
Computer Systems Laboratory
Cornell University� Ithaca� NY �����

ProvidingHardwareDSMPerformance at SoftwareDSM

Cost

M�Heinrich and E� Speight

Technical Report No� CSL�TR����������

November ����

Providing Hardware DSM Performance at Software DSM Cost

Mark Heinrich and Evan Speight

Computer Systems Laboratory� Cornell University� Ithaca� NY �����

Abstract

Emerging trends in commodity network technology coupled with key insights from aca�
demic research in active memory systems are leading toward the realization of hardware DSM

on commodity clusters� We call the result of this convergence active memory clusters� After

discussing the current state of the art in hardware DSM� clusters� and software DSM architec�
tures� we highlight the key di�erences between hardware and software DSM systems and show

how these di�erences are rapidly disappearing in commodity systems�with the notable excep�
tion of the specialized memory controller present in hardware DSM systems� We then discuss

recent research results in active memory systems that show that uniprocessor performance can

be improved with the inclusion of an active memory controller� indicating that it may become
part of forthcoming commodity workstations� We make the observation that active memory

support can be treated as an extension of the cache coherence protocol� and that an active

memory controller contains the necessary functionality for building a hardware DSM machine�
Coupled with enhancements in network technology and a small amount of software support�

active memory clusters can achieve hardware DSM performance at software DSM cost�

�� Introduction

With the advent of low�cost� high�performance commodity components� networks of industry�

standard workstations have captured the interest of both industry and research institutions over

the past several years� Referred to as NOWs �network of workstations�� COWs �collection of

workstations�� COPs �collection of PCs�� etc�� these clusters are typically comprised of symmetric

multiprocessor �SMP� nodes containing two or four processors� large amounts of local memory �on

the order of ���GB of RAM�� and a network such as Myrinet� cLAN� or ServerNet that provides

zero�byte latencies less than �	�s�

When taken as a whole� the machines comprising a cluster make up a distributed memory par�

allel machine� indicating that message passing should be the natural choice for parallel program�

ming on clusters� However� each individual node already ensures that data exchanged between

co�located processors is cache�coherent� Thus� on a single node� an application developer may

use the shared�memory programming model to achieve higher performance than sending messages

between processors located on the same node�

An ideal situation is to provide shared�memory parallel programming on the cluster as a whole�

not just on the individual nodes� This combines the ease of shared�memory programming with the

cost advantage of a cluster�based distributed memory architecture� Many such Distributed Shared

Memory �DSM� systems have been designed� Some of these systems provide the shared�memory

abstraction in software� adding little or no cost to the cluster price but providing poor performance

in many cases� Other systems provide shared memory in hardware� which can add substantial cost

to each individual node in exchange for higher performance on parallel applications� The inclusion

of the hardware required to support DSM typically provides no improvement in uniprocessor
single

SMP performance� and therefore has never been included in commodity cluster components� In

�

this paper� we argue that emerging technology trends in industry coupled with key insights from

academic research are leading toward the realization of hardware DSM on commodity clusters at

software DSM cost� with a concomitant improvement in single�node performance� We call the

result of this convergence active memory clusters �AMC��

In Section �� we describe background material relating to the design of both hardware and

software DSM systems� as well as the rise in popularity of clusters of commodity workstations�

Section � explains the key dierences between software and hardware DSM systems� and how

recent developments and research results can have narrowed the gap between the two� Section �

presents the design of active memory clusters and discusses the architectural and operating systems

issues that must be addressed for AMC to become a reality� Section � discusses the performance

of AMC relative to that of hardware DSM and software DSM systems� and Section � concludes

the paper�

�� Background

We begin by summarizing the development of hardware cache�coherent shared�memory sys�

tems� clusters of workstations� and the rise of software DSM techniques to attempt to bridge the

gap between the two� In Section � we will then take a closer look at the dierences between

hardware and software DSM machines�

���� Hardware DSM

Scalable cache�coherent distributed shared�memory �DSM�machines have received much atten�

tion in the literature since the late ���	s� To demonstrate their eectiveness� several cache�coherent

non�uniform memory access �CC�NUMA� hardware DSM machines were built in the research com�

munity �e�g� DASH ����� Alewife ���� FLASH ����� Typhoon ����� and commercial machines followed

�e�g� SGI Origin �			 ����� Sun S��mp ����� Sequent NUMA�Q ����� HP Exemplar ���� Data General

Aviion ����� At the same time� a large research eort produced a set of scienti�c benchmarks with

which to evaluate DSM machines �����

Most high�performance hardware DSM machines have tightly�integrated node or memory con�

trollers that connect the microprocessor both to the memory system and to a proprietary high�speed

switching network� The scalable coherence protocols �e�g�� ������������������� used in such machines

are implemented either in hardware �nite�state machines or in software running on an embedded

programmable device in the controller� Despite the resulting high performance of these systems�

and eorts to show that the necessary additional hardware to support hardware DSM in commod�

ity workstations and servers is small ����� high�end PC servers and engineering workstations have

yet to integrate the additional functionality needed to build seamless hardware DSM from COTS

�commodity o�the�shelf� components�

���� Clusters

The ability of current microprocessors to directly support symmetric multiprocessing for two

or four processors has created a �sweet spot� of low�priced SMP workstations that are rapidly

becoming the commodity PCs of the enterprise environment� The low cost of these machines has

�

led to their use in clustered compute farms consisting of high�end servers or workstations inter�

connected by a high�speed network such as Myrinet or the Virtual Interface Architecture that

deliver latencies on the order of �	�s for inter�node communication� A �virtual parallel machine�

constructed from such a cluster provides a distributed memory machine� with each node containing

a complete version of the operating system� its own memory hierarchy� and I
O subsystem inde�

pendent of other nodes in the cluster� Thus� message passing APIs such as MPI ���� or PVM ���

are the natural choice for cluster�based parallel programming�

However� current clusters based on SMP nodes actually present the application programmer

with two distinct memory interfaces� shared memory between the processors local to each machine�

and distributed memory between processors that are not co�located� The programmer is thus faced

with a dilemma� There are clear performance advantages to using the native SMP load
store

interface for communication between co�located processors� but accesses to remote memory require

an entirely dierent communication model� Utilizing two dierent communication models in the

same program is problematic� particularly in the case where the number of threads and processors

per machine is not known at compile time�

���� Software DSM

In an attempt to remove the cost limitations associated with scalable DSM computing and

address the programming concerns of cluster�based parallel computing� several software DSM sys�

tems have been built that do not rely on specialized hardware to provide programmers with shared

memory� These systems include Ivy ����� TreadMarks ����� Munin ���� Brazos ����� CRL �����

MGS ����� CVM ��	�� Blizzard�S ��	�� Shasta ����� Cashmere��L ����� and SoftFLASH ���� The

underlying principle in these machines is to leverage commodity parts�particularly the use of

commodity processors� node boards� networks� and operating systems�to build a scalable DSM

machine� Most software DSM systems rely on trapping protection violations and executing the

coherence protocol in software running on the main microprocessor� These systems must use page�

level granularity to enforce coherence� which also allows the high cost of communication to be

amortized over the larger coherence unit� Much work into reducing the amount of communication

necessary to maintain coherence has been reported� the most important being the use of multiple�

writer protocols ��� and relaxed consistency models ������� Other software DSM systems instrument

application code to check for coherence actions that need to be performed before each access to

shared memory �e�g�� the Shasta system ������ These systems can then implement coherence at

any granularity desired� but the high handler overhead and the fact that the network is typically

integrated on the I
O bus rather than the memory bus still results in the choice of pages for data

transfer� Subsequently� such systems still incur large software overheads compared to hardware

DSM systems�

Several software DSM systems ������� have attempted to address the programming problems

associated with the mixed�architecture presented by a cluster of SMP machines by extending the

OpenMP programming model used in SMP programming to encompass entire clusters� These soft�

ware DSM systems use the available cache�line coherence provided in each SMP node to maintain

coherence between co�located threads� while only invoking the software DSM handlers when inter�

	

node communication is necessary� Although alleviating the amount of expensive communication

to some degree� high synchronization rates� frequent sharing� or large amounts of false sharing

severely hinder the performance of software DSM systems� As a result� their performance remains

poor compared to their hardware DSM counterparts ������ Still� the cost advantages of software

DSM clusters make them a viable alternative for certain applications�

�� Di�erences Between Hardware DSM and Software DSM

To the na��ve eye� a physical comparison of a hardware DSM machine like the FLASH mul�

tiprocessor with a modern software DSM system based on clusters reveals few dierences� Both

machines are constructed out of individual commercial boxes �FLASH uses Origin �		�s as its nodes

with a modi�ed motherboard to hold its specialized node controller� while Brazos uses high�end

SMP PCs such as Compaq Proliant ��		�s� connected together with proprietary high�speed net�

works �FLASH uses SGI Craylink ��	� and Brazos makes use of the cLAN architecture produced

by Giganet�� In fact� clusters may appear even more tightly�integrated than the FLASH machine�

Closer examination reveals three main dierences between the two systems�

� hardware DSM networks are faster and more tightly�integrated

� nodes in software DSM systems run separate versions of the operating system

� hardware DSM requires a specialized node controller

The �rst dierence is the speed and integration level of the network� Typically the communi�

cation latency in software DSM networks is about an order of magnitude more than in hardware

DSM networks ���	�s versus under ��s�� In addition� commodity motherboards integrate the net�

work on the I
O bus versus the tighter integration on the node or memory controller in hardware

DSMs� These are real dierences� but they are rapidly disappearing� The computing industry�s

new In�niBand network �discussed further in Section ���� has latencies on the order of ��s �simi�

lar to hardware DSM latencies� and will be connected directly to the memory controller on future

commodity motherboards �����

The second dierence is that unlike hardware DSM systems in which every node is under the

control of a single operating system� software DSM systems run in an environment where each node

executes its own version of the operating system� The critical aspect of this distinction with respect

to hardware DSM is the lack of a central page table accessible by all nodes in the system� Instead�

each operating system maintains its own set of virtual�to�physical mappings� As we address in

Section ���� we can make this distinction disappear� if necessary� by making a �distributed page

table� that acts like the centralized page table in a hardware DSM�capable operating system�

With a software DSM system constructed on In�niBand�based clusters� the only architectural

dierence that remains is the last one listed above� the specialized node controller� In hardware

DSM machines� this node controller implements the directory�based coherence protocol at a �ne�

grain and o�oads the overhead from the main microprocessor� If these functions were integrated

into the memory controller of a commodity box� the construction of a hardware DSM machine

becomes as simple as the construction of a cluster today because there is essentially no remaining

dierence between the two architectures�

While the integration of the specialized hardware DSM functions into commodity servers and

workstations is possible� the economic arguments have not been compelling enough to include this

functionality for three reasons� The size of the high�performance hardware DSM market has never

been large� this additional functionality does not improve uniprocessor performance� and it may

not be obvious that adding this functionality will eventually be the only thing standing between

achieving hardware DSM performance at software DSM cost� So the debate about whether the

necessary controller functionality will ever become commodity would be left at that� except for two

factors� First� there is a trend toward placing more CPUs per machine in today�s SMP boxes� This

is naturally accompanied by a higher cost per box� The desire to keep the cost of individual boxes

low� while retaining the ability to program an entire cluster as if it were a single SMP and achieve

similar performance� will be a powerful economic argument for including hardware shared�memory

support in commodity cluster components� Second� the recent research into the single�machine

performance bene�ts associated with active memory systems could further tilt the scales in the

debate of whether to include such support in the high�end servers of the future� The next section

describes how active memory systems improve the performance of single machines� which lends

strong arguments for their inclusion in COTS components�

���� Active Memory Systems

One of the biggest challenges facing modern computer architects is overcoming the memory

wall ����� Technology trends dictate that the gap between processor and memory performance

is widening� Even though good cache behavior mitigates this problem to some extent� memory

latency remains a critical performance bottleneck in modern high�performance processors� Heavily

pipelined clocked architectures have improved memory bandwidth� but this does nothing to address

memory latency or reduce the number of cache misses incurred by the processor�

One approach to reducing the gap between processor and memory performance is to move

processing into the memory system by using active memories ����������	����������� Schemes vary�

but either parts of a program that have poor cache behavior are executed in the memory sys�

tem� thereby reducing cache misses and memory bandwidth requirements� or address remapping

techniques are used to re�structure data �like linked lists or non�unit�stride accesses� so that the

processor can access them in a more cache�e�cient manner� Recently� we made the observation

that active memory techniques can be treated as an extension of the cache coherence protocol�

and proposed two�level active memory systems ��	�� The key components of such a system are an

active memory controller that implements the coherence protocol and the extensions necessary to

support active memory� and active memory elements that contain both memory arrays and pro�

cessing capability and provide the ability to process large amounts of data in parallel� It is possible

to build active memory systems with only an active controller or only active memory elements� In

fact� previously proposed active memory systems have either active controllers or active memory

elements but not both� However� we believe that the active memory controller is the key part of

an active memory system since it allows the transparent use of shadow address techniques� Our

particular two�level active memory approach is described in more detail in Section ����

Although active memory research is still in its infancy� initial results from all researchers are

�

 �p�p

Controller

Active
Memory

In�niBand

Switch

Active
Memory
Controller

In�niBand

Switch

��

Memory
Elements

Memory
Elements

Switch Network

Figure �� An active memory cluster�

promising� The severity of the memory wall problem dictates that something needs to be done�

and given the progress of technology it seems some type of an active memory system is inevitable�

It is important to note that this new architectural feature bene�ts uniprocessors� and therefore a

strong argument can be made that commodity cluster nodes of the future will have active memory

support� at least as an option� much as the high�end cluster components of today come with

advanced options not found on average workstations�

���� Convergence

We return now to our discussion of hardware versus software DSM systems� In Section � we

distilled the architectural dierences down to a single issue� whether the �ne�grained coherence

functionality needed for hardware DSM would ever be integrated into a commodity node� If

this argument could be convincingly made� the need for page�based software DSM systems would

disappear� and clusters could be used as hardware DSM machines with the performance advantages

that come with it� Unfortunately the economic argument for adding this functionality has not been

strong enough to bring the idea to fruition�

We believe that the active memory controllers being proposed to help resolve the memory

wall problem contain the same functionality needed for cluster�based hardware DSM systems to

become a reality� In fact� we have recently implemented active memory extensions on the specialized

node controller in the FLASH hardware DSM machine ��	�� This observation�that active memory

controllers and hardware DSM controllers share much of the same functionality�is the central idea

in this paper� It strengthens the cases of both the active memory and hardware DSM advocates�

Even if the individual arguments for including specialized controller functionality fall short� their

combined bene�ts may be enough to �nally produce commodity nodes with active controllers�

In the next sections we will show how our active memory clusters �see Figure �� can use the

active controller and continue to run individual operating systems while still achieving hardware

DSM performance� Alternatively� if the operating system has native DSM support� it could run on

�

active
memory

controller

Processor

$

host
processor

cache
coherence
protocols

tasks performed
in parallel by

data-intensive

active memory
elements

Figure �� Two�level Active Memory System�

active memory clusters in the same fashion it would run on a traditional hardware DSM machine�

We will see that either operating system model will work�

In summary� we believe that the combination of a single enhanced memory controller and

evolutionary improvements in the integration of network technology will result in the architectural

convergence and the potential for commodity implementations of active memory� hardware DSM�

and software DSM systems� The result will be hardware DSM performance at software DSM cost�

�� Active Memory Clusters Implementation

This section discusses the implementation details of an active memory cluster system� We

focus on the three architectural dierences between current hardware and software DSM machines

that we presented in Section �� We �rst describe what controller support is needed for active

memory systems and how this support is similar to that needed in hardware DSM machines� We

then discuss the rami�cations of upcoming tightly�integrated commodity networks� Finally we end

with a discussion of the issues that need to be solved to run commodity operating systems on an

active memory cluster�

���� Controller Functionality

In our approach to active memory systems� we make the distinction between active memory

controllers and active memory elements� Our initial work with active memory controllers using the

FLASH prototype indicates that the occupancy of an active memory controller would be signi��

cantly reduced by the introduction of active memory elements� thereby improving overall system

performance ����� We introduced a two�level approach to active memory systems that focuses on

designing active memory elements that can assist an active memory controller in performing data�

intensive operations in the memory system itself� While the data�intensive calculations are best

performed in the active memory element� the cache coherence problem �described below� is best

solved in the active memory controller� This novel two�level approach to active memory systems

is depicted in Figure ��

Recent active memory proposals have advocated the technique of remapping the address space

of a process in an application�speci�c manner� Accesses to this space are then used as a signal

to the memory controller to perform �active� operations rather than satisfying this access from

physical memory �������	�� For example� when performing matrix operations that require row

and column traversals� one traversal uses the cache eectively whereas the other does not� We

can provide multiple memory viewpoints of the same matrix using shadow address spaces� Row

traversals are unchanged� whereas column traversals are treated as row traversals of a matrix at a

dierent �shadow� address� The memory controller issues scatter
gather commands to the active

memory elements� which� in turn� fetch individual double�words from a column and return them in

a single cache line� Data is therefore provided in blocks that can be cached e�ciently by the main

processor� The result is good cache behavior for both row and column traversals of the matrix�

Such an approach could potentially speed up many scienti�c applications by using the processing

capability in the memory system� Similar remapping techniques can be used to speedup linked�list�

intensive programs� and other active memory improvements are the topics of our current research�

Uniprocessor speedups as large as a factor of � have been reported by researchers building active

memory controllers ��	��

The key challenge with this active memory approach is solving the cache coherence problem it

creates� For example� if columns of a matrix are being written via a dierent address space during

column traversals� the next row traversal via the normal address space will return incorrect or stale

data unless care is taken or costly cache ushes are performed� The key insight into solving the

coherence problem in active memory systems is that the active memory controller controls both

the coherence protocol and the fetching of the requested data by the processor� In architectures

like the Stanford FLASH multiprocessor ���� and the S��mp ���� the coherence protocol itself is

programmable or extensible� Thus� it is possible to treat active memory support as an extension

of the cache coherence protocol� In this case� the active memory controller can enforce coherence

between the original and shadow address spaces�

Although active memory research is in its early stages� initial results from many researchers

show that the technique can be quite eective for improving uniprocessor performance ��������	��

Because active memory techniques can improve processor performance in the face of the memory

wall problem� we believe it will become part of the commodity servers of the future� If we assume

that a commodity controller has the active memory functionality we describe above� what else does

it need to support hardware DSM! Below we list the features of our active memory controller� and

then describe the relatively minor additions required for hardware DSM�

Active Memory Controller Features� Our proposed commodity active memory controller

manages the cache coherence protocol� Note that even a uniprocessor requires cache�coherent I
O

independent of the coherence extensions that we propose for active memory functionality� The

consequence of this is that the memory controller already has the ability to invalidate cache lines

from the processor and retrieve dirty data from its cache� It also must maintain the ability to track

sharing information in the system� In addition� the processor must be able to communicate with

the memory controller through uncached writes to a portion of the address space� These writes

are interpreted as commands by the memory controller� The �nal features of the active memory

controller are twofold� First the controller must have the ability to dispatch both normal and

�

active coherence handlers by looking at certain bits in the request and address on the processor

or I
O bus� Second� in addition to the processor and I
O interface� the controller must have a

network interface as shown in Figure �� As we discuss in Section ���� the direct connection of the

memory controller to a network such as In�niBand will be present in commodity nodes regardless

of whether or not active memory is supported�

Additional support required for hardware DSM� The key additional features needed for

hardware DSM beyond those present in an active memory controller are the ability to dispatch

handlers from the network interface �including deadlock avoidance in the scheduling mechanism�

and the existence of the corresponding coherence handlers for network messages� It is important to

realize that in exible or extensible active memory controllers� the additional coherence handlers

that are needed can be thought of as nothing more than a larger �code size�� and do not necessitate

changes to the active memory controller architecture�

In summary� if active memory support is included in commodity memory controllers� very

little needs to be done to expand that functionality to support hardware DSM�especially if the

controller has a mechanism to exibly extend the cache coherence protocol� The next section

describes how a hardware DSM�style network will be available in a commodity system�

���� Network Integration

Commodity architectures are witnessing evolutionary changes in network integration as the

network connection moves from a plug�in card on the distant I
O bus to a routing chip directly

connected to the memory controller �see Figure ��� The In�niBand network is one example� Al�

though the network is designed for use in storage networks and supports user�level heavyweight

protocols� an active memory cluster only needs to use the physical routing capabilities of the net�

work switches� The network switch is directly connected to the memory controller� Since the

memory controller in our design is our active memory controller� it can send low�level coherence

messages over this commodity switch network� The messages travel between memory controllers

only and are not forwarded up to the processor for handling via interrupts� Instead� an active

memory cluster can handle the messages entirely in the memory controller� similar to a hardware

DSM machine� The only requirement is that the memory controller format its data payloads

�coherence messages� in the physical packet format understood by the routers� Early In�niBand

speci�cations ���� show that this format has ��	 bytes of overhead on top of the data payload

of the packet �if you ignore other �elds associated with user�level messaging�� similar to typical

hardware DSM machines�

Early reports on the latency and bandwidth characteristics of In�niBand as well as its physical

routing capabilities are comparable to �and often better than� networks used in today�s hardware

DSM machines� The �hop time� through a switch is on the order of �	ns� versus �	ns for the

routers used in the SGI Origin �			 and the FLASH multiprocessor� A �	ns hop time in the

FLASH machine would reduce the nearest neighbor remote read latency from ��	ns to ��	ns� The

bandwidth of the network is ���Gb
s ����MB
s�� While this is slightly less bandwidth than the

network in an Origin �			 ��		 MB
s�� it is ��� times higher than that used in the most advanced

software DSM machines� Coupled with the massive reduction in latency� this network will provide

�

an excellent base on which to build a high�performance DSM machine�

���� Operating System Issues

At this point� we plan on using Linux to implement AMC because the source code of the virtual

memory manager is readily available and free of licensing issues should we choose to modify it�

The only functionality that AMC requires from the host OS is the ability to request that a speci�c

virtual address map to a physical address within a certain range of the physical memory address

space� a feature commonly used to map I
O devices into a process� virtual space� Therefore� we

believe that our solutions are general enough to be implemented on any modern operating system�

and we are currently writing the necessary device drivers to port AMC to Windows �			�

As mentioned in Section �� software DSM runtime layers are typically used on clusters of

workstations� each running their own version of the host operating system� The majority of these

clusters consist of the same types of machines running the same version of the same operating sys�

tem� The reasons for this include the cost advantage of buying in bulk� ease of cluster�wide system

management� and the avoidance of the overhead associated with translating between dierent data

representations �as is done in the Amoeba and Emerald systems ��������� Clusters providing high�

performance parallel programming environments are not groups of machines sitting on desks in an

o�ce environment� but rather sets of rack�mounted machines sequestered in machine rooms� Thus�

while companies such as Entropia seek to use heterogenous� widely�spread machines for large�scale

independent computations� realistically we do not expect high�performance cluster machines to be

constructed of dis�similar components�

Although the use of an operating system with native DSM support and NUMA�aware policies

such as Irix ��� would result in an AMC achieving hardware DSM performance at software DSM

cost� for completeness we still address the case of a cluster comprised of a group of nodes where

each runs its own operating system� The fact that the operating system on each node operates

without awareness of other nodes presents several problems for active memory clusters�

� virtual"to"physical page mappings will most likely not be the same on all machines

� pages swapped out by the OS may cause problems when swapped back in

� pointers to shared data must be distributed to all participating processes

These three issues arise during the initialization portion of an AMC application� Therefore� in oper�

ating systems without DSM support� AMC application startup closely follows that used in software

DSM systems� Here we present a complete description of the AMC initialization procedure� which

will address the three points above�

When the application starts� it calls an initialization routine provided by the AMC library�

This initialization routine has four main stages�

Remote process startup� A shared�memory application is started on a single node of the AMC�

and this process speci�es other nodes that will participate in the computation� The initialization

library uses a standard remote execution mechanism to initiate a copy of the AMC process on all

other nodes� with the only dierence being the node ID� As in software DSM� this presupposes the

existence of a shared �le system and the permission of the initiator to access it on each participating

node�

��

 0x003e7500
physical address

0x2003e7500

0x5000000

0x70000000

shared region

private region

mapping on node 1

 0x1003b5600
(physical address)

virtual address space

physical frames

 Controller

to node 1

virtual pages

0x50004200
(virtual address)

Active Memory

Figure �� Virtual to Physical Mapping for Example Node ��

Allocating correct virtual�to�physical mappings� The lack of a centralized page table ac�

cessible by any AMC process requires AMC to ensure that the same virtual"to"physical mappings

exist on each node� The easy part of this process is ensuring that the shared�memory region

exists in the same virtual address range on all nodes� This is commonly done in software DSM

systems and poses no problem to AMC� However� a more di�cult problem is making sure that all

virtual"to"physical mappings are the same on each node� This is essential because hardware DSM

memory controllers initiate coherence actions based on the physical address presented to them� If

these mappings do not match from node to node� a translation table must be maintained by each

memory controller for every physical frame for every remote node in the system� For space and

performance reasons� this is clearly not an attractive alternative�

AMC addresses this problem through the use of a specialized device driver that maps virtual

pages to the correct set of physical frames� Figure � depicts the memory translations present in

a single node of the AMC cluster �the translation performed by the page table is omitted for

clarity�� The virtual address space contains a region agreed upon by all nodes to represent �shared

memory� �the virtual address region between 	x�							 and 	x�							 in Figure ��� and this

region resides at the same place in the virtual address space of each AMC process� Non�shared data

regions are allocated by normal allocation methods �e�g�� malloc�� while shared�memory regions

are allocated through a special allocation routine provided by the AMC library�

We assume at least a �	�bit physical address space� which for machine sizes up to ��� nodes

provides us with ���bits of physical memory and ��bits of node identi	er � The node identi�er

is used to indicate the home node for a particular page to the AMC memory controller� Dur�

��

ing initialization� each node allocates pages for which it is the home node �dependent on some

application�speci�c page placement policy� through the use of the specialized memory mapping

device driver� For local allocations� the upper � bits are set to 	 to allow the memory controller to

respond to local requests as normal� The lower �� bits specify the actual frame residing in physical

memory on the home node�

As shown in Figure �� the physical frames allocated at each home node do not have to be

contiguous� their placement being decided by the the unmodi�ed virtual memory manager running

on the host OS� Shared frames and private frames may be intermixed� as indicated by the shaded

and unshaded regions of the physical address space� When each node has completed this mapping

process� messages are sent between every pair of nodes to inform all nodes of the correct mappings

for their portion of the shared address space�

Distributed page table dissemination� After a node has created all local virtual"to"physical

mappings� this information must be transmitted to other nodes running the AMC application�

We use standard user�level messaging to accomplish this� When Node Y receives the mappings

from Node X� Node Y will utilize the AMC Mapping Driver to establish mappings between the

correct virtual page addresses and physical frames� Note that the physical frames do not have to

be allocated on the remote node� The only two requirements are the following�

��� The virtual"to"physical mapping must indicate to the active memory controller that this

page resides on a remote node� This is accomplished by using the upper � bits of the physical

address as a node identi�er� as shown in Figure � by the translation of virtual address 	x�			��		

to physical address 	x�		�b��		� The presence of a non�zero node identi�er will cause the active

memory controller to request the page from the indicated remote node instead of attempting to

�ll the request from local RAM�

��� The lower �� bits of the physical address must be the same as on the home node� This

ensures that requests from remote nodes will access the correct physical frame� The arrow in

Figure � labeled �mapping on node �� displays the situation in which a remote mapping points to

a physical frame on this local node� Note that the node identi�er is simply stripped o before the

physical memory is accessed�

Because physical memory is only allocated on the home nodes� a substantial memory savings

is realized over software DSM systems that must allocate the entire shared address space on every

node� Thus� we will have mappings in each local page table that actually refer to physical frames

on other machines� The memory controller will ensure that the local memory is not accessed on

local cache misses to �remotely allocated� pages� Pages for which the local node is the home

node will be allocated from the available physical RAM on the local system� which will respond

to accesses from the local processor�s� normally� Our �distributed page table� therefore consists

of real mappings for pages for which the local node is the home� and shadow mappings for pages

whose home node is located across the network�

Pinning shared pages� We can easily provide initial virtual"to"physical mappings through the

use of a device driver as described above without modi�cation to the kernel� However� two problems

arise if we allow the operating system to swap out pages currently in use by AMC� First� the AMC

��

memory controller may receive a request for the swapped�out page� Since the memory controller

does not know the page has been swapped out by the operating system� the AMC controller will

respond with the current� incorrect contents of the physical frame referenced� Second� the operating

system may choose to swap the page back into physical memory at a dierent location than the

original one� causing the memory controller to again fetch incorrect data in response to remote

requests�

For these reasons� and for performance reasons� we plan to pin shared pages in memory at

the home to prevent the OS from swapping out the page during the course of the program�s

execution� Because only those shared pages for which the local node is the home node must be

pinned� we do not see this as an unreasonable requirement� However� a few minor OS modi�cations

could eliminate the necessity of pinning pages in AMC� For example� if we modi�ed the virtual

memory manager to inform the AMC memory controller when a page is swapped out� we could

initiate the necessary TLB shoot�down to resolve the �rst problem indicated above� To address

the second problem� a re�map of a shared page by the operating system could invoke our mapping

device driver� and the new mapping would then be sent to all AMC memory controllers as is

done during initialization� Implementing these options would remove the pinning requirement� but

would involve kernel modi�cations that may or may not be possible depending on the operating

system in use on the cluster�

Distributing the contents of shared pointers� Similar to software DSM systems� only data

allocated with the AMC library shmalloc routine will be shared across the cluster� Variables that

are declared globally �outside of any procedure body� will be global only to threads residing in

the local process� Pointers to shared memory reside in this process�speci	c global space� and are

located at the same address across AMC processes because we are executing a copy of the same

executable on each node� However� when a process allocates shared memory and assigns it to such

a pointer� the new contents of the pointer are only visible from the calling process� Therefore�

we must distribute the value contained in the pointer to the other AMC processes on the cluster

to ensure that the pointer holds the same value in all address spaces� This is accomplished via

standard user�level messaging as is commonly done in software DSM systems� in contrast to a

typical hardware DSM system in which remote processes would be forked after global memory has

been allocated� ensuring that global pointers �pointed� to the same region of shared memory�

�� Expected Performance Results

The following are a set of interesting performance comparisons involving active memory clus�

ters�

AMC performance vs� hardware DSM� After AMC has completed the initialization described

in Section ���� execution proceeds without any additional overhead beyond that normally expe�

rienced by hardware DSM systems with exible memory controllers� For this reason� we expect

the parallel performance of AMC to be identical to a hardware DSM system built from custom

hardware with the same network characteristics as AMC� Thus the simulation results showing

the parallel execution time of applications running on both systems would be the same� This is

�	

not surprising� since this is the insight of the paper� Active memory support plus the DSM�style

In�niBand network is a hardware DSM machine modulo the system software issues�

AMC performance vs� traditional software DSM on an In	niBand cluster� We expect

the performance of traditional software DSM on In�niBand to perform better than current software

DSM systems because of three features of In�niBand and other emerging network architectures�

� a signi�cant reduction in memory latency

� the capability of remote DMA operations

� reliable communication mechanisms

Nevertheless� for most applications we would still expect AMC to outperform software DSM

due to software DSM�s remaining high kernel overhead involved with page exception handling� the

large granularity of sharing required� and the processing overhead for runtime structures such as

diffs and twins� These are the same well�studied reasons that hardware DSM machines generally

outperform software DSM machines� Regardless of the performance dierence� however� an AMC�

enabled cluster could run either hardware or software DSM� so the question of which performs

better on which applications is inconsequential�

Most importantly� however� and central to the theme of this paper� the parallel performance

of AMC does little toward strengthening the argument for putting the required functionality in

commodity boxes� The only way the active memory controllers necessary to make AMC a reality

will be placed in commodity servers is by the industry embracing the research results showing

active memory techniques will signi�cantly improve the performance of a standalone machine� as

discussed in Section ���� When this happens� designing a
exible active memory controller will

enable us to realize hardware DSM performance at software DSM cost�

	� Conclusions

In this paper� we have shown that building clustered"compute farms that deliver hardware

DSM performance at software DSM cost is becoming a real possibility� We show that the only nec�

essary changes are utilizing a more tightly�integrated network technology� adding new functionality

in the memory controller� and writing a small amount of supporting software�

Of these three enabling mechanisms� the most problematic is the additional functionality

required of the memory controller� Until recently� the additional cost of changing the memory

controller to support hardware DSM was not justi�ed by the expected performance gain for two

main reasons� First� the required support did nothing to help uniprocessor performance� which is

the metric by which the computer industry measures any technology for inclusion in �commodity�

boxes� Second� the number of users that would bene�t from such a costly change to the memory

controller architecture was relatively small� Meanwhile� recent research in active memory systems

has argued for enhanced memory controller functionality to improve uniprocessor performance� By

observing that the active memory support can be treated as an extension of the cache coherence

protocol� we realized that the controller support needed for active memory and hardware DSM is

almost identical� provided the active memory mechanisms are implemented in a exible manner�

�

Industry has already begun addressing the issue of network"system integration to support the

low communication latency required by the cluster"based systems in use today� We used In�niBand

as an example of such a network architecture� but others exist �e�g�� RapidIO ����� that would work

equally well with active memory clusters�

The only remaining issue is one of system software� Software DSM machines have had a

distinct advantage in this area� because the use of commodity operating systems is an important

factor in keeping both initial system cost and subsequent upgrade costs low� The active memory

cluster architecture can certainly be used with an operating system that natively supports hardware

DSM� However� we have shown that simple functionality provided by device drivers can be used

with commodity operating systems to achieve hardware DSM performance� even in the absence of

a specialized DSM operating system�

In summary� current research in the area of active memory systems shows that active memory

techniques can improve uniprocessor performance in cases where caching behavior is poor� The

desire for including active memory support in commodity machines now creates two communities

clamoring for the same controller functionality� As active memory research matures� this may

be enough to warrant including this functionality in commodity memory controllers� When that

happens� our claim of hardware DSM performance at software DSM cost will become a reality�

eectively merging the two �elds and combining the advantages of both�

References

��� G� Abandah and E� Davidson� E�ects of Architectural and Technological Advances on the HP�Convex

Exemplar�s Memory and Communication Performance� In Proceedings of the ��th International Sym�

posium on Computer Architecture� pages 	���	��� June �����

��� A� Agarwal� R� Bianchini� D� Chaiken� et al� The MIT Alewife Machine� Architecture and Performance�

In Proceedings of the ��nd International Symposium on Computer Architecture� pages ���	� June �����

�	� A� Bilas� C� Liao� and J� P� Singh� Using Network Interface Support to Avoid Asynchronous Protocol

Processing in Shared Virtual Memory Systems� In Proceedings of the ��th International Symposium on

Computer Architecture� May �����

�
� J� B� Carter et al� Design of the Munin Distributed Shared Memory System� Journal of Parallel and

Distributed Computing � ������������� September �����

��� J� B� Carter� W� C� Hsieh� L� B� Stroller� et al� Impulse� Building a Smarter Memory Controller� In

Proceedings of the Fifth International Symposium on High Performance Computer Architecture January

�����

��� D� Chaiken� J� Kubiatowicz� and A� Agarwal� LimitLESS Directories� A Scalable Cache Coherence

Scheme� In Proceedings of the Fourth International Conference on Architectural Support for Program�

ming Languages and Operating Systems � pages ��
��	
� April �����

�� Data General Corporation� Aviion AV ����� Server Technical Overview� Data General White Paper �

����

��� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam� PVM� Parallel Virtual

Machine� ���
�

��

��� A� Erlichson� N� Nuckolls� G� Chesson and J� Hennessy� SoftFLASH� Analzying the Performance of

Clustered Distributed Virtual Shared Memory� In Proceedings of the Seventh International Conference

on Architectural Support for Programming Languages and Operating Systems � pages �������� October

�����

���� M� Galles� Spider� A High�Speed Network Interconnect� IEEE Micro� ������	
�	�� January�February

����

���� M� Gokhale� B� Holmes� and K� Iobst� Processing in Memory� the Terasys Massively Parallel PIM

Array� Computer � ���	���	�	�� April �����

���� M� Hall et al� Mapping Irregular Applications to DIVA� A PIM�based Data�Intensive Architecture�

Supercomputing � Portland� OR� Nov� �����

��	� J� Heinlein� Optimized Multiprocessor Communication and Synchronization Using a Programmable Pro�

tocol Engine� Ph�D� Dissertation� Stanford University� Stanford� CA� March �����

��
� M� Heinrich� The Performance and Scalability of Distributed Shared Memory Cache Coherence Proto�

cols� Ph�D� Dissertation� Stanford University� October �����

���� C� Holt� M� Heinrich� J� P� Singh� et al� The E�ects of Latency� Occupancy� and Bandwidth in Dis�

tributed Shared Memory Multiprocessors� Technical Report CSL�TR�������� Computer Systems Lab�

oratory� Stanford University� January �����

���� Y�C� Hu� H� Lu� A�L� Cox� and W� Zwaenepoel� OpenMP for Networks of SMPs� In Proceedings of the

��th International Parallel Processing Symposium� April �����

��� In�niBand Architecture Speci�cation� Volume ���� Release ���� In�niBand Trade Association� October

�
� �����

���� K� L� Johnson� M� F� Kaashoek� and D� A� Wallach� CRL� High�Performance All�Software Distributed

Shared Memory� Operating Systems Review � ��������	����� December �����

���� E� Jul� H� Levy� N� Hutchinson� and A� Black� Fine�Grained Mobility in the Emerald System� ACM

Transactions on Computer Systems � � ���������		� February �����

���� P� Keleher� The Relative Importance of Concurrent Writers and Weak Consistency Models� In Proceed�

ings of the ��th International Conference on Distributed Computing Systems� May �����

���� P� Keleher� A� L� Cox� S� Dwarkadas� and W� Zwaenepoel� TreadMarks� Distributed Shared Memory on

StandardWorkstations and Operating Systems� In Proceedings of the Winter ���	 USENIX Conference�

pages �����	�� January ���
�

���� J� Kuskin� D� Ofelt� M� Heinrich� et al� The Stanford FLASH Multiprocessor� In Proceedings of the

��st International Symposium on Computer Architecture� pages 	���	�	� April ���
�

��	� J� Laudon and D� Lenoski� The SGI Origin� A ccNUMA Highly Scalable Server� In Proceedings of the

�	th International Symposium on Computer Architecture� pages �
������ June ����

��
� J� Lee� Y� Solihin� and J� Torrellas� Adaptatively Mapping Code in an Intelligent Memory Architecture�

In Proceedings of the Second Workshop on Intelligent Memory Systems � November �����

���� D� Lenoski� The Design and Analysis of DASH� A Scalable Directory�Based Multiprocessor� Ph�D�

Dissertation� Stanford University� December �����

���� D� Lenoski� J� Laudon� K� Gharachorloo� et al� The Stanford DASH Multiprocessor� IEEE Computer �

���	���	��� March �����

��� D� Lenoski� J� Laudon� K� Gharachorloo� A� Gupta� and J� Hennessy� The Directory�Based Coherence

Protocol for the Stanford DASH Multiprocessor� In Proceedings of the �
th International Symposium

��

on Computer Architecture� pages �
������ May �����

���� K� Li and P� Hudak� Memory Coherence in Shared Virtual Memory Systems� In ACM Transactions on

Computer Systems��
��	���	��� November �����

���� T� D� Lovett� R� M� Clapp� and R� J� Safranek� NUMA�Q� An SCI�based Enterprise Server� Sequent

Computer Systems Inc�� �����

�	�� R� Manohar and M� Heinrich� A Case for Asynchronous Active Memories� In ISCA ���� Solving the

Memory Wall Problem Workshop� June �����

�	�� Message Passing Interface Forum� MPI� A Message�Passing Interface Standard� Version ���� ���
�

�	�� Motorola Semiconductor Product Sector� RapidIO� An Embedded System Component Network Archi�

tecture� February ��� �����

�		� A� Nowatzyk et al� The S	�mp Scalable Shared Memory Multiprocessor� In Proceedings of the �	th

International Conference on Parallel Processing � �����

�	
� M� Oskin� F�T� Chong� and T� Sherwood� Active Pages� A Computation Model for Intelligent Memory�

In Proceedings of the ��th International Symposium on Computer Architecture� �����

�	�� D�A� Patterson� T� Anderson� et al� A Case for Intelligent RAM� IRAM� IEEE Micro� ������ April

����

�	�� S� Reinhardt� J� Larus� and D� Wood� Tempest and Typhoon� User�Level Shared Memory� In Proceed�

ings of the ��st International Symposium on Computer Architecture� pages 	���		�� April ���
�

�	� A� Saulsbury� F� Pong� and A� Nowatzyk� Missing the Memory Wall� The Case for Processor�Memory

Integration� In Proceedings of the ��rd International Symposium on Computer Architecture� pages ���

���� May �����

�	�� Scalable Coherent Interface� ANSI�IEEE Standard ���������� August ���	�

�	�� D� J� Scales� K� Gharachorloo� and C� A� Thekkath� Shasta� A Low�Overhead Software�Only Approach

for Supporting Fine�Grain Shared Memory� In Proceedings of the Seventh International Conference

on Architectural Support for Programming Languages and Operating Systems � pages �
����� October

�����

�
�� I� Schoinas� B� Falsa�� M� D� Hill� J� R� Larus� C� E� Lukas� S� S� Mukherjee� S� K� Reinhardt� E�

Schnarr� and D� A� Wood� Implementing Fine�Grain Distributed Shared Memory on Commodity SMP

Workstations� Technical Report �	�� University of Wisconsin Computer Sciences� March �����

�
�� R� Simoni� Cache Coherence Directories for Scalable Multiprocessors� Ph�D� Dissertation� Stanford

University� Stanford� CA� October �����

�
�� R� Soundararajan� M� Heinrich� B� Verghese� et al� �Flexible Use of Memory for Replication�Migration

in Cache�Coherent DSM Multiprocessors�� In Proceedings of the ��th International Symposium on

Computer Architecture� pages 	
��	��� June �����

�
	� E� Speight and J� K� Bennett� Brazos� A Third Generation DSM System� In Proceedings of the First

Usenix Windows NT Symposium� August ����

�

� E� Speight� H� Abdel�Sha�� and J� K� Bennett� An Integrated Shared�Memory�Message Passing API

for Cluster�Based Multicomputing� In Proceedings of the Second International Conference on Parallel

and Distributed Computing and Networks �PDCN� pages �
����	� December �����

�
�� P� Stenstrom� M� Brorsson� and L� Sandberg� An Adaptive Cache Coherence Protocol Optimized for

Migratory Sharing� In Proceedings of the ��th International Symposium on Computer Architecture�

pages �������� May ���	�

�

�
�� R� Stets� S� Dwarkadas� N� Hardavellas� G� Hunt� L� Kontothanassis� S� Parthasarathy� and M� Scott�

Cashmere��L� Software Coherent Shared Memory on a Clustered Remote�Write Network� In Proceedings

of the ��th ACM Symposium on Operating Systems Principles� October ����

�
� A�S� Tanenbaum� R� van Renesse� H� van Staveren� G�J� Sharp� S�J� Mullender� J� Jansen� and G�

van Rossum� Experiences with the Amoeba Distributed Operating System� Communications of the

ACM�������
���	� June �����

�
�� S� C� Woo� M� Ohara� E� Torrie� et al� The SPLASH�� Programs� Characterization and Methodological

Considerations� In Proceedings of the ��nd International Symposium on Computer Architecture� pages

�
�	�� June �����

�
�� D� Yeung� J� Kubiatowicz� and A� Agarwal� MGS� A Multigrain Shared Memory System� In Proceedings

of the ��rd International Symposium on Computer Architecture� pages

���� May �����

���� L� Zhang� V� K� Pingali� B� Chandramouli� and J� B� Carter� Memory System Support for Dynamic

Cacheline Assembly� In Proceedings of the Second Workshop on Intelligent Memory Systems � November

�����

��

