
1

Hardware/Software Codesign of the Stanford FLASH Multiprocessor

Mark Heinrich, David Ofelt, Mark Horowitz, and John Hennessy
In Proceedings of the IEEE Special Issue on Hardware/Software Co-design,

Vol. 85, No. 3, March 1997

Abstract
Hardware/software codesign is a methodology for solving design problems in systems with proces-
sors or embedded controllers where the design requirements mandate a functionality and perfor-
mance level for the system, independent of the hardware and software boundary. In addition to the
challenges of functional correctness and total system performance, design time is often a critical fac-
tor. To design MAGIC, the programmable memory and communication controller for the Stanford
FLASH multiprocessor, we employed a hardware/software codesign methodology. This methodol-
ogy allowed us to concurrently design the hardware and software thereby reducing design time
while simultaneously ensuring that the design would meet ambitious performance goals. Serializing
the hardware and software design would have lengthened the design time and significantly increased
the amount of redesign when the tradeoffs between the hardware and software implementations
became clear late in the design process. The codesign approach led us to build a series of hierarchi-
cal simulators that allowed us to begin design verification early and to reduce the level of effort
required to ensure a functional design.

1  Introduction
The design and verification of MAGIC, the single-chip memory and communication controller for the Stanford FLASH

multiprocessor, is a classic example of hardware/software codesign. The MAGIC chip runs protocol code sequences on an

embedded processor to handle all memory system references in the FLASH machine. In addition, MAGIC has very aggressive

performance goals because its performance is critical to that of the overall machine. This paper describes how we used hard-

ware/software codesign to establish the boundary between what was implemented in hardware (to enhance performance) and

what was implemented in the software that runs on the embedded controller (to reduce design complexity and increase flexi-

bility).

A successful design methodology must consider design time as well as performance goals. To meet the design time goals of

a large, innovative multiprocessor system with a limited number of engineers, we needed a methodology that allowed the con-

current development of the hardware, the software to run on MAGIC, the simulation environment, the software development

environment, and the verification and validation tools. By structuring our simulators hierarchically, we were able to achieve

this concurrency, allowing extensive high-level simulations to estimate the performance impact of different architectural alter-

natives, while the lower-level, more accurate simulators and the RTL were still being designed. Once verification of the actual

RTL began, we maintained the ability to simulate the design at varying levels of accuracy and performance, allowing us to test

different aspects of the design concurrently. This hierarchical approach trades off simulation accuracy for simulation speed,

allowing us to design a high-performance, functionally correct system while maintaining a short design time.

   Section 2 of this paper gives some general background on the FLASH multiprocessor and the role of the MAGIC chip, as

a context for the remainder of the text. Section 3 provides an overview of computer system design from high-level system sim-

ulation to low-level circuit simulation. In Section 4 we discuss the hardware/software codesign of the high-level FLASH



2

architecture, and detail the simulation techniques we adopted. Section 5 shows how the same methodology carries over into

the verification and validation of MAGIC. Section 6 summarizes the major themes, and highlights the advantages that hard-

ware/software codesign brought to the FLASH design.

2  FLASH Architecture
The Stanford FLASH multiprocessor [KOH+94] is a general-purpose multiprocessor designed to scale up to 4096 nodes. It

supports applications which communicate implicitly via a shared address space (shared memory applications), as well as

applications that communicate explicitly via the exchange of messages (message passing applications). Both types of commu-

nication take advantage of underlying hardware support. This support is implemented in the MAGIC chip, the communication

controller and hub of a FLASH node. Rather than build the shared memory and message passing support directly into state

machines in MAGIC, we embedded a programmable protocol processor in MAGIC that can run software code sequences to

implement both communication protocols. Since these protocols can be quite complex, this greatly simplifies the hardware

design process, and reduces the risk of fabricating a chip that does not work. A programmable protocol processor also gives us

great flexibility in the types of communication protocols we can run, and allows us to debug and tune protocols or write totally

new protocols even after the machine is built.

The structure of a FLASH node, and the central location of the MAGIC chip is shown in Figure 1. The MAGIC chip inte-

grates interfaces to the main processor, memory system, I/O system, and network with the programmable protocol processor.

As the heart of a FLASH node, MAGIC must concurrently process requests from all its external interfaces and ensure that they

are handled quickly enough to maintain the performance goals of the machine. Thus, its principal function is that of a data

transfer crossbar connecting the various interfaces on the FLASH node. However, MAGIC also needs to perform bookkeeping

to implement the communication protocol. It is the protocol processor which handles these control decisions, and properly

directs data from one interface to another.

In the MAGIC design we needed to control data movement in a protocol-dependent fashion without adversely affecting

performance. As we will describe in Section 4.2, our initial high-level simulations concentrated on design alternatives that

Figure 1. Stanford FLASH architecture showing the critical position of the MAGIC chip.

2$

I/ONet

2nd-Level
Cache

2nd-Level
Cache

DRAM μP

MAGIC

R10000
DRAM

MAGIC

MIPS



3

achieved this goal. The end result was the separation of the data-transfer logic from the control logic, as shown in Figure 2.

The data transfer logic is implemented in hardware to achieve low-latency, high-bandwidth data transfers. When data enters

the MAGIC chip it is placed in an on-chip dedicated data buffer and remains there until it leaves the chip, avoiding unneces-

sary data copying. To manage the complexity of the shared memory and messaging protocols, we implement them in software

(called handlers) that runs on the embedded protocol processor. The protocol processor is a simple two-way issue 64-bit RISC

processor with no hardware interlocks, no floating point capability, no TLB or virtual memory management, and no interrupts

or restartable exceptions.

Figure 3 shows a more detailed block diagram of the MAGIC chip. When MAGIC receives a request from one of its exter-

nal interfaces the message header is passed along to the inbox, where it is pushed through a hardware dispatch table that deter-

mines the starting program counter for the appropriate handler. The protocol processor jumps to that program counter and

executes the handler, which is responsible for updating any protocol state information, as well as sending other protocol mes-

sages if needed. The mechanics of any outgoing message sends are handled by the outbox. The inbox, protocol processor, and

outbox thus form a control macro-pipeline, which can be operating on up to three different requests simultaneously. The con-

trol macro-pipeline lowers the request latency through the MAGIC chip and eases the burden on the protocol processor. To

avoid consuming excessive memory bandwidth, protocol code is stored in an on-chip instruction cache, and data structures for

the communication protocol are accessed via an off-chip data cache. Both caches are backed by normal main memory.

The MAGIC chip is being fabricated as a standard-cell ASIC with the cooperation of LSI Logic. The die is 256mm2 and

contains approximately 250,000 gates and 220,000 bits of memory, making it large by ASIC standards. One of our 18 on-chip

memories is a custom, 6-port memory that implements 16 128-byte data buffers, the key to our hardware data-transfer mecha-

nism. The target clock frequency for the chip is 100 MHz.

   The combination of multiple interfaces, aggressive macro-pipelining, and the necessity of handling multiple outstanding

requests from the main processor makes MAGIC inherently multithreaded, posing complex verification and performance chal-

Figure 2. MAGIC Architecture showing how the programmable protocol pro-
cessor handles the interpretation of messages within the control pipe-
line, while data transfer and the input and output functions are
handled in hardware.

Processor Network I/O

Message
Headers

Message
Data

Data

Processor Network I/O

Software
Queue

Transfer
LogicMemoryMemory Control

Pipeline

Message SplitMessage Split

Message SplitMessage Combine



4

lenges. The next section discusses general approaches to designing computer systems and surveys traditional simulation tools.

Section 4 and Section 5 follow with the specific hardware/software codesign methodology we followed to meet these chal-

lenges.

3  General Approaches to Computer System Design
The design of a computer system must start with a specification of desired performance. For a general purpose processor,

this is usually “as fast as possible” given technology or cost limitations. In an embedded system, there is usually a specific task

that needs to be performed and the system performance is whatever is necessary to get that task done within a certain time con-

straint. Once the general system performance goal has been established, the design process works in a traditional top-down

approach (as shown in Figure 4), successively increasing the level of design detail. In a computer system, the next step after

setting system performance goals is determining the Instruction Set Architecture (ISA), followed closely by the design of the

processor pipeline, and finally, the memory system. Once the architecture is set, the design implementation phase begins—first

the RTL, then the gate-level design, and if necessary, circuit-level design.

At each step in the design process, the design must be in a form amenable to simulation. Design specifications that are writ-

ten, but cannot be simulated are simply too ambiguous and incomplete. The ability to simulate each level of the design is crit-

ical, since it allows both performance and correctness validation to occur at all stages of the design process. To determine

overall system performance using simulation, a set of benchmarks is needed. For a general purpose computer, there are a large

number of existing benchmarks such as SPEC95, NAS, Livermore Loops, STREAMS, lmbench, Linpack, and TPC-

A,B,C [SPEC95][NAS85][MS96][LIN88][TPC93][HP90]. A computer system targeted for a particular market segment may

stress certain benchmarks over others. For example, a commercial database server will concentrate on the TPC suite which

DP

Inbox

Outbox

Memory
Control

PI NI I/O

Protocol Processor

Processor Network I/O

PI NI I/O Software
Queue Head

Inbox

Outbox

PI NI I/O

Memory
Control

MAGIC
Instruction

Cache

MAGIC
Instruction

Cache

MAGIC
Instruction

Cache

MAGIC
Data

Cache

Figure 3. High-level MAGIC block diagram, showing the control macro-pipeline.



5

show overall system database performance, and will probably ignore Linpack, which is purely a measure of floating point

capability. Embedded systems will use the intended application as a benchmark. A microcontroller for a toaster needs to be

fast enough to react to the toast-is-burning sensor before the bread is charcoal.

When specifying the highest level of the system, the two main design tasks are to partition the design into major blocks and

to specify the performance requirements of each block. Much of the evaluation in this phase is done with pencil and paper,

since it is difficult to simulate partial or incomplete designs. Once a small number of likely design alternatives emerge, more

detailed analysis is necessary. The simplest evaluation strategy is to use a spreadsheet that combines initial performance esti-

mates for each block with event counts from a previous system or from synthetic benchmarks. This level of analysis points out

bandwidth and latency problems, and validates the performance targets of each system partition.

After the system has been partitioned, and the general performance targets for the processor have been determined, the next

step is to specify the ISA. After choosing an initial set of instructions, the designer can write critical sections of code and crit-

Specify
Functionality

Not OK

OK

Performance
Check

RTL

Not OK

OK

Performance
Check

Synthesis
and

 Performance
and

High-level
Design
[ISA]

Organized
Design

[Pipeline and
 Memory System]

Lower-level
Design

?

?

Figure 4. Flowchart of a top-down approach to computer system design.



6

ical loops of code (by hand at this point) to ensure that the ISA meets its performance goals. The next step is to run real bench-

marks on a simple simulator that assigns fixed latencies to all instructions [Smith91][BL94]. To get accurate results, there

should be code generation tools available at this point. If they are not available, then both the number of different benchmarks,

and the ability to simulate design space alternatives will be severely limited. If the ISA is already fixed, then the designer may

still want to evaluate additions to the ISA. Recently, many of the major microprocessors have done exactly this when they

added multimedia instructions to existing ISAs [TON+96][PW96][Lee96]. In cases where no new instructions are being

added, the architects can jump straight into pipeline simulation. The pipeline simulator adds in the low-level details of the

microarchitecture. It is important to evaluate the processor at this level, because interactions between instructions and limited

resources in the implementation can have a large impact on performance.

At some point, the ISA and the pipeline specifications stabilize, and specification of the memory system begins. The mem-

ory hierarchy includes both the processor caches (if present) and the external memory system. Evaluation of the memory sys-

tem can be done with trace-driven simulation [HS89][GHP+93]. A trace of the memory references from a run of each

benchmark is fed into a simulator of the proper piece of the memory hierarchy. This gives you the average contribution of the

memory system on each memory reference instruction, and from this you can generate the Average Memory Access Time,

which can be added to the average Cycles Per Instruction [HP90].

Rarely, if ever, are the performance of the memory system and the processor pipeline orthogonal, so the next step is to sim-

ulate the entire system. Coupling the pipeline model and the cache model allows each to feedback and affect the other, and is

generally referred to as execution-driven simulation. There are several good reference generators and execution-driven simula-

tion environments available to help in this evaluation [Golds93][RHL+93][VF94][Cmel93][SE94][RHW+95][Bedi95]. Since

modern processors have become very complex, most performance analysis is done at this level [Papw96][TMI+96].

Once the architecture is specified, the use of simulation changes from performance prediction and analysis to performance

validation and hardware verification. The goal of validation is to make sure that both the hardware and the software of the sys-

tem are bug-free and that they meet the desired performance goals. One way to proceed is to design all the hardware and all the

software, then combine them and test everything at once. This is a difficult approach, because all pieces of the design are

equally untrustworthy, and when something does not work it is not clear where to start looking for the problem. A better way

to proceed is to test one of the pieces first, then incrementally add it to the other. With this approach, the verified portion can be

trusted more than the unverified portion, making it easier to locate the cause of bugs in the overall design. In the methodology

presented here, there is a set of simulators that allows the software to be tested even before the hardware has been designed,

making it natural to test the software first. This has the beneficial side effect of allowing the software verification to proceed in

parallel with the construction of the RTL model.

The task at this point in the design processes is to code up an RTL model of the design in a hardware description language

(HDL), most commonly Verilog or VHDL. This version of the design will add more detail and complexity, and design

tradeoffs at the lower levels will force re-evaluation of some of the earlier design decisions. The previous methodology can be

re-applied here to decide which set of design choices yields the best performance. Modern hardware description languages can

either be compiled into a hardware description of the chip (the desired end result) or into a simulator that allows the model to

be verified.



7

When the RTL is fully specified, it is translated into the actual low-level gates and circuits. This process can be done by

hand, or automated using a compiler that synthesizes the RTL into gates. There should be a way of simulating this level of the

design to make sure that the translation matches the RTL model, since many times hand-laid out sections have human errors

and synthesis tools are not bug-free. There is usually a way to translate the output of the synthesis tools back into an HDL to

allow it to be simulated using the same framework in which the RTL was tested. A switch-level model can be extracted from

the hand-laid out sections to allow those pieces to be simulated as well. At the very lowest level, circuit simulation tools allow

critical circuits and paths to be modeled to make sure they function as expected and meet the desired timing.

This is the general approach for taking a computer system design from a gleam in the designer’s eye to actual functional

hardware. The next sections describe how we did this for the design of the MAGIC chip, and detail the simulation tools we

used along the way.

4  FLASH Simulation Environment
   Since the goal of the FLASH project was to design and fabricate the MAGIC chip, we needed more than just a written

specification of the design; we needed the ability to simulate the design to evaluate different architectural tradeoffs. This pre-

sents a classic ordering problem, since one cannot simply write a detailed simulator for a design before the actual hardware

specification is complete, and one cannot complete the written design specification without simulating critical design alterna-

tives. The solution is to concurrently design both, starting with coarse grain simulations to gather approximate information,

and evolving the hardware specification accordingly. This section details the genesis of the FLASH simulation environment,

and describes how hardware/software codesign allowed the concurrent development of disparate parts of the machine.

4.1  FlashLite and Threads
To begin the task of designing MAGIC, we first needed to understand the relationship of MAGIC’s performance to overall

system performance. To discover this, we constructed FlashLite, a simulator for the entire FLASH machine. FlashLite uses an

execution driven processor model [Golds93, RHW+95] to run real applications on a simulated FLASH machine. FlashLite

sees every load and store in the application and lets each memory reference travel through the FLASH node, giving it the

proper delay as it progresses. FlashLite is written in a fine-grained threads package that allows easy modelling of functional

units and independent state machines that may interact in complex ways.

Figure 5 shows pseudo-code for a simple producer-consumer program written with the FlashLite threads package. The

event-based threads package has three main routines: advance, await, and pause. In this example the main routine creates

the Producer and Consumer threads, and then waits on the event FinishEvent. Each event is simply a counting semaphore

with an initial eventcount of zero. When a thread wants to wait on an event, it calls await and passes the count to wait for as

the second argument. An await call will block (de-schedule the active thread) if the eventcount of the specified event is less

than the count passed in as the second argument. When the main thread blocks, either the Producer thread or the Consumer

thread will be run since they are both ready. The Consumer immediately waits on the ProducerReady event, making the Pro-

ducer thread the only ready thread. The Producer thread wants to do 10 cycles worth of work before notifying the Con-

sumer thread that it is done. The pause call de-schedules the Producer thread for 10 cycles. There is a single global



8

eventcount for time that is a standard part of the threads package. Since there are no other active threads at this point, time is

increased by 10 cycles and the Producer thread is scheduled again. This time it calls advance on ProducerReady which

increments its eventcount to 1, and then blocks on an await call on the ConsumerDone event. Since the Consumer thread was

waiting for the ProducerReady eventcount to be 1, it is marked as a ready thread at the point of the advance. However, the

Producer thread does not yield control until it calls await. This is an important and powerful feature of the threads package—

all actions inside a thread are atomic until the thread calls either await or pause. Only on an await or a pause will a thread

yield control to another available thread. This makes it easier to write critical sections and manage potentially complex thread

interactions without giving up any of the power of parallel threads. To finish our example, the Consumer thread then does 5

cycles worth of work and informs the Producer that it has finished. The Producer wakes up and informs main that it is fin-

ished as well. Finally, the main routine wakes up and ends gracefully at time 15.

Though the example above is purposefully simple, it is possible to model very complex interactions quite easily with the

threads package. We do play one important trick to make it easy to model points of arbitration (like scheduling a shared bus):

we run the internal simulator ticks at twice the clock frequency of the system. It is easiest to think of this as running the simu-

lation at half-cycle granularity (or alternatively as being analogous to two-phase hardware design). All normal system threads

call advance, await, or pause on integral cycle counts. If two threads both want a shared bus on the same cycle, both may

signify this with an advance of some event. Normally you would have an arbiter thread which wakes up when this event is

advanced and runs a scheduling policy to decide which of the two requesters actually gets the bus. But the arbiter thread can-

not run on integral cycle multiples, because it needs to wait until all possible requests for the bus have been posted to make the

proper scheduling decision, and there is no implicit thread ordering within the same cycle. To solve this problem we have all

arbitration threads run on half-cycle multiples. In this manner an arbiter thread can now see everyone who made requests for

the bus on the previous integral cycle, and make an informed decision as to who really gets the bus. After making the decision,

the arbiter thread waits a half-cycle to re-align itself to whole system clocks and advances the eventcount of the winner.

main() {
create_task(Consumer, ...);
create_task(Producer, ...);
await(&FinishEvent, 1);
printf(“Program finished successfully\n”);/* will be here at time 15 */

}

void Producer(void) {
pause(10); /* wait 10 cycles */
advance(&ProducerReady); /* advance Consumer thread */
await(&ConsumerDone, 1); /* wait for response */
advance(&FinishEvent); /* advance main() */

}

void Consumer(void) {
await(&ProducerReady, 1); /* wait for producer to produce */
pause(5); /* wait 5 cycles */
advance(&ConsumerDone); /* unblock producer */

}

Figure 5. FlashLite threads package code example.



9

4.2  High-Level Architectural Simulation
Initially the FlashLite threads comprising the communication controller were an abstract model of the MAGIC chip, param-

eterized to have the same basic interfaces (a processor interface, a main memory interface, an I/O interface, and a network

interface). At that point, we were able to vary high-level parameters to determine what we could do well in the software run-

ning on the protocol processor, and what needed to be done with support from the surrounding hardware. For our benchmarks

we used parallel scientific applications from the SPLASH-2 application suite [WOT+95].

Our first high-level simulations confirmed our intuition for the need to separate MAGIC’s data transfer logic from its con-

trol flow. Performing data movement in the protocol processor was simply too slow when added to its other bookkeeping

responsibilities. It was clear that by separating the two, they could be overlapped—with the goal of hiding all of the protocol

processing underneath the raw hardware datapath delay. Other system parameters we examined were the approximate effect of

different MAGIC cache sizes, the effect of processor cache line size, the required number of on-chip data buffers, the effect of

scheduling policies in the inbox, and the cost of pure software dispatch in the protocol processor. Software dispatch of an

incoming message turned out to be a particularly costly operation to perform on the protocol processor. Our simulations

showed that we would need at least 15 MAGIC cycles to properly dispatch an incoming message to the correct handler pro-

gram counter without any hardware support. Since the rest of the local miss handler is only 10 MAGIC cycles, pure software

dispatch would account for a substantial portion of the entire handler run time. We found that alternatively, the dispatch could

be performed in a single cycle by a dedicated hardware memory in the Inbox. These simulations were done concurrently with

the development of the MAGIC hardware specification, and advances in one fueled advances in the other.

Figure 6. FlashLite threads modelling the entire FLASH system. FlashLite’s protocol processor
thread can be either a high-level model running the C handlers, or the low-level instruc-
tion set emulator (PPsim).

In OutPIIn Out MC

I
n
Ou
t

I
n
Ou
t

NI IO

Protocol

MAGIC

Processor

Cache

DRAM

IO

N
e
t
w
o
r
k

Inbox

Outbox

ICache

CHandlers PPsim

MAGIC

or

MAGIC
DCache

Processor



10

As the hardware specification evolved, so did FlashLite. As shown in Figure 6, FlashLite has separate threads for each

component in the FLASH node. In addition, the MAGIC chip itself is composed of 14 different FlashLite threads, which

model the functionality of the various internal MAGIC units shown previously in Figure 3. Later we will show how the

decomposition of the FLASH node into separate FlashLite threads plays an important role in our hardware/software codesign

methodology by allowing us to replace a FlashLite thread with a lower-level model of the same hardware unit.

At this point FlashLite had accurate models of all the on-chip hardware interfaces (amounting to approximately 50,000

lines of C and C++ code), except for the protocol processor itself. This was natural, since the instruction set of the protocol

processor had yet to be defined, it was impossible to have an accurate model for the embedded processor. However, FlashLite

was still able to simulate the entire MAGIC chip within a FLASH system by having a high-level model of the protocol proces-

sor that ran the communication protocols in C (the “C handlers”) and gave approximate delays to basic protocol actions like

sending a message or manipulating protocol state. This ability proved crucial, as it allowed us to develop and debug the entire

cache coherence protocol while the MAGIC hardware, the protocol processor instruction set, and the compiler for that instruc-

tion set were still being designed.

The cache coherence protocol is responsible for finding and returning the latest copy of a cache line when the main proces-

sor issues a cache miss. The protocol code running on the protocol processor maintains state on every cache line in the system,

including the current owner of the cache line or the number and identification of all processors currently sharing the line.

Because a multiprocessor is a distributed system, the protocol must be able to properly handle transient cases or race condi-

tions where it directs a request to retrieve data from a certain processor but the data is no longer there when the request arrives.

The protocol designer must ensure that the protocol code handles all such cases correctly. This can be a daunting task because

it requires a simulator accurate enough to allow all the asynchronous timing permutations that can happen in a real distributed

machine to occur in simulation. When we ran the entire protocol in FlashLite, even with C handlers, we found that all of the

race conditions in the protocol actually did occur. This not only found several bugs in the protocol, it also found bugs and inef-

ficiencies in the MAGIC hardware design itself. Many of the hardware problems were related to complex deadlock-avoidance

issues and problems with central resource allocation that would have been painful to fix late in the design process. Because of

the hardware/software codesign approach, however, these bugs were fixed relatively early in the design process.

4.3  MAGIC Instruction Set Architecture
   From our high-level simulations we had determined how fast the protocol processor needed to perform basic protocol

actions. Simulations showed that to equalize the latency through the data transfer and control logic paths on a local processor

cache miss, we needed to construct a two-way issue, superscalar processor with some additional support to make common pro-

tocol operations faster. We were now set to design the protocol processor instruction set, the boundary between the MAGIC

hardware and the protocol software.

Our first step was to select a common instruction set architecture (ISA) as a base to simplify the task of porting software

tools like compilers, instruction schedulers, and assemblers. We adopted the MIPS ISA, and extended it with branch-on-bit-set

and branch-on-bit-clear instructions, as well as instructions for inserting, removing, and operating on bitfields within a larger

word. These types of operations are common in protocol processing, where decisions are often made based on the encoded

state of a particular cache line using data structures with packed bitfields. We added the extensions based on hand-analysis of



11

“typical” protocol code and performance information from a previous machine [LLG+92]. Design time constraints and tool

availability prevented us from evaluating the instruction set on FlashLite and drastically modifying our original choice of

extensions; however, we were able to tune our initial design decisions. Subsequent simulations showed that for one set of

benchmarks these bitfield instructions accounted for 38% of all ALU operations, and that the applications ran an average of

40% slower when we simulated a single-issue protocol processor and replaced our bitfield instructions with their equivalent

sequences from the base instruction set [HKO+94].

   Once we had an instruction set specification, we began developing the associated software tools:

• an instruction set emulator for the protocol processor

• a compiler (in our case a full port of gcc [Stall93]) to compile the C handlers down to protocol processor assembly
language

• an instruction scheduler to schedule handler code properly for the two-way issue protocol processor [Smith92]

• an assembler.

The emulator, PPsim, became FlashLite’s thread for the protocol processor (Figure 6). FlashLite retained the ability to run C

handlers, but it could now also run the compiled protocol code sequences as they would be run on the real machine. Although

using PPsim was slightly slower than running C handlers (see Table 5.1), it provided a model of the protocol processor with

accurate timing. It also gave us new information like actual instruction counts, cycle counts, and accurate MAGIC instruction

cache behavior. Running PPsim as the FlashLite protocol processor thread enabled us to debug all the software tools well

before we ever ran any code on the RTL description of the MAGIC chip.

   Completely in parallel with the work on software tools and fine-tuning MAGIC parameters, we began work on coding the

RTL from the MAGIC hardware specification. By this point we had already modified the hardware specification to take into

account the discoveries of our high-level simulations. The next section describes how we kept the theme of hierarchical simu-

lation alive within the verification process, and shows how that continued to allow us to work concurrently on different aspects

of the MAGIC design.

5  Design Verification
In any hardware/software codesigned system, both the hardware and the software must be verified to make sure they are

bug-free. In FLASH, we needed to verify the embedded protocol processor, the surrounding MAGIC support hardware, and

the communication protocol software that it runs. We took the approach of testing the protocol software thoroughly before try-

ing to run it on the RTL model. This approach allowed for concurrency in the verification process, since the verification of the

software happened while the RTL was still being written.

5.1  Software verification
We used three major techniques to verify the initial FLASH cache coherence protocol. First, as described in Section 4, we

ran a large number of applications and benchmarks on the simulator, and loaded the protocol with assertions and other high-

level end-to-end checks. Most of the bugs in the protocol were found during this phase.



12

Second, we used formal verification techniques [PD96] to ensure that the protocol did not deadlock, livelock, or violate any

of its high-level consistency checks. This effort was reasonably successful—it found bugs in the protocol specification, though

not in the actual protocol code. The protocol specification is a set of tables describing protocol state transitions from which the

formal model was constructed. Our formal verification technique found errors in this documentation, but the implementation

of the protocol code was correct. The effectiveness of our formal verification technique was limited by its demand for large

amounts of memory and by its long run times, even when verifying simple systems. For the FLASH cache coherence protocol,

we were only able to formally verify heavily constrained systems with a maximum of four nodes and limited amounts of

queueing (2 messages) between the R10000 and MAGIC as well as between MAGIC chips.

Third, we used coverage analysis to find the portions of the protocol that had not been exercised. The analysis showed that

portions of the protocol that dealt with exceptional cases, like queues filling or running out of data buffers, were not being exe-

cuted. To verify these cases, we modified some of the machine simulation parameters, (e.g. queue sizes, cache sizes, number of

data buffers) to force the unexecuted code to run. Unfortunately, even though every line of code executed successfully, it does

not prove that the protocol is totally correct, since the protocol’s saved state would also need to be enumerated per each line of

code. Nonetheless, combining coverage analysis with the first two techniques gave us a reasonable level of confidence in the

protocol.

5.2  Hardware verification
Our simulation system of Section 4 models the entire machine. It is completely self contained, needing only a high-level

application program as input to the simulator. The MAGIC hardware design, on the other hand, is just a piece of the whole sys-

tem, so the pins of the chip act as an interface between it and the rest of the world. To test MAGIC (or any isolated hardware

component), something needs to control this external interface. In the FLASH verification system, we built a simulation

hookup (Figure 7), that allows the pins of the MAGIC chip to be controlled by a high-level simulator. On each side of the pin

boundary, there are two choices of simulators or hardware models to plug in. On the simulator side, we can either plug in a

scaffolding built for writing directed diagnostics, called the HLL environment, or we can plug in FlashLite. The hardware side

of the hookup can either be the behavioral RTL model (written in Verilog and simulated with Chronologic’s VCS simulator),

or the gate-level design. We will describe each of these four components in detail.

The first component is the HLL environment, which has two pieces: an interface library that is common to all the diagnos-

tics and a directed self-checking diagnostic. The interface library has a C++ class for each of the interfaces of the MAGIC

chip. These classes abstract the interface, making it very easy to insert requests, extract replies, and check the values of pins. A

diagnostic for MAGIC also has two major parts. The first is the C++ program that controls the external interfaces of the chip

by calling the aforementioned interface library routines, and the second is a software program that runs on the protocol proces-

sor. All requests inserted into the chip by the HLL will eventually reach the protocol processor, allowing the diagnostic code

running there to act on them. This makes it quite easy to test the inbound paths into MAGIC. The protocol processor code can

also send messages to the external interfaces to test the outbound paths; these outgoing messages will be received again by the

HLL portion of the diagnostic. One of the goals of the MAGIC design was to make all of the interesting state in the hardware



13

support units visible to the protocol processor. This way, a diagnostic can make sure that a unit is in the proper state after a cer-

tain event, or the diagnostic can set the unit up with the proper initial conditions for a particular test.

Having a processor in the core of MAGIC is a very powerful diagnostic aid. Many large, purely hardware, designs end up

breaking the chip up into sub-units and then testing each sub-unit in isolation. This is necessary because there may be no way

to control internal arbitration or resource allocation from the pins of the chip. In the FLASH design, each sub-unit on the chip

is accessible by the protocol processor. This allows diagnostics to easily control the sub-units, while still operating in a full

chip environment. Not only does this make all sub-unit interactions realistic, it also allows all 270 of our diagnostics to be run

on the tester, since everything is done from the pins.

The other simulator we can plug into the simulator-hardware hookup is FlashLite. This is another example of how we lever-

age hierarchical simulation in the verification effort. Using FlashLite allows us to simulate large system configurations with

the RTL model of the hardware. Normally, simulating an N-processor multiprocessor with the RTL model would require

instantiating N copies of the RTL design, resulting in a simulation that runs 1/N times the speed of a single processor run. We

did something different in FLASH—we took the FlashLite simulator and added the ability to replace a single node’s MAGIC

model (and its associated 14 FlashLite threads) with the RTL version. This cosimulation or multi-level simulation approach is

similar to the NWO simulation system used in the MIT Alewife design [ABC+95] and that used in [PM96].

When connecting FlashLite and our RTL simulation together we need to communicate a set of boundary signals back and

forth between them. This set of signals is nominally the pins of the MAGIC chip, but need not be limited to externally observ-

able signals. For example, we also communicate internal protocol processor signals up to FlashLite so that we can do some

high-level checks to ensure that the protocol processor is functioning properly. Because of ordering and arbitration issues,

FlashLite needs to communicate with the RTL model on every cycle. From FlashLite’s perspective there is very little differ-

ence between an RTL model of the MAGIC chip and the normal FlashLite threads model—the interface is kept the same. Con-

sider a processor cache miss. Normally FlashLite’s processor thread would arbitrate for the bus and then call the

AddToProcessorInterfaceQueue function which adds the processor’s request to MAGIC’s input queue. When the

FlashLite node is an RTL node, it does exactly the same thing, except AddToProcessorInterfaceQueue communicates the

processor request to the RTL model by appropriately setting the processor bus signals in the FlashLite-RTL interface.

Figure 7. FLASH Simulator-Hardware hookup, allowing plug and play of
models at different levels of the design hierarchy.

Simulator Hardware

or orRTL Gate
Level

G
l
u
e

FlashLiteHLL



14

Because we have to communicate with the RTL on every cycle, the interface needs to be efficient. One way to communicate

between the simulators is to use sockets. This has the advantages of coding ease, portability, and good parallelism, since the

two simulators can be on different machines and different architectures. The downside is that the socket interface can be slow

when there is a lot of data to be moved. The other option (and the one we ultimately adopted) is to communicate between the

two simulators using shared memory. From our experience, this has the advantage of being about 15% faster than the sockets-

based approach. The limitation of this approach is that both simulators need to run on the same machine, though if that

machine is a multiprocessor parallelism is still possible.

The end result is an N-processor simulation with N-1 high-level FlashLite nodes, and 1 RTL node, running at essentially

the same speed as a single stand-alone RTL node. In addition, this enables us to run real parallel applications on the RTL

model, allowing us to check both the functionality and performance of the low-level hardware design. Optionally, we can go

one step farther than replacing just the MAGIC chip in the multiprocessor simulation. We can also replace one of the FlashLite

main processor models with the MIPS R10000 RTL model. This approach is especially useful for ensuring the correctness of

MAGIC’s processor interface, since the interactions between the R10000 and the MAGIC chip are realistic.

Finally, we have the ability to replace the behavioral RTL model with the synthesized gate-level model of the MAGIC chip.

We use Synopsys to synthesize our Verilog into low-level gate primitives, and simulation libraries provided by LSI Logic that

allow us to simulate the gate-level model with VCS. Though the gate-level model can run with either simulator (the HLL, or

FlashLite), most of the verification work was done on the behavioral RTL model, since it runs approximately four times faster

(see Table 5.1). Another difficulty with the gate-level model is that signals can be renamed or optimized away, making debug-

ging difficult. This has the unfortunate side-effect of rendering much of the sanity checking code (called snoopers) unusable.

Once all the diagnostics run correctly on the behavioral RTL model, we run the same regression on the gate-level model,

which is the ultimate test of the design’s functionality and performance. For the custom-designed data buffers, we performed

switch-level simulation with IRSim and transistor-level simulation with Spice. These simulators only run on very small por-

tions of the design, yet they are slower than the RTL gate-level simulation by factors of 100 and 10,000 respectively.

5.3  Snoopers & Coverage
In a large complicated design such as MAGIC, diagnostics may run for many thousands of clock cycles before a bug will

actually cause something noticeable to go wrong in the simulation. As an example, consider the pending counter associated

with each on-chip data buffer in MAGIC. The pending counter is incremented each time a unit wants to use the data buffer,

and decremented when the unit has finished using it. If a unit erroneously decrements the pending count or the hardware mis-

Table 5.1. Simulation Speed at Different Levels in the Hierarchy

Simulation Level Speed (cycles/second)

FlashLite—C Handlers 90,000

FlashLite—PPsim 80,000

HLL—Behavioral RTL 13

HLL—Behavioral RTL + Coverage Analysis 6

HLL—Gate-Level 3



15

takenly decrements the count twice, the count may be decremented below zero, resulting in a large positive pending count on

the buffer and preventing it from ever being deallocated. A diagnostic may not detect this bug unless it happens as many times

as there are data buffers in the design (at which point the diagnostic would detect system deadlock). To quickly catch problems

like this, we wrote a set of code called snoopers, that constantly watch the hardware to make sure that nothing bad is happen-

ing. This is a common technique that is used in many computer system designs [MHR96][KL96]. One such snooper, located in

the data buffer allocator, checks to make sure the four-bit pending count is never decremented below zero or incremented

above fifteen. Snoopers can be very low-level or quite high-level. An example of a low-level snooper is the check that we

added to the behavioral logic for n-way one-hot multiplexers. This snooper makes sure that one, and only one, mux select is

active at any time. If a hardware bug causes more than one mux select to be active, the snooper prints out an error message,

and ends the simulation. The network interface has one of the highest level snoopers. This snooper watches all messages that

enter from the network, and makes sure that the data and control information are routed to the proper places within MAGIC.

If cycle-accurate (or event-accurate) simulators for parts of the hardware design are available, then these too can be used as

snoopers. We run the PPsim instruction set emulator with every hardware RTL simulation. All the inputs to the real protocol

processor are also sent to PPsim, and the two models compare the values that are written into the register file on every cycle.

Since many hardware bugs cause bad data to end up in the registers of the protocol processor, this snooper is very effective at

detecting problems. Cycle-accurate snoopers also allow non-self-checking, random diagnostics to be run. Any stream of ran-

dom references can be fed into the hardware, and the simulator will point out whenever the hardware does something

different [HMK96]. Without the snooper, the random diagnostic would need some way of figuring out that it is running prop-

erly.

Recall that to help verify the FLASH protocol we used instruction coverage as a metric to find out where we needed to

expend more testing effort. In the hardware verification, we used two similar techniques. The first is toggle coverage, which

tells the designer which signals in the design did not take on both a one and a zero value. The diagnostics in the FLASH

regression suite toggle almost 100% of the signals in the design. The second hardware verification technique that we used was

state coverage [HH96]. Whereas toggle coverage looks at each signal in isolation, state coverage looks at each state machine

in the design, and makes sure that all possible states have been reached. The first goal is to make sure that each state machine

reaches each of its possible states, and takes each of its possible state transitions. Once that goal is achieved, the next goal is to

ensure that all combinations (or cross-products) of the state machines are reached. When more than one state machine is

involved, some state combinations are impossible, requiring the designer to identify the valid combinations to produce useful

results from the state coverage tool. When either the toggle coverage or state coverage indicated untested portions of the

MAGIC design, we added diagnostics to our regression suite to cover these cases.

6  Conclusions
Hardware/software codesign produces an optimal overall design by supporting performance and design validation early in

the design process, allowing substantial concurrency in the design, and shortening the design time of the project as a whole.

Figure 8 shows graphically how hardware/software codesign enabled us to overlap major portions of the MAGIC design.

Using the Stanford FLASH multiprocessor as an example, we showed how initial, fast coarse-grain simulations provided



16

rough ideas about overall machine performance, helped debug the protocol software, and influenced lower-level hardware

design decisions. As the hardware specification progressed, the simulator became more accurate, driving more hardware

changes and finding more bugs. Performance goals were considered at every step in the design process, making it likely that

the final system will reach those goals.

As is often the case, verification of the design consumes the most effort. Though external factors prevent us from presenting

an accurate design time for the FLASH project as a whole, it is safe to say that the last eleven months of the project were dom-

inated by the hardware verification process. Hardware/software codesign helps to shorten that time. Hierarchical simulation

allows software verification to be overlapped with the low-level hardware design, and adds the ability to verify the RTL model

in multiple environments. Coupling RTL simulations with higher-level tools like snoopers and formal coverage analysis

focuses the designer on the portions of the design that remain untested, allowing him to write more effective diagnostics.

Ultimately, to reap the most benefit from hardware/software codesign, the designer must be willing to concurrently develop

multiple levels of the design. This philosophy is contrary to the traditional serialized design approach, and requires a well-

structured design environment. In particular it needs a flexible simulation environment that can model the system at varying

levels of abstraction and a verification strategy that allows the software to be verified while the hardware is still being

designed. Given this mindset and these tools, hardware/software codesign provides a methodology that guides this concurrent

design process, minimizing design time while still achieving its performance targets.

Acknowledgments
The authors would like to thank all the members of the Stanford FLASH multiprocessor team. We would also like to thank

Earl Killian, Todd Mowry, and James Laudon for their work on the FlashLite threads package. FLASH is supported by ARPA

contract number DABT63-94-C-0054.

Figure 8. Concurrent development of tasks in the MAGIC design.

HW Coverage
Verilog/Flashlite

HLL Verification
Physical Design

Gate-Level Model
RTL Model

Protocol Cover
Appl Verif

Formal V
Tools

PPsim
FlashLite

HW SpecHW Specification
FlashLite
PPsim

SW Tools
Formal V.

SW Verification
SW Coverage

RTL Model
Gate-Level Model

FlashLite/RTL
HW Coverage

Physical Design
HLL Verification

Time (years)0 1 2 3



17

References
[ABC+95] Anant Agarwal et al. The MIT Alewife Machine: Architecture and Performance. In Proceedings of the 22nd International

Symposium on Computer Architecture, pages 2-13, Santa Margherita Ligure, Italy, June 1995.
[Bedi95] Robert C. Bedicheck. Talisman: Fast and Accurate Multicomputer Simulation. In Sigmetrics, Ottawa, Ontario, Canada, May

1995.
[BL94] Thomas Ball and James R. Larus. Optimially Profiling and Tracing Programs. ACM Transactions on Programming Lan-

guages and Systems, Vol 16 #4, pages 1319-1360, July 1994.
[Cmel93] Bob Cmelik. The SHADE Simulator. Sun-Labs Technical Report, 1993.
[GHP+93] Jeffrey D. Gee et al. Cache Performance of the SPEC Benchmark Suite. IEEE Micro, 3, 2, August 1993.
[Golds93] Stephen Goldschmidt. Simulation of Multiprocessors: Accuracy and Performance. Ph.D. Thesis, Stanford University, June

1993.
[HKO+94] Mark Heinrich et al. The Performance Impact of Flexibility in the Stanford FLASH Multiprocessor. In Proceedings of the 6th

International Conference on Architectural Support for Programming Languages and Operating Systems, pages 274-285, San
Jose, CA, October 1994.

[HH95] John Hennessy and Mark Heinrich. Hardware/Software Co-Design of Processors: Concepts and Examples. In Proceedings of
the NATO Advanced Study Institute, Tremezzo, Italy, June 1995.

[HH96] Richard C. Ho and Mark A. Horowitz. Validation Coverage Analysis for Complex Digital Designs. To appear in Proceedings
of the IEEE/ACM International Conference on CAD, San Jose, CA, November 1996.

[HMK96] A. Hosseini, D. Mauroidis, and P. Konas. Code Generation and Analysis for the Functional Verification of Microprocessors.
DAC, pages 305-310, Las Vegas, NV, 1996.

[HP90] John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, San
Mateo, CA, 1990.

[HS89] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches. IEEE Transactions on Computers, C-38, 12,
pages 1612-1630, December 1989.

[KL96] M. Kantrowitz and L Noack. I’m done simulating; Now What? Verification Coverage Analysis and Correctness Checking of
the DECchip 21164 ALPHA Microprocessor. DAC, pages 325-330, Las Vegas, NV, 1996.

[KOH+94] Jeffrey Kuskin et al. The Stanford FLASH Multiprocessor. In Proceedings of the 21st International Symposium on Computer
Architecture, pages 302-313, Chicago, IL, April 1994.

[Lee96] R. Lee. Subword Parallelism with MAX-2. IEEE Micro, Vol 16 #4, pages 51-59, August 1996.
[LIN88] J. J. Dongarra. The LINPACK Benchmark: An Explanation. SuperComputing, pages 10-14, Spring 1988.
[LLG+92] Daniel Lenoski et al. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63-79, March 1992.
[MHR96] J. Monaco, D. Holloway, and R. Raina. Functional Verification Methodology For The PowerPC 604tm Microprocessor. DAC,

pages 319-324, Las Vegas, NV, 1996.
[MS96] L. McVoy and S. Staelin. lmbench: Portable tools for performance analysis. USENIX, January 1996.
[NAS85] D. H.Bailey and J. Barton. The NAS Kernel Benchmark Program. Technical Report 86711, Ames Research Center, Moffett

Field, Calif., August 1985.
[Papw96] D. Papworth. Tuning the Pentium Pro Microarchitecture. IEEE Micro, Vol 19 #2, pages 8-15, April 1996.
[PD96] Seungjoon Park and David Dill. Verification of FLASH Cache Coherence Protocol by Aggregation of Distributed Transac-

tions. In Proceedings of 8th ACM Symposium on Parallel Algorithms and Architectures, pages 288-296, Padova, Italy, June
1996.

[PM96] V. Popescu and B. McNamara. Innovative Verification Strategy Reduces Design Cycle Time For High-End SPARC. DAC,
pages 311-314, Las Vegas, NV, 1996.

[PW96] A. Peleg and U. Weiser. MMX Technology Extensions to the Intel Architecture. IEEE Micro, Vol 16 #4, pages 42-50, August
1996.

[RHL+93] Steven K. Reinhardt et al. The Wisconsin WindTunnel: Virtual Prototyping of Parallel Computers. Sigmetrics, Santa Clara,
CA, 1993.

[RHW+95] Mendel Rosenblum, Stephen Herrod, Emmett Witchel et al. Complete Computer Simulation: The SimOS Approach. IEEE
Parallel and Distributed Technologies, pages 34-43, Winter 1995.

[SE94] Amitabh Srivastava and Alal Eustace. ATOM: a system for building customized program analysis tools. SIGPLAN Notices,
vol29, no. 6, pages 196-205, June 1994.

[Smith91] Michael David Smith. Tracing with Pixie. Technical Report CSL-TR-91-497, Computer Systems Laboratory, Stanford Uni-
versity, November 1991.

[Smith92] Michael David Smith. Support for Speculative Execution in High-Performance Processors. Ph.D. Thesis, Technical Report
CSL-TR-93-556, Stanford University, November 1992.

[SPEC95] Standard Performance Evaluation Corporation. The SPEC95 benchmark suite. http://www.specbench.org.
[Stall93] Richard Stallman. Using and Porting GNU CC. Free Software Foundation, Cambridge, MA, June 1993.



18

[TMI+96] M. Tremblay et al. A Fast and Flexible Performance Simulator For Micro-Architecture trace-off Analysis on UltraSPARCtm-
I. DAC, pages 2-6, San Francisco, CA, 1995.

[TON+96] M. Tremblay et al. VIS Speeds New Media Processing. IEEE Micro, Vol 16 #4, pages 10-20, August 1996.
[TPC93] Shanley Public Relations. Complete TPC Results. Performance Evaluation Review, Vol 19 #3, pages 32-35, February 1993.
[VF94] Jack E. Veenstra and Robert J. Fowler. MINT: A Front End for Efficient Simulation of Shared-Memory Multiprocessors. In

Proceedings of the Second International Workshop on Modeling Analysis, and Simulation of Computer and Telecommuica-
tion Systems, pages 201-207, January 1994.

[WOT+95] Steven Cameron Woo et al. The SPLASH-2 Programs: Characterization and Methodological Considerations. In Proceedings
of the 22nd International Symposium on Computer Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.


