
Computer Systems Laboratory
Cornell University� Ithaca� NY �����

ACase ForAsynchronousActiveMemories

Rajit Manohar andMark Heinrich

Technical Report No� CSL�TR����������

May ����

A Case For Asynchronous Active Memories

Rajit Manohar and Mark Heinrich

Computer Systems Laboratory� Cornell University� Ithaca� NY �����

Abstract

One of the biggest challenges facing modern computer architects is overcoming the memory
wall � Technology trends dictate that the gap between processor and memory performance is

widening� Even though good cache behavior mitigates this problem to some extent� memory

latency remains a critical performance bottleneck in modern high�performance processors� Al�
though current high�speed systems have improved memory bandwidth by using heavily pipelined

clocked architectures� these techniques do not improve memory latency and they burden the
memory controller designer with a number of complex timing constraints�

We propose to tackle several challenges facing modern memory system designers by study�

ing asynchronous active memories�pipelined memory systems that do not use clocks for their
operation� We believe that our approach addresses the shortcomings in current designs and

provides the bene�ts of simple controller design� average�case performance� and support for
non�uniform memory access times� The latter bene�t is the key to transparent support for

active memories�

�� Motivation

The gap between microprocessor performance and memory performance �often called the mem�

ory wall ����� has been steadily increasing	 A cache miss on modern microprocessors that issue

multiple instructions per cycle can result in hundreds of lost instruction issue slots	 Even though

good cache behavior mitigates this problem to some extent
 memory latency remains a critical

performance bottleneck for realistic workloads in modern high�performance processors ���
�
���	

In an attempt to close the gap between processor and memory performance
 modern high�

performancememory systems have moved from unpipelined DRAM implementations to high�speed

deeply�pipelined clocked implementations	 However
 these improvements come at the cost of sig�

ni�cant complexity at the interface between the memory system and the microprocessor	 For

example
 the Direct Rambus memory controller speci�cation ��� is signi�cantly more complex and

contains more timing constraints than older unpipelined DRAM implementations	 Designing a

working system requires meeting every one of these constraints
 a task that has caused delays in

recent products using high�speed clocked memories ����	 The complexity of a clocked memory con�

troller is a direct consequence of the physical memory organization	 For instance
 the �rst access

to a row of a DRAM has longer access time compared to subsequent sequential accesses because of

row caching schemes in the memory	 Repetitive accesses to a single memory bank are slower than

accesses that are striped across multiple banks	 A clocked controller must be aware of the latency

of every possible access pattern to maximize memory throughput	

Another approach to reducing the gap between processor and memory performance is to move

processing into the memory system by using active memories ��
�
��
��
���	 Parts of a program

that have poor cache behavior are executed in the memory system
 thereby reducing cache misses

and memory bandwidth requirements	 The di�culty with active memory systems is that �active�

requests introduce a new source of unpredictable memory latency	 For example
 if an active access

AAM� ISCA ���� Memory Wall Workshop �

is used to transpose a matrix
 the address remapping logic is on the critical path of the memory

access	 This further increases the complexity of a clocked memory controller as it must now support

variable latency memory accesses
 or arti�cially constrain active requests to a set of predetermined

latencies	

We propose to design and build asynchronous active memory systems	 Our pipelined asyn�

chronous approach transparently adapts to variable latency events
 providing best�case behavior

on a case�by�case basis without imposing any arti�cial timing constraints on the memory system	

This adaptivity makes asynchronous memory systems a natural framework for the integration of

conventional and active memory systems	 As we explain in Section
 asynchronous active memory

systems o�er a solution to cope with the inherently longer access times that plague previous active

memory approaches	 The result is a simpler�and therefore faster�memory system compared to

current clocked memory architectures
 and a memory system that can be expanded to include

active memory parts	

Section � discusses the issues with designing high�performance asynchronous pipelined mem�

ory systems
 and how they di�er from commercial unpipelined asynchronous memories	 It de�

scribes our asynchronous memory architecture
 and the potential interface issues when connecting

asynchronous memories to clocked processors	 Section extends our asynchronous memory archi�

tecture to a novel two�level approach to active memory systems	 In Section � we summarize the

key bene�ts of asynchronous active memories and outline future work	

�� Pipelined Asynchronous Memories

Conventional combinational asynchronous memories are being replaced by higher performance

clocked memories like SDRAM and Rambus	 The performance advantage of these new clocked

memory systems stems from their heavy use of pipelining
 not from the fact that they are clocked	

Interestingly
 it is the introduction of a clock that complicates timing constraints in modern memory

controllers	 We propose to design �nely pipelined asynchronous memory systems that retain the

advantages of pipelining without complicating the design of the memory subsystem	 Our design

uses recently developed techniques in high�performance pipelined asynchronous design ��
��
���	

This new pipelined asynchronous memory architecture alleviates the timing constraints present in

conventional clocked memories
 while providing higher sustained throughput and the innate ability

to handle variations in memory access time	 As we will see
 this ability will be important when

designing scalable high�performance memories as well as active memory systems	

Asynchronous Design Methodology� The new asynchronous design techniques are based on

a synthesis methodology that results in quasi delay�insensitive �QDI� circuits ����	 Asynchronous

QDI circuits are robust to variations in timing
 and can therefore tolerate variations in temperature

voltage
 and fabrication process parameters	 For example
 the Caltech microprocessor fabricated in

�V ����m CMOS technology is functional at all voltages from ���V to ��V ���� and temperatures

ranging from ��K to ��K	 More recently
 a high�performance asynchronous MiniMIPS processor

was fabricated and found to be functional from ���V to ���V in 	V ����m CMOS technology ����	

QDI circuits can tolerate variations in delay introduced by changing the voltage because they

AAM� ISCA ���� Memory Wall Workshop �

Av C C

S1

ABCv

D0
D1

C1
C0

B1
B0

A0
A1

Fe

en

Sv

Dv

Bv S0

S1 S0
S1 S0

B1

C1

C0 C0

A0 A0

A1 A1

C1

B0

Se

Se

en

en

A0A1

B1B1 B0

C1 C0 D0D1
D1 D0

B0

en

De

De

en

Cv

Figure �� Pipelined QDI Full Adder Cell	

are designed to make minimal timing assumptions	y Asynchronous active memory systems have

architectural variations in access time that would be automatically handled by the QDI nature of

their implementation	

Pipelined QDI Asynchronous Circuits� A simple asynchronous pipeline stage can be described

as a process that repeatedly receives an input data item
 performs some computation on it
 and

transmits it to its environment	 If we connect a number of such stages together
 the result is a linear

pipeline	 The formal synthesis procedure introduced by Martin ���� transforms this simple process

into QDI CMOS circuits using a sequence of semantics�preserving transformations	 Figure � shows

the result of the transformations applied to a full�adder speci�cation	 The adder receives three

inputs on ports A
 B
 and C
 and produces the sum on port S and the carry�out on port D 	z

There are several interesting features of this particular circuit implementation of a QDI pipeline

stage� the input to output latency is two transitions
 corresponding to low forward latency� the

circuit can operate at very high throughput �in the range of ���MHz in a ����m CMOS process��

there are no timing margins necessary on the latency critical paths because of the QDI nature of

the circuit	

This QDI pipeline stage can be extended to construct more complex asynchronous systems

including interleaved memory systems
 iterative structures
 and other pipelining schemes ����	 The

y Making the relative timing assumptions present in QDI circuits leads to a completeness of the design tech�

nique ����� without these assumptions� the class of correct circuits would be very limited ��	�

z A variation of this circuit style was �rst introduced by Williams ���

AAM� ISCA ���� Memory Wall Workshop 	

key to attaining high throughput in variable latency asynchronous pipelines is an analysis of the

system based on the concept of dynamic wavelength ����
 and slack matching ���	

Exploiting Average�Case Performance� In a clocked system
 the global clock frequency is

determined by the maximum worst�case delay of all components in the system	 Increasing the

latency in any pipe stage can impact global performance through a lower clock rate	 In an asyn�

chronous system
 a local latency increase would only a�ect the delay of the particular operation

under consideration�and only when the operation is performed	 We can exploit this tradeo� to

improve the common�case performance of asynchronous memory systems	

As a case in point
 the MiniMIPS processor exploits average�case behavior to improve the

performance of its on�chip memory system	 The asynchronous cache organization in the processor

has higher throughput than the individual memory banks
 but a poor access pattern can result

in a loss of throughput	 However
 unlike memory bank controllers in clocked processors ����
 the

MiniMIPS does not need any additional circuitry to detect these special access patterns
 thereby

simplifying the design	 Accommodating these high�latency accesses has no impact on the latency

of common�case fast access because the interface is asynchronous	 The clocked approach would

have to either stretch the global clock to accommodate the high�latency operation
 or introduce

an architectural pipeline bubble
 further complicating the memory interface	

In the rest of this section
 we present our preliminary asynchronous memory architecture	

A Case For Asynchronous Mesh Memory� We are designing a prototype asynchronous mem�

ory system that uses point�to�point high�speed links to connect multiple memory elements using

a scalable mesh interconnect
 as shown in Figure �	 Such an architecture has several advantages

over traditional bus�based memory systems	 The point�to�point nature of the interconnect makes

high�speed signaling protocols feasible ��
���
 reducing overall memory access time and improv�

ing throughput	 While bus�based systems are simpler to build because they serialize transactions

to all memory banks
 it is precisely this property that reduces their overall performance	 Also

multiple senders and receivers on the shared bus wires a�ect electrical properties of the signaling

protocol
 reducing signaling rate	 For example
 the SGI Origin ���� uses point�to�point links in

its ��processor nodes instead of a snoopy bus	 Its point�to�point links make cache coherence more

di�cult because of the lack of a broadcast mechanism
 but the complexity increase was worthwhile

because it reduced the common case memory access latency ���	

The problem with mesh�based memory systems is that they introduce complex non�uniform

memory access latencies even within a uniprocessor 	 Accommodating these non�uniform access la�

tencies in traditional clocked memory controllers would signi�cantly increase their complexity ���	

Non�uniform memory latency does not increase the complexity of an asynchronous controller be�

cause its underlying circuit implementation is insensitive to delay variations	

Our scalable asynchronous mesh�based memory architecture consists of two main components�

a pipelined asynchronous multi�banked DRAM for high�density memory storage
 and a router with

dispatch logic to handle external memory requests	 As far as the asynchronous memory controller

is concerned
 our asynchronous mesh memory simply accepts an address request and a simple

command �like read or write�
 and returns data	

AAM� ISCA ���� Memory Wall Workshop

ROUTER/DISPATCH

DRAM ARRAY

MULTI-BANKED

controller
memory

Figure �� Asynchronous Mesh Memory	

Accommodating Clocks� The Synchronous�Asynchronous Boundary� Until modern pro�

cessors are designed without clocks
 a key challenge to making pipelined asynchronous memory

operate e�ciently within a clocked system is transferring information from the asynchronous do�

main into the clocked domain	 The problem arises when the asynchronous input arrives near a

clock edge and violates setup�hold time constraints for the clocked interface
 potentially causing

the system to enter a metastable state ��	 Careful circuit design techniques can virtually eliminate

the possibility of entering a metastable state	 The problem with most of these techniques �stretch�

able clocks
 multiple latches
 multi�stage sampling
 etc	� is that they reduce the data transfer

throughput at the boundary in addition to introducing latency	

Pipeline synchronization is a promising technique that keeps the data transfer throughput be�

tween the asynchronous and clocked domains high ����	 This technique introduces an asynchronous

resynchronizing FIFO that gradually resynchronizes the asynchronous input to the clock
 and is

currently used by Myricom for their high�speed Myrinet network	 While this technique keeps the

throughput high
 it still adds latency to the data transfer when crossing the boundary between

the asynchronous and clocked domains	 We are working on techniques that extend pipeline syn�

chronization by merging the resynchronizing FIFO with other logical functions performed by the

asynchronous portion of the memory controller to hide the resynchronization latency	

�� Asynchronous Active Memories

Many researchers have proposed schemes for active memories�performing computation in the

memory system itself�but in each case a nagging question is how these active memories
 with

inherently longer access times than normal memories
 �t into a conventional uniprocessor memory

system	 In Section � we explained how pipelined asynchronous memory systems naturally tolerate

variations in memory access time without compromising performance in the common case	 This

is the critical feature that allows active memory processing elements to co�exist with conventional

inactive memory elements	 Given an asynchronous mesh memory system
 we propose to design a

programmable asynchronous active memory element
 that can function either as a normal mesh�

connected memory element or as an active memory element that processes data as it moves between

memory and the main processor	

AAM� ISCA ���� Memory Wall Workshop �

The target applications for active memories are those that exhibit poor cache behavior in

traditional systems
 either because of bad stride problems �e	g	 vector codes
 variable precision

computation
 or matrix transposes� or capacity constraints �e	g	 out�of�core applications or search�

ing large datasets�	 Our active memory element will support a set of operations that includes

internal read�modify�write operations
 where the modify step can be programmable
 and a set of

scatter�gather operations where the memory element can funnel data into or out of a base memory

location with programmable stride	 bcopy is a special�case of the read�modify�write operation

where the modify component is the identity function	 In�memory matrix transposes can be per�

formed with a gathering read with stride equal to the row size of the matrix	 That data may either

be returned to the main processor or copied to another location within the memory element	 In

addition to support for read�modify�write and scatter�gather
 the active memory element can also

perform �ltering operations that can reduce the amount of data transferred between the memory

system and the main processor	

Address Remapping� Recent active memory proposals have advocated the technique of remap�

ping the address space of a process in an application�speci�c manner and using accesses to this

space as a signal to the memory controller to perform �active� operations rather than satisfying

this access from physical memory ��
��	 For example
 when performing matrix operations that

require row and column traversals
 one traversal uses the cache e�ectively whereas the other does

not	 We can provide multiple memory viewpoints of the same matrix using shadow address spaces

much like that proposed in the Impulse memory controller ��� and for user�level messaging in the

FLASH multiprocessor ���	 Row traversals would be unchanged
 whereas column traversals would

be treated as row traversals of a matrix at a di�erent �shadow� address	 The memory controller

would issue scatter�gather commands to the active memory elements which in turn would fetch

individual double�words from a column and return them in a single cache line
 thereby providing

data in blocks that can be cached e�ciently by the main processor	 The result would be good

cache behavior for both row and column traversals of the matrix	 Such an active matrix approach

could potentially speed up many scienti�c applications by using the processing capability in the

memory system	 Application developers could be presented with a set of Active matrix libraries

analogous to existing libraries for performing linear algebra operations on parallel architectures

�such as ScaLAPACK ����	

Cache Coherence� The key challenge with active memory systems is solving the cache coherence

problem it creates	 If columns of a matrix are being written via a di�erent address space during

column traversals
 what happens when the application reads from the normal row address during

the next row traversal� The answer is that unless care is taken
 the next row traversal will return

incorrect or stale data	 The key insight into solving the coherence problem in active memory

systems is that the active memory controller that controls the coherence protocol also controls

the active memory elements	 In architectures like the Stanford FLASH multiprocessor ���� the

coherence protocol itself is also programmable	 Thus
 it is possible to combine the coherence

protocol and active memory support and treat active memory as an extension of the cache coherence

protocol	

AAM� ISCA ���� Memory Wall Workshop �

active
memory

controller

Processor

$

host
processor

cache
coherence
protocols

tasks performed
in parallel by

data-intensive

active memory
elements

Figure �� Two�level Active Memory System	

Two�level Active Memory Systems� We make the distinction between active memory con�

trollers and active memory elements	 The MAGIC node controller in the Stanford FLASH multi�

processor can be viewed as an active memory controller because its programmable protocol pro�

cessor handles every access to the memory system	 While the FLASH multiprocessor has an active

memory controller
 it uses standard SDRAM parts rather than active memory elements	 Our initial

work with active memory controllers using the FLASH prototype indicates that the occupancy of

the active memory controller would be signi�cantly reduced by the introduction of active memory

elements
 thereby improving overall system performance ����	 We introduce a two�level approach

to active memory systems that focuses on designing asynchronous active memory elements that

can assist an active controller in performing data�intensive operations in the memory system itself	

While the data�intensive calculations are best performed in the active memory element
 the cache

coherence problem is best solved in the active memory controller	 This novel two�level approach

to active memory systems is depicted in Figure 	

Our active memory elements are easily integrated into the asynchronous mesh architecture

proposed in Section � by an extension of the memory interface read�write commands	 For example

non�active references remain traditional read and write operations to the memory element
 while

scatter�gather operations require only an additional stride	 An asynchronous active memory system

can tolerate the additional latency of these more complex active memory operations without any

specialized support
 making them an ideal framework for exploring the e�cacy of active memory

systems	

�� Conclusions and Future Work

Our proposed research on asynchronous active memories provides a novel platform for studying

AAM� ISCA ���� Memory Wall Workshop

issues in both high�performance traditional memory systems as well as active memory systems	 In

particular
 our pipelined asynchronous approach sees the following bene�ts�

� Simpler Controller Design� Our design uses recently developed techniques in modern

pipelined asynchronous design
 alleviating the timing constraints present in conventional clocked

memories while providing higher sustained throughput and the innate ability to handle varia�

tions in memory access time	

� Average�Case Performance� In an asynchronous system
 a local latency increase only

a�ects the delay of the particular operation under consideration�and only when the opera�

tion is performed	 We can exploit this tradeo� to improve the common�case performance of

asynchronous memory systems	

� Non�UniformMemory Access� The inherent ability of asynchronous memory controllers to

tolerate variable access latencies permits the design of scalable asynchronous mesh memories	

Although the mesh structure creates a non�uniform access time
 the overall memory bandwidth

is higher and accesses can potentially be faster by exploiting average case performance	

� Transparent Support for Active Memories� The drawback of active memories has long

been their inability to be incorporated into a standard memory system because an �active�

access can involve a non�trivial amount of computation and result in a much longer access

time than a normal memory access	 An asynchronous active memory system can tolerate the

additional latency of these more complex active memory operations without any specialized

support	

We believe these bene�ts of asynchronous active memory systems have the potential to lower

the memory wall in modern processors and provide a framework for the ongoing study of scalable

high�performance memory systems	

References

��� L� S� Blackford� J� Choi� A� Cleary� E� D�Azevedo� J� Demmel� I� Dhillon� J� Dongarra� S� Hammarling�

G� Henry� A� Petitet� K� Stanley� D� Walker� and R� C� Whaley� ScaLAPACK� A Linear Algebra Library

for Message�Passing Computers� SIAM Conference on Parallel Processing � March ����

��� J�B� Carter� W�C� Hsieh� L�B� Stroller� et al� Impulse� Building a Smarter Memory Controller� In

Proceedings of the Fifth International Symposium on High Performance Computer Architecture January

�����

�	� T�J� Chancey and C�E� Molnar� Anomalous Behavior of Synchronizer and Arbiter Circuits� IEEE

Transactions on Computers � ���
��
���
��� April ��	�

�
� Uri V� Cummings� Andrew M� Lines� and Alain J� Martin� An asynchronous pipelined lattice�structure

�lter� In Proceedings of the First International Symposium on Advanced Research in Asynchronous

Circuits and Systems � pp� �����		� November ���
�

��� W�J� Dally and J� Poulton� Equalized
Gb�s Signalling� In Hot Interconnects IV Symposium Record �

September �����

AAM� ISCA ���� Memory Wall Workshop �

��� Direct Rambus Memory Controller Speci�cation� Accessible from http���www�rambus�com��

�� Maya Gokhale� Bill Holmes� and Ken Iobst� Processing in Memory� the Terasys Massively Parallel PIM

Array� Computer � ���	���	�	�� April �����

��� M� Hall et al� Mapping Irregular Applications to DIVA� A PIM�based Data�Intensive Architecture�

Supercomputing � Portland� OR� Nov� �����

��� J� Heinlein� Optimized Multiprocessor Communication and Synchronization Using a Programmable Pro�

tocol Engine� Ph�D� Dissertation� Stanford University� Stanford� CA� March �����

���� J� Hennessy and D� Patterson� Computer Architecture� A Quantitative Approach� �nd Edition� Mor�

gan Kaufmann� San Francisco� CA� �����

���� C� Holt� M� Heinrich� J� P� Singh� et al� The E�ects of Latency� Occupancy� and Bandwidth in Dis�

tributed Shared Memory Multiprocessors� Technical Report CSL�TR�������� Computer Systems Lab�

oratory� Stanford University� January �����

���� J� Kuskin� D� Ofelt� M� Heinrich� et al� The Stanford FLASH Multiprocessor� In Proceedings of the

��st International Symposium on Computer Architecture� pages 	���	�	� April ���
�

��	� J� Laudon and D� Lenoski� The SGI Origin� A ccNUMA Highly Scalable Server� In Proceedings of the

��th International Symposium on Computer Architecture� pages �
������ June ����

��
� Andrew M� Lines� Pipelined Asynchronous Circuits� M�S� Thesis� California Institute of Technology�

�����

���� Rajit Manohar and Alain J� Martin� Quasi�delay�insensitive circuits are Turing�complete� Invited

article� Second International Symposium on Advanced Research in Asynchronous Circuits and Systems �

March ����� Available as Caltech technical report CS�TR������� November �����

���� Rajit Manohar� Tak�Kwan Lee� and Alain J� Martin� Projection� A Synthesis Technique for Concurrent

Systems� Proceedings of the Fifth International Symposium on Advanced Research in Asynchronous

Circuits and Systems � April �����

��� Alain J� Martin� Compiling Communicating Processes into Delay�insensitive VLSI circuits� Distributed

Computing� ��
�� �����

���� Alain J� Martin� The limitations to delay�insensitivity in asynchronous circuits� Sixth MIT Conference

on Advanced Research in VLSI � ����

���� Alain J� Martin� Steven M� Burns� Tak�Kwan Lee� Drazen Borkovic� and Pieter J� Hazewindus� The

design of an asynchronous microprocessor� In Charles L� Seitz� editor� Advanced Research in VLSI�

Proceedings of the Decennial Caltech Conference on VLSI � pp� 	���		� MIT Press� �����

���� A� J� Martin� A� Lines� R� Manohar� et al� The Design of an Asynchronous MIPS R	���� In Proceedings

of the ��th Conference on Advanced Research in VLSI � pages ��
����� September ����

���� M� Oskin� F�T� Chong� and T� Sherwood� Active Pages� A Computation Model for Intelligent Memory�

In Proceedings of the ��th International Symposium on Computer Architecture� �����

���� D�A� Patterson� T� Anderson� et al� A Case for Intelligent RAM� IRAM� IEEE Micro� ������ April

����

��	� S�A� Perl and R�L� Sites� Studies of Windows NT Performance using Dynamic Execution Traces � Digital

SRC Research Report �
�� April ����

��
� A� Saulsbury� F� Pong� and A� Nowatzyk� Missing the Memory Wall� The Case for Processor�Memory

Integration� In Proceedings of the �	rd International Symposium on Computer Architecture� pages ���

���� May �����

AAM� ISCA ���� Memory Wall Workshop �

���� Jakov N� Seizovic� Pipeline Synchronization� In Proceedings of the First International Symposium on

Advanced Research in Asynchronous Circuits and Systems � pages ����� November ���
�

���� Stephen Shankland� Intel to delay new chipset as Rambus reels� CNET News�com� September �
� �����

��� Ted Eugene Williams� Self�timed Rings and their Application to Division� Ph�D� thesis� Computer

Systems Laboratory� Stanford University� May �����

���� C�K� Yang and M�A� Horowitz� A ���mm CMOS ���Gb�s Oversampled Receiver for Serial Links� IEEE

International Solid�State Circuits Conference
 Digest of Technical Papers � February �����

���� Ken Yeager� The MIPS R����� Superscalar Microprocessor� IEEE Micro� ���������
�� April �����

AAM� ISCA ���� Memory Wall Workshop ��

