models is shown in Figure 4.3 along with the TC determined through
simulation, for FFT with an O2 controller (a), and then with an O8 controller (b). Clearly, neither queueing model predicts TC
very well; the models are off by as much as an order of magnitude. The main reason why the models are so far off is that a con-
stant, uniform arrival rate is an invalid assumption. Unfortunately it is very difficult to model what the proper arrival rate
should be, since it depends greatly on the amount of contention in the system.

We found that we could not accurately generate the efficiency curves in Section 4.2 using application independent simple
queueing models. While it is possible to accurately model portions of the total execution time, modeling the amount of conten-
tion present in the system proved difficult. In order to develop an accurate model for non-prefetched FFT, the exact communi-
cation structure must be understood, both in terms of the sequence and number of messages. Although it is possible to
determine this information for FFT, it is much harder for the other, less easily analyzed applications. Therefore, in the next sec-

10

tion we continue to present simulation results for the other applications as the only means of accurately presenting the impact
of controller occupancy on application performance.

4.4 Simulation Results for Other Applications

For each of the applications, Table 4.1 first shows the minimum problem size needed to achieve 60% efficiency on the most
efficient L1, O1 architecture. All of the problem sizes have small data set sizes. The table also shows the per-processor com-
munication bandwidth requirements for that problem size (including all protocol messages). The bandwidth numbers are pre-
sented in megabytes divided by total execution time, not just that of the communication phases. Note that the bandwidth
numbers in Table 4.1 are moderate, and in all cases are much less than our node-to-network bandwidth of 400 MB/s. Even
with burstiness, we find network bandwidth not to be a bottleneck, as mentioned earlier. Bandwidth requirements will gener-
ally decrease as problem sizes are increased. Following the framework developed in Section 4.2, we now present base problem
size results for all of our applications. We compare these results with those we have already seen for our FFT case study.

Radix: The results for Radix shown in Figure 4.4 are similar to those for FFT, with a few notable exceptions. Like FFT,
without prefetching all the parallel efficiencies almost converge by today’s ATM latencies (our rightmost points). While the
O1 and O2 efficiency curves are still very close together, the O8 curve is much flatter than it is in FFT, and the O16 curve is
almost totally flat. This indicates that in Radix contention for the controller matters even more than it does in FFT.

In the prefetched version of Radix, we again see a linearization of all the curves, although prefetching is not as successful in
Radix as it is in FFT, because Radix communicates mostly through writes. The key prefetching trends continue in Radix:
prefetching helps much more at lower values of o and moderate l, and the curves do not converge to a point at L32, indicating
that it is critical to keep occupancy low when prefetching, even with ATM latencies.

LU: The results for LU (Figure 4.5) are also similar to those for FFT. One significant difference for both prefetched and
non-prefetched LU is that the performance is less sensitive to both latency and occupancy. The reason is that LU has a high

Figure 4.3. Modeled versus simulated TC for FFT with (a) an O2 controller and (b) an O8 controller

� O2 (M/M/1)
� O2 (M/M/1/M)
� O2 (Simulated)

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0

|18.0

|20.0

 (a)

 Communication Latency

 A
ve

ra
ge

 T
c

�
�

�

�

�

�

��
�

�

�

�

�

�

�

�

�
�

� O8 (M/M/1)
� O8 (M/M/1/M)
� O8 (Simulated)

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|20.0

|40.0

|60.0

|80.0

|100.0

|120.0

|140.0

|160.0

|180.0

 (a)

 Communication Latency

 A
ve

ra
ge

 T
c

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

Table 4.1. Minimum Problem Sizes and Per-Processor Bandwidth Requirements for the Base Architecture

Non-prefetched Prefetched

Application Minimum Problem Size Node Bandwidth (MB/s) Minimum Problem Size Node Bandwidth (MB/s)

Barnes 8192 particles 7.4 N/A N/A

Ocean 258x258 grid 38.6 258x258 grid 44.8

Water 512 molecules 10.9 N/A N/A

FFT 64K points 47.2 64K points 60.0

LU 512x512 matrix 7.5 512x512 matrix 7.9

Radix 2M keys, radix 256 70.8 1M keys, radix 256 79.6

11

computation-to-communication ratio, and the dominant bottleneck is load imbalance, so its performance is less dependent on
communication costs.

Ocean: Ocean, which performs many iterative nearest-neighbor computations on regular grids, including a multigrid
solver, depends more on network latency than any of the previous applications. However, it depends substantially on controller
occupancy as well (Figure 4.6). Unlike the previous applications, Ocean cannot take full advantage of spatial locality when it
communicates data, leaving it especially sensitive to changes in network latency. Prefetched Ocean cannot hide enough of the
latency, so the prefetched efficiency curves are also somewhat concave.

Barnes and Water: Figure 4.7 shows the results for Barnes and Water. Neither application includes prefetching, because
the high degree of temporal locality (and irregularity in Barnes) makes it difficult to determine which particular memory refer-
ences will miss in the cache, and prefetching all of the references that may cause communication incurs too much overhead.
For Barnes, the O1 and O2 efficiency curves are almost identical. The O4 curve is different only for the lowest values of l, and
the curves do not begin to diverge until O8. Again, the parallel efficiencies all converge at high network latency. Of all the
applications, these two have the least performance variation across the design space. In particular, they are the least occu-
pancy-bound of all the applications. However, they have very small cache miss rates, and performance is nonetheless impacted
quite substantially by using O8 or O16 controllers for low latency MPP networks. For example, in Barnes the L1, O1 machine
is 1.28 times faster than an L1, O8 machine, and 1.66 times faster than a L1, O16 machine.

As we expected, increasing network latency uniformly decreases overall performance across all the applications. Prefetch-
ing is often very effective at improving performance, especially at moderate latencies, but requires low occupancy controllers.

Figure 4.4. Radix results for the base problem size for both the (a) non-prefetched and (b) prefetched versions

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�� � �

�

��� � � � �

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

��

�

�

�

�

�� �

�

�

�

�� � �

�

��� � � �

�

�� � � � �

Figure 4.5. LU results for the base problem size for both the (a) non-prefetched and (b) prefetched versions

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

��

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

��
�

�

�

�

�� �
�

�

�

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�� � �

�

�

�� � �
�

�

�� � �
�

�

�� � �

�

�

�� � �
�

�

12

It is also significant that even when prefetching, all of these applications have very low node-to-network bandwidth require-
ments. Though there are some differences in the applications, the surprising result is that consistently across all applications
the contention component of controller occupancy has a significant performance effect. This effect is particularly acute at low
values of network latency. In addition, the point at which the efficiency curves begin to flatten occurs at relatively small values
of occupancy, typically either O4 or O8, and by O16 (communication controller on the I/O bus) the curves are almost flat.
From a design standpoint, these results show that controller occupancy will become a bottleneck unless the communication
controller is a hardwired or customized controller integrated on the memory bus of the main processor.

5 Results for Increasing Problem Size
In the previous section we saw how parallel efficiency changed as we varied both network latency and controller occupancy

for the fixed, base problem size. In designing DSM machines with high network latencies or controller occupancies, designers
hope that these machines can be made to run at high parallel efficiencies simply by running somewhat larger
problems [GMB88]. The question is how the problem size must be scaled to maintain 60% efficiency, and at what point do
these problem sizes become unrealistic. In the results we present, we define problem size as the size of the application’s data
set, since this is usually the main application parameter affecting parallel efficiency in these programs. In most real scientific
applications the execution time grows more rapidly than the data set size for a variety of reasons [SHG93], and we shall com-
ment on this as well.

Figure 4.6. Ocean results for the base problem size for both the (a) non-prefetched and (b) prefetched versions

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�� �
�

�

�

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��
�

�

�

�
�� � � �

�

Figure 4.7. Base problem size results for (a) Barnes and (b) Water

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

� O1
� O2
� O4
� O8
� O16

|
0

|
400

|
800

|
1200

|
1600

|
2000

|
2400

|
2800

|
3200

|
3600

|
4000

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

13

Ideally, we would determine the minimum problem sizes for all machine configurations through simulation. Unfortunately,
the problem sizes required for the less aggressive architectures are too large to determine via simulation. The alternative is to
use models, but as we showed in Section 4.3 it is very difficult to predict performance using queueing models for these appli-
cations, because it is difficult to predict the amount of contention. However, it is possible to determine how the contention-
related effects of these applications scale to larger problem sizes without using queueing models. Recall from Eq. 4.1 that to
determine the problem size needed to attain a given efficiency, we need to know not only how the amount of computation and
communication (Tcomp and Vcomm) scale with problem size, but how the latency and contention costs of the average communi-
cation (TL and TC) scale as well. Determining how Tcomp and Vcomm scale is usually straightforward, and clearly TL does not
vary with problem size. The only question is to determine how TC scales with problem size. The hope when using a high-occu-
pancy controller is that the contention component TC decreases as problem size increases. In the next section, however, we will
show that TC is often independent of problem size by returning to our case study of FFT. While this is bad news for less
aggressive communication architectures, it allows us to use the same value of TC determined from simulation results from
smaller problem sizes for the prediction of performance at larger problem sizes. Thus, while we may not be able to predict
what TC will be for a given communication architecture and application, once we determine it through simulation, it will
remain reasonably constant as the problem size increases. After we examine FFT, we present the results of increasing problem
size for all of our applications in Section 5.2.

5.1 Case Study
In FFT, the growth rate of computation Tcomp with the number of points n (the problem size) is O(n log n). The growth rate

of communication Vcomm is O(n). To maintain a fixed efficiency as the average communication cost TL+TC increases by a fac-
tor of s, we must increase the problem size at a rate that keeps the ratio of computation time to communication time constant.
If TC is not a function of problem size, then this simply means we must keep the computation to communication ratio (log n)
constant, which requires an increase in n by an exponential factor of 2s.

Through simulation we gathered efficiency results for non-prefetched and prefetched FFT at two problem sizes: our base
problem size and one that is four times larger. We look at the cross product of O1, O8, O16 and L1, L4, L16, which represent
some realistic machine configurations (see Table 2.1). Increasing the problem by a factor of four did not increase the efficiency
much, either with or without prefetching.

An important result is that at all controller occupancies, the average communication time (TL + TC) remains constant in
both the non-prefetched and prefetched versions of FFT. Since the average latency component of communication, TL, remains
constant by definition, this means that the average contention component, TC, does not decrease with an increase in problem
size. For example, in FFT, the average read miss time was 352 processor cycles for a problem size of 218 points, 330 cycles for
220 points, and 340 cycles for 222 points. Although this seems counter-intuitive given that the overall computation-to-commu-
nication ratio increases, there is a clear explanation. In many structured applications, communication is isolated in different
phases from local computation. As a result, although the overall computation-to-communication ratio over the whole applica-
tion increases with problem size, within the communication phases the ratio remains constant as problem size grows. Since
contention depends on the rate or burstiness of communication, and that rate is independent of problem size, it follows that the
contention is independent of problem size as well. Thus, FFT indeed requires an exponential increase in problem size to over-
come the effects of increased network latency or controller occupancy. Higher controller occupancies cause more contention,
increasing the value of the exponent substantially.

This insight, that TL and TC are independent of problem size, allows us to predict the required problem sizes for FFT as l
and o change, as long as we know how TL and TC change with l and o for a fixed problem size. Since FFT communicates
through reads, we can use the average remote read miss time from the simulation results to estimate TL + TC. The simulations
also provide us with the constants for the computation time. Optimistically assuming perfect load balancing, both of computa-
tion and communication, Table 5.1 shows the minimum problem size needed to reach 60% efficiency for the nine selected
combinations of l and o. Of these, we were able to simulate the required problem size for a controller occupancy of O1 and
network latencies of L1 and L4. The other numbers listed in Table 5.1 are predicted values, although the trends and contention
effects have been validated.

Without Prefetching: It is clear from the table that increasing network latency causes an exponential increase in the
required problem size. The contention component of controller occupancy also has a big impact on the required problem size
for FFT, even without prefetching. For example, if the O8 controller had the same contention component TC as the O1 control-
ler, but the communication latency corresponded to O8, the problem sizes for O8 in Table 5.1 would have been 16384 times
smaller at L1 and 64 times smaller at L16. For O16, the problem sizes would have been 65536 times smaller at L1 and 1024
times smaller at L16.

14

With Prefetching: For the same l and o, the minimum problem size needed is much smaller than for the non-prefetched
version, and depends much less on latency. However, once the latency becomes too large to be hidden, the growth rate is expo-
nential in the amount that cannot be hidden. Contention still plays a critical role in determining the required problem size. With
the same contention component of the O1 hardwired controller the O8 general purpose controller would only need problem
sizes 4 to 16 times smaller than those listed in Table 5.1. The O16 controller is far worse off: It would need a problem 16384
times smaller.

For both versions of FFT, the problem size needed to achieve the desired efficiency at high controller occupancies is unrea-
sonably large. The same is true of the non-prefetched version at high network latencies. Although FFT performs well with an
aggressive communication architecture, compromising the aggressiveness of a communication architecture, then, makes it be
extremely difficult to achieve high parallel efficiencies even by growing the problem size.

5.2 Results for Other Applications
Radix: It is much more difficult to retain good efficiency in Radix than in FFT because the overall computation-to-commu-

nication ratio, not just in the communication phase, is constant. This means that unless contention decreases, increasing the
problem size should not increase the efficiency. We find that as the problem size increases, contention actually worsens first,
and then levels off. Table 5.2 summarizes the results. Contention worsens because the dominant communication in Radix is
through writes (in the permutation phase), and these writes are bursty. As the problem size approaches the total amount of
cache memory in the machine, it becomes increasingly likely that a given write will cause a cache line to be written back to the
home, which is usually remote. This in effect doubles the number of messages that the communication controller at the home
has to handle in the same small amount of time. The situation is actually much worse, because the irregularity of the commu-
nication causes some nodes to become hot-spots as problem size increases and the hot-spotting is both more prevalent and
worse as controller occupancy increases. Without prefetching, only the base architecture reached 60% efficiency for any prob-
lem size. Even with prefetching, only the O1 and O2 controllers manage to reach 60% efficiency with the fastest network, and
only the O1 controller can sustain 60% efficiency when a distributed MPP network (L4) is used.

LU: LU scales much better than either Radix or FFT. One reason is that the computation-to-communication ratio in LU
grows linearly in the problem size (O(n3) computation versus O(n2) communication). LU therefore requires much smaller
increases in problem size to reduce relative communication costs. The other reason is that the main bottleneck for LU on an
L1, O1 machine is load imbalance and not communication. Increasing the problem size improves load balance quickly as well.

Table 5.1. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched FFT

Network Latency

Controller
Occupancy

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 216 216 244 216 216 216

O8 234 236 260 218 218 220

O16 270 272 286 230 230 230

Table 5.2. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched Radix

Controller
Occupancy

Network Latency

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 2M keys impossible impossible 1M keys 2M keys impossible

O8 impossible impossible impossible impossible impossible impossible

O16 impossible impossible impossible impossible impossible impossible

15

Like FFT and Radix, LU also communicates data in structured phases that in themselves have a constant computation-to-
communication ratio. Consequently, contention does not decrease with increasing problem size, allowing us to easily predict
the required problem size for machines with larger latencies and occupancies. Table 5.3 summarizes the results. For each
entry, the value in parentheses is the ratio of the required data set size to that for an L1, O1 machine. Note that the computation
time for LU scales a factor of n faster than the data set. This means that the parallel execution time required for the problem
size that achieves the “desirable” parallel efficiency LU grows much more quickly than the table indicates. The time on an
L16, O16 machine would be 36 times that on an L1, O1 machine without prefetching and 7.4 times longer with prefetching,
even though the data set size required is only 11 times and 3.8 times larger, respectively.

Ocean: Ocean, which uses nearest-neighbor iterative computations including multigrid, also has a computation-to-commu-
nication ratio that scales linearly with problem size, and has a better load balance than LU. As Figure 5.1 shows, both the non-
prefetched and prefetched versions of Ocean scale much better than the previous applications. An important observation is that
although even the higher occupancy curves increase substantially in efficiency with larger problem sizes, they still do not
assume the shape of the lower occupancy curves. Once again, this is because Ocean also has structured communication, so
contention does not decrease with increasing problem size. Table 5.4 shows the problem sizes required for 60% efficiency.

Table 5.4. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched Ocean

Controller
Occupancy

Network Latency

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 2582 (1.0x) 5142 (4.0x) 12822 (25x) 2582 (1.0x) 3862 (2.2x) 6422 (6.2x)

O8 6422 (6.2x) 8982 (12x) 16662 (42x) 6422 (6.2x) 6422 (6.2x) 7702 (8.9x)

O16 12822 (25x) 14102 (30x) 20502 (63x) 10262 (16x) 10262 (16x) 11542 (20x)

Table 5.3. Minimum Problem Size Required for 60% Parallel Efficiency for both Non-Prefetched and Prefetched LU

Controller
Occupancy

Network Latency

Non-Prefetched Prefetched

L1 L4 L16 L1 L4 L16

O1 4642 (1.0x) 5122 (1.2x) 8322 (3.2x) 4322 (1.0x) 4322 (1.0x) 4642 (1.2x)

O8 6962 (2.3x) 7682 (2.7x) 10242 (4.9x) 6082 (2.0x) 6082 (2.0x) 6722 (2.4x)

O16 10242 (4.9x) 10242 (4.9x) 15362 (11x) 8122 (3.5x) 8122 (3.5x) 8442 (3.8x)

Figure 5.1. Efficiency in Ocean at two different problem sizes for both the (a) non-prefetched and (b) prefetched versions

� large prob, O1
� large prob, O8
� large prob, O16
� base prob, O1
� base prob, O8
� base prob, O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|
2200

|
2400

|
2600

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

� large prob, O1
� large prob, O8
� large prob, O16
� base prob, O1
� base prob, O8
� base prob, O16

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|
2200

|
2400

|
260

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b)

 Communication Latency

 P
ar

al
le

l E
ffi

ci
en

cy

�

�

��

�

�

� �

�

�

�

��
�

�

� �

�

16

Unlike LU, in Ocean both the data set size and the execution time nominally grow as O(n2) in the grid dimension. However,
the implications of latency and occupancy for execution time are nonetheless more severe than for data set size. This is
because increasing data set size also requires scaling other parameters (such as the accuracy used in the multigrid solver and
the number of times-steps), which increase execution time further [SHG93]. In fact, the numbers for data set size in Table 5.4
are themselves optimistic, since a larger number of grid points causes more time to be spent in the multigrid equation solver,
which has the lowest computation-to-communication ratio and the worst load imbalance in the application.

Finally, the effect of contention on required problem size is much less for Ocean than it is for FFT. For example, for both
versions of Ocean the required problem size for the O8 and O16 controllers would have been at most 4 times smaller if they
had the same TC as an O1 controller. Like FFT, the effect of contention is greater in the prefetched version of the code.

Barnes: Unlike the previous applications, Barnes does not have separate phases of communication and computation
(though there are more structured versions of the application, written for message passing machines, that do [Salmon90]). As
problem size increases, more computation is done between communications, so contention decreases. Since the computation-
to-communication ratio also depends on the distribution of particles, predicting the problem size required for 60% efficiency is
difficult. However, similar hierarchical N-body applications have an expected computation-to-communication ratio that is lin-
ear in the problem size [Katz89]. This suggests that scaling hierarchical N-body applications to retain a desired efficiency
should be relatively easy, if communication is the primary bottleneck. Unfortunately, the bottleneck in a cache-coherent shared
address space is typically load imbalance, and it is difficult to predict how that improves with problem size since there are dif-
ferent computational phases with different levels of imbalance. Doubling the problem size for Barnes improved performance
somewhat at higher occupancies, but not much. However, for the sizes of problems that are run on machines today, we expect
that most of the controller configurations we study should perform quite well.

Water: Table 5.5 summarizes the minimum problem sizes required for Water. Water also has a computation-to-communi-
cation ratio that scales linearly with data set size. The effect of contention on required problem size is less in Water then it is in
all the other applications. In fact, at ATM latencies the O8 controller achieves 60% efficiency at the same problem size
whether or not it has its actual value of TC or it has the TC of an O1 controller. Contention becomes more important at lower
network latencies. For example, the problem size required to achieve 60% efficiency is over 50% larger on an L1, O16
machine than on an L16, O1 machine. Also, note that the execution time for Water grows as the square of the data set size
shown in Table 5.5.

Overall, substantial increases in problem size are necessary for the lower-performance networks and controllers to achieve
the desired efficiency, although the amount of increase varies depending on the specific type of application. There are many
important classes of applications (transform methods, sorting) for which the efficiency lost by a less aggressive architecture—
in latency or occupancy—is extremely difficult or impossible to regain by increasing problem size. In most of the applications,
contention owing to the occupancy of the communication controller played an important role in determining the required
growth in problem size, and the contention component of communication was not reduced by increasing problem size. Finally,
the effects of increasing latency and occupancy on application execution time, which may be most important, are often more
severe than on the growth of its data set size.

6 Conclusions
DSM machines can be characterized in terms of four fundamental parameters: network latency, controller occupancy, node-

to-network bandwidth, and the number of processors. Simulating a fixed number of processors (64), and a high bandwidth
interconnect, we evaluated the performance impact of network latency and controller occupancy over a range of representative
scientific applications. Our results showed: first, that it is possible to achieve good parallel efficiency for a range of applica-
tions on machines with low-occupancy, hardwired or special-purpose communication controllers and low-latency MPP net-
works. Interestingly, the bandwidth requirements for the applications we studied were low in comparison with the node-to-
network bandwidth of current MPP networks, indicating that node to network bandwidth is not a major bottleneck.

Our main result, however, is that the occupancy of the communication controller is critical to good performance in DSM
machines. For machines with tightly-coupled MPP networks we found that controller occupancy has a large performance

Table 5.5. Minimum Problem Size Required for 60% Parallel Efficiency for Water

Controller
Occupancy

Network Latency

L1 L4 L16

O1 512 (1.0x) 896 (1.8x) 1792 (3.5x)

O8 1152 (2.3x) 1536 (3.0x) 3072 (6.0x)

O16 3072 (6.0x) 3072 (6.0x) 6144 (12.0x)

17

impact regardless of whether or not applications incorporated prefetching as a latency hiding technique. For machines with
loosely-coupled networks, we showed that without latency hiding, controller occupancy did not matter to overall performance.
But, with latency hiding, controller occupancy once again became a performance bottleneck. Since machines with high-
latency networks will need to incorporate latency hiding whenever possible to obtain good performance, these results show
that it is important to use low-occupancy communication controllers at any network latency.

Moreover, it was not just the latency component of the higher occupancy controllers that caused performance degradation,
but rather the contention component, even without latency hiding. This contention component proved difficult to model ana-
lytically, but we found that several important classes of applications communicate in “bulk synchronous” phases where the
computation-to-communication ratio is constant, and therefore the contention related effects do not decrease with increasing
problem size. Using this insight, our results showed that for many classes of applications, it is extremely difficult for architec-
tures with higher values of network latency or controller occupancy to achieve high parallel efficiency by scaling up the prob-
lem size. That is, the problem size needed to maintain the desired efficiency quickly becomes unreasonable. There are
applications that attain the desired efficiency with reasonable data set sizes, although for many of these applications the paral-
lel execution time scales much faster than the required data set size. This does not bode well for current and proposed architec-
tures that provide communication and coherence with cache-line granularity with general-purpose processors on the memory
bus or I/O bus of the main processor, or for architectures with high-latency networks. Fortunately, the controller occupancies
of specialized or hardwired controllers on the memory bus were low enough to achieve the desired performance goal for all the
applications in this study.

The tendency among DSM designers has been to focus on network latency and network bandwidth as the important perfor-
mance issues in the communication architecture. Our results demonstrate that the occupancy of the communication controller
is just as important to overall performance, if not more so.

Acknowledgments
This work was supported by ARPA contract DABT63-94-C-0054. We would like to thank Edward Rothberg for his help

with the methodology of this paper. We would also like to thank Steven Woo for his work on the SPLASH-2 application suite,
and Anoop Gupta, Jeffrey Kuskin, and David Ofelt for their comments on early drafts of this paper.

References
[ABC+95] Anant Agarwal et al. The MIT Alewife Machine: Architecture and Performance. In Proceedings of the 22nd International

Symposium on Computer Architecture, pages 2-13, Santa Margherita Liguere, Italy, June 1995.

[BLA+94] M. Blumrich et al. A Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In Proceedings of the 21st
Annual Symposium on Computer Architecture, pages 142-153, April 1994.

[CKP+93] David Culler et al. LogP: Toward a realistic model of parallel computation. In Proceedings of the Principles and Practice of
Parallel Processing, pages 1-12, 1993.

[GMB88] John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of Parallel Methods for a 1024-processor Hyper-
cube. SIAM Journal on Scientific and Statistical Computing, 9 No. 4, pages 609-638, 1988.

[Golds93] Stephen Goldschmidt. Simulation of Multiprocessors: Accuracy and Performance. Ph.D. Thesis, Stanford University, June
1993.

[HKO+94] Mark Heinrich et al. The Performance Impact of Flexibility in the Stanford FLASH Multiprocessor. In Proceedings of the 6th
International Conference on Architectural Support for Programming Languages and Operating Systems, pages 274-285, San
Jose, CA, October 1994.

[HS94] Chris Holt and Jaswinder Pal Singh. Hierarchical N-Body Methods on Shared Address Space Multiprocessors. SIAM Confer-
ence on Parallel Processing for Scientific Computing, February 1995, to appear.

[Katz89] Jacob Katzenelson. Computational Structure of the N-body Problem. SIAM Journal of Scientific and Statistical Computing,
pages 787-815, July 1989.

[KOH+94] Jeffrey Kuskin et al. The Stanford FLASH Multiprocessor. In Proceedings of the 21st International Symposium on Computer
Architecture, pages 302-313, Chicago, IL, April 1994.

[KSR92] Kendall Square Research. KSR1 Technical Summary. Waltham, MA, 1992.

[LC96] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA Computer System for the Commercial Marketplace. In Proceedings of
the 23rd Annual International Symposium on Computer Architecture, pages 308-317, Philadelphia, PA, May 1996.

[LLA+97] James Laudon et al. System Overview of the SGI Origin 200/2000 Product Line. To appear in COMPCON 1997.

[LLG+92] Daniel Lenoski et al. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63-79, March 1992.

[NAB+95] A. Nowatzyk et al. The S3.mp Scalable Shared Memory Multiprocessor. ICPP 1995.

18

[Roth93] Edward Rothberg. Exploiting the Memory Hierarchy in Sequential and Parallel Sparse Cholesky Factorization. Ph.D. Thesis,
Stanford University, January 1993.

[RPW96] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled Hardware Support for Distributed Shared Memory. In
Proceedings of the 23rd International Symposium on Computer Architecture, pages 34-43, Philadelphia, PA, May 1996.

[RSG93] Edward Rothberg, Jaswinder Pal Singh and Anoop Gupta. Working Sets, Cache Sizes, and Node Granularity for Large-Scale
Multiprocessors. In Proceedings of the 20th Annual International Symposium on Computer Architecture, pages 14-25, San
Diego, CA, 1993.

[Salmon90] John K. Salmon. Parallel Hierarchical N-body Methods. Ph.D. Thesis, California Institute of Technology, December 1990.

[SFL+94] Ioannis Schoinas et al. Fine-grain Access Control for Distributed Shared Memory. In Proceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 297-306, San Jose, CA,
October 1994.

[SHG93] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta. Scaling parallel programs for multiprocessors: methodology and
examples. IEEE Computer, July 1993.

[SSA+95] Craig B. Stunkel et al. The SP2 High-Performance Switch. IBM Systems Journal, vol. 34, no. 2, 1995.

[WH95] David A. Wood and Mark D. Hill. Cost-Effective Parallel Computing. IEEE Computer, February 1995.

[WOT+95] Steven Cameron Woo et al. The SPLASH-2 Programs: Characterization and Methodological Considerations. In Proceedings
of the 22nd Annual International Symposium on Computer Architecture, pages 24-36, Santa Margherita Liguere, Italy, June
1995.

[WSH94] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The Performance Advantages of Integrating Block Data
Transfer in Cache-Coherent Multiprocessors. In Proceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 219-229, San Jose, CA, October 1994.

