9 CAP 4453
Robot Vision

Administrative details

* Issues submitting homework

Credits

* Some slides comes directly from:

e Kristen Grauman
e A.Zisserman
* Ross B. Girshick

Histogram of Oriented Gradients (HOG)

Input image

CAP4453 4

Robot Vision

13. Object detection |

CAP4453 5

Outline

* Overview: What is Object detection?
* Top methods for object detection

e Object detection with Sliding Window and Feature Extraction(HoG)
 Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)
* Non-Maxima Suppression (NMS)

* Implementation examples
* Deformable Part-based Model (DPM)

* Object detection using deeplearning

CAP4453 6

What is object detection

Classification Instance
+ Localization

Object Detection

Classification Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

P J
NV N

Single object Multiple objects

Object detection

% N

v s g person : 0.992
Ve Pec i * Multiple outputs
L Ry * Bounding box
* Label
* Score

—
-

person : 0.979%

CAP4453 8

Detection Competitions

Pascal VOC

COCO
ImageNet ILSVRC

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#introduction

Valid detection

* Groundtruth: score;,, = ”l‘]tz:;z‘gzdafzza
* Bounding box Possible detection
* Label

Different criteria to declare detections:

Pascal criteria
sCore;y, > 0.5

e Possible detection

* Bounding box
* Label

¢* ScCore groundtruth All of these:

scorejy, > 0.5
score;,, > 0.55
scorejy, > 0.6
score;y, > 0.65
scorejyy, > 0.7
score;y, > 0.75
scorejy, > 0.8
scorejy, > 0.9
scorejy, > 0.95

relevant elements

Possible detection

Te r S false negatives true negatives Bounding box
II I O

® ® 0o Label
score
Recall
P rec | S I O n true positives false positives
MAP
loU ! —_—
; Algorithm 1
§ Algorithm 2 -
0.8 1
'] “
selected elements = 0.6 i
e \
0 2
How many selected How many relevant 8 0.4 T
items are relevant? items are selected? o -
0.2 1
Precision =——— Recall = ——
. [0 A A A A
0 02 0.4 0.6 0.8 1

Recall

relevant elements

Possible detection

—|—e r S false negatives true negatives Bounding box
I I I O

® o ® o) Label
score
Recall
P rec I S I O n true positives false positives
MAP
loU 1 —
Algorithm 1
Algorithm 2 -
0.8 e
o b
selected elements > 0.6 1
e
0
How many selected How many relevant 8 0.4 T
items are relevant? items are selected? o -
0.2 } .
Precision =——— Recall = ——
' [0 A A A A
0 052 0.4 0.6 0.8 1

Recall

Average precision (AP): Area under curve

Possible detection

Te r m S Bounding box

Label
score
Recall
Precision
mAP
loU) N—
Algorithm 1
Algorithm 2 -
0.8
B g
mAP is simply all the AP values averaged over different classes/categories Ej 0.4
Box Average Precision (AP@[0.5:0.95]): sums I0Us o
between 0.5 and 0.95 and divides the sum by the number of the I0U values .

0 0.2 0.4 0.6 0.8 1
Recall

Average precision (AP): Area under curve

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maxima Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 14

Popular algorithms for object detection

* Pre-Deeplearning
 HOG + SVM (Dalal, Triggs)
* Deformable Part-based Model (DPM)

* Deep learning
* Fast R-CNN
Faster R-CNN
* Region-based Convolutional Neural Networks (R-CNN)
Region-based Fully Convolutional Network
Single Shot Detector (SSD)
YOLO (You Only Look Once)

PASCAL VOC 2005-2012

20 object classes 22,591 images

Classification: person, motorcycle

-

Segmentation

Everingham, Van Gool, Williams, Winn and Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010.

mean Average Precision (mAP)

ODbject detection progress

PASCAL VOC
80%
Fa
T0% A
60% Before CNNs A
1 A
50%
[l J
40% & s]
& Using CNNs

30% A
20%
10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

vear _)
Source: K. Girshick
— 17

IM A GE N E | Large Scale Visual

Recognition Challenge (ILSVRC) 2010-2014

20 obi | 22 591]
200 object classes 517,840 images DET
1000 object classes 1,431,167 images CLS-LOC

http://image-net.org/challenges/LSVRC/

ILSVRC detection in 2014 (Deep learning)

0.5 | 44% j
c
2 047
8 ~18% due to better methods
L 03y |
= 1~3% due to more data
@
o 0.271]
©
)
Q0.1
<

0
2013 2014
ILSVRC year

1.9x increase in object detection average
precision in one year

Russakovsky* and Deng* et al., ImageNet Large Scale Visual Recognition Challenge, http://arxiv.org/abs/1409.0575

Microsoft
COCO: Common
Objects in
Context

COCO - Common Objects in Context (cocodataset.org)

Instances per category mCOCD
1,000,000
100,000

B PASCAL VDL
10,000
100

g $§§_§§§ SEERIEH ;.5‘3#'5"%‘4? £ ?igé’féﬁé?Fé'”ﬁé‘?g{g%ﬁ?{fgﬁﬁﬁ; *&“

B

£ é‘ é@*jﬁ‘ ,“e?f

. , d B
Categories per image ") Instances per image
B0 [
i | =—m=coco (3.5 S0% —=—{0C0 7.7}
E % FASLAL".I'DE(]A] E e PRSI AL WO |'J'.Z‘.|
= = A% == Imagehet [3.0
E 50% | ——lmagenet (1.7] E petet 500
= B i SN (17,00
@ Ak —a—SLIN 9.8 g 3%
2 &2
E i E 200
& &
10%
1%
0% 0%
1 2 3 4 &% & 7 B 8 10 11 12 13 14 15 1 3 4 5 6 7 & % 10 11 12 13 14 15
Number of categaries Nurnber of instances
(b) (c)
. . Instance size
Number of categories vs. number of instances
4%
1000000
LY | =l=CD{0D
1 Cakach Fad
E 00000 .m.—.;. g 0% | = PASCAL VOC
& 10000 5 1my | =——hnagehe
2] PRRCAL Y Imaguhi iragehist =
B Daticson Hamibcation = 0% i SLIN
2 100 = |
H] Caltwch 144 =
£ 100 @ [) .ﬂm §]55ﬁ
E Caltech 101 & 0%
= 10
5%
! %
1 1 T ple] 10HE] 10000

4% N 10 16% 15K A, 63K 10

Number of categories
R Parcant of image size

(d) (e)

Fig. 5: (a) Number of annotated instances per category for MS COCO and PASCAL VOC. (b,c) Number of annotated
categories and annotated instances, respectively, per image for M5 COCO, ImageNet Detection, PASCAL VOC and
SUN (average number of categories and instances are shown in parentheses). (d) Number of categories vs. the
number of instances per category for a number of popular object recognition datasets. (e) The distribution of
instance sizes for the MS COCO, ImageNet Detection, PASCAL VOC and SUN datasets.

https://cocodataset.org/#detection-2020

Metwork models evaluated on COCOtest-dev object detection database (2013-)

Metwork model name box AP APTS
S5D512 [33] 2B 8% 30.3%
RefineDet512{VGG-16) [62] 33.0% 35.5%
YOLO-v4-608 [63] 43.5% 47.0%
State Of th e a rt Faster R-CNN{LIP-ResNet-101-MD w FPN) [64] 43.9% 48.1%
PP-YOLO [65] 452% 49 9%
Cascade Mask R-CNN({ResMeXt152, multi-scale) |66] 53.3% 58.5%
SpineNet-190 [57] 543
I I l et O S DetectoRS(ResMNeXt-101-32x4d, multi-scale) [68] 54.7% 60.1%
EfficientDet-D7x{ multi-scale) [69) 55.1% 59.9%
CSP-p6 + Mish{multi-scale) [70] 55.2% 60.7%
DetectoRS{ ResMNeXt-101-64x4d, multi-scale) [68] 55.7% 61.1%
60.00
DetectoRS
NAS—FRR———9""
50.00 PANet
D-RFCN + SNIP
RetinaNet
o 40.00 DeformCohv=R-FCN
< Faster R-CNN
x
= SSD512
30.00 3
20.00
21
10.00
2016 2017 2018 2019 2020

Other methods -e- State-of-the-art methods

Metwork models evaluated on COCOtest-dev object detection database (2013-)

Metwork model name box AP APT5
S5D512 [33] 2B.B% 30.3%
RefineDet512{VGG-16) [62] 33.0% 35.5%
YOLO-v4-608 [63] 43.5% 47.0%

State Of t h e a rt Faster R-CNN(LIP-ResNet-101-MD w FPN) [64] 43.9% 4B.1%
PP-YOLO [65] 45 2% 49.9%
Cascade Mask R-CNN({ResMeXt152, multi-scale) |66] 53.3% 58.5%
SpineNet-190 [57] 543

I I l e-t O S DetectoRS(ResMNeXt-101-32x4d, multi-scale) [68] 54.7% 60.1%
EfficientDet-D7x{ multi-scale) [69) 55.1% 59.9%
CSP-p6 + Mish{multi-scale) [70] 55.2% 60.7%
DetectoRS{ ResMNeXt-101-64x4d, multi-scale) [68] 55.7% 61.1%

MNetwork models evaluated on COCO real time object detection database

(2017-)
Do you still need the old methods? Network model nome mAP il

MAS-FPMLite MobileMNetV2 [71] 25. 7% 3

YOLOV3-608 [31] 33.0% 20

SSD512-HarDNet85 [72] 35.1% 39.0

Mask R-CNN X-152-32x8d [73] 403% 3

YOLOv4-608 [63] 43.5% 62.0

CenterNet HarDNet-85 | 72] 43.6% 45.0

SpineNet-49 |74] 453% 29.1

NAS-FPN AmoebaNet [71] 483% 36

EfficientDet-D7x(single-scale) [69] 55.1% 6.5 22

CAP4453

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 23

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
Ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and back grounds.

1 Introduction

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in 4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of leamed exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola er al [22] build an efficient

 CVPR 2005

CAP4453

24

Sliding Window Technique

* Classification problem:
* Score for a category

> . 8 _’._, Car/nop-car
Classifier

CAP4453 25

Sliding Window Technique

e Score every subwindow
e extract features from the image window

* classifier decides based on the given features.

* It is a brute-force approach

d E
g — | Car/non-car
Classifier

Feature
_ extraction)

CAP4453

26

Window-based detection: strengths

Pros

* Sliding window detection and
global appearance descriptors:

e Simple detection protocol to
implement

e Good feature choices critical
e Past successes for certain classes

Cons

* High computational complexity

* For example: 250,000
locations x 30 orientations x
4 scales = 30,000,000
evaluations!

* |f training binary detectors
independently, means cost
increases linearly with
number of classes

e With so many windows, false
positive rate better be low

Slide: Kristen Grauman

Cons (continued)

* Not all objects are “box” shaped

Slide: Kristen Grauman

Limitations (continued)

* If considering windows in isolation, context is lost

Sliding window Detector’s view

Figure credit: Derek Hoiem Slide: Kristen Grauman

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 30

Let’s examine possible feature vectors

* Pixel based (as a vector) e Color based ——— z
e Sensitive to small shifts Input Image ZL g Stope Feres %
9"=_

‘/green .:-‘.- %

 color-based representations are
sensitive to color (illumination)

(1) (2) (3)

CAP4453 31

Feature Vector

X!

yehow yes]
blue no <1
duck yes | 1|
p unknown | 0

Categories tl

Gradient-based representations

e summarize the local distribution of
gradients with histograms

* invariance to small shifts and
rotations

 offers more spatial information
compared to a single global histogram

* Includes contrast normalization

* reduce the impact of variable
illumination (color)

CAP4453

32

Histograms of Oriented Gradients (HOG)

Step 1: Extract a square window (called “block”) of some size around the pixel
location of interest.

Step 2: Divide block into a square grid of sub-blocks (called “cells”) (2x2 grid in
our example, resulting in four cellsg).

Step 3: Compute orientation histogram of each cell.
Step 4: Concatenate the four histograms.

* Step 5: normalize v using one of the three options:
e Option 1 (L2): Divide v by its Euclidean norm.
e Option 2 (L1): Divide v by its L1 norm (the L1 norm is the sum of all absolute values of v).
e Option 3 (L2-Hys):
* Divide v by its Euclidean norm.

* In the resulting vector, clip any value over 0.2
* Then, renormalize the resulting vector by dividing again by its Euclidean norm

Histogram of Oriented Gradients (HOG)

* Angles range from 0 to 180 or from O to 360 degrees?
* In the Dalal & Triggs paper, a range of 0 to 180 degrees is used

* Number of orientation bins.
* Usually 9 bins, each bin covering 20 degrees.

* Cell size.
* Cells of size 8x8 pixels are often used. (64 = 9)

* Block size.
* Blocks of size 2x2 cells (16x16 pixels) are often used.

e HOG feature has 36 dimensions.
e 4 cells * 9 orientation bins.

Calculate HOG Descriptor vector

* The 16x16 window then moves by 8 pixels and a normalized 36x1 vector is
calculated over this window and the process is repeated for the image

* To calculate the final feature vector for the entire image patch, the 36x1
vectors are concatenated into one giant vector.

* Example: an input picture of size 64x64
* The 16x16 block has 7 positions horizontally and 7 position vertically.
* In one 16x16 block we have 4 histograms which after normalization concatenate to
form a 36x1 vector.

* This block moves 7 positions horizontally and vertically totalling it to 7x7 = 49
positions.

e we concatenate them all into one gaint vector we obtain a 36x49 = 1764 dimensional
vector.

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 36

Support vector machines

https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

Support vector machines

e When the data is linearly separable, there may be
more than one separator (hyperplane)

O
O
O
O
O
O
© o e o
O © N
O .'
O

Which separator
is best?

Linear classifiers

A linear classifier has the form

X, /
f(X) — WTX _I_ b :':- : :1:5‘1
f(x) <0 f(x) >0

» in 2D the discriminant is a line
« W is the normal to the line, and b the bias

« W is known as the weight vector

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

What is the best w?

A A
A A 4

A AhA 4
A asdA

A AA

« maximum margin solution: most stable under perturbations of the inputs

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

Support vector machines

* Find hyperplane that maximizes the margin between the positive and

negative examples
; E ° X positive (y =1): X-W+b>1

Xxnegative(y=-1): X-w+b<-1

® For support vectors, X-W+b=+1

e Distance between point |X-W+Db]|
and hyperplane: |w |

Therefore, the marginis 2 / ||W|

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin hyperplane

1. Maximize margin 2/ ||w||

2. Correctly classify all training data:
X. positive (y, =1): X -W+b>1

X. negative(y, =-1): Xx.-w+b<-1

* Quadratic optimization problem:

mlbn > HWH subjectto y.(w-x. +b)>1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Linear separability again: What is the best w?

» the points can be linearly separated but
there is a very narrow margin

o '.- A A
1I'. . :“:: s * but possibly the large margin s_olu_tion_ S
°° AadA better, even though one constraint is violated
® . A A A
A

In general there is a trade off between the margin and the number of
mistakes on the training data

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

Introduce “slack’ variables

®
g-’f. 2 0 £ > 2 Margin = 2
Misclassified @ [[wl]
point
e for 0 < £ < ﬁ point is between <
margin and correct side of hyper- * ®
plane. This is a margin violation \ ®
e fOr £ > 'l?l‘fl- point is misclassified
Support Vector/@;
@ @ Support Vector ¢
o
@
+‘.' .
wix+b=1"
wix+b=0

wfx—bZ-l‘
@

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

SVM training in general

.1 .
+ Separable data: Tv'pEHWHZ subjectto vy, (w-x; +b)>1

\ } \ }
| |

Classify training data correctly

Maximize margin

* Non-separable data:

min %HWHZ +C émax(o,l— Y, (Wxx; +b))
’ i=1

\ } \ }
| |

Maximize margin Minimize classification mistakes

SVM training in general

mln —HWH +C amax(Ol Y, (Wxx; +b))

1=1

Hinge Loss

Margin

* Demo: http://cs.stanford.edu/people/karpathy/svmijs/demo

http://cs.stanford.edu/people/karpathy/svmjs/demo

Linear separability

. L a ® L
Ilnearly . L 11‘1‘ .
L
separable ¢ o . AAkA 4 ’ A
*® . A l“
¢ A AA ®
r'y
L]
A
* @ A A 1‘ A "l"-
not |. ... A A 4 e® A
ry A g B
linearly oTe o ML S
e ® ® A A ... ™ AA
separable o ® A AA 4
A Ada A

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

Nonlinear SVMs

e General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable

Input Space Feature Space

Image source

http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and

Nonlinear SVMs

e Linearly separable dataset in 1D:

@ @ |©—. :X

e Non-separable dataset in 1D:

@ @ *—0— *0—@ *—o O=>

0 X

e \We can map the data to a higher-dimensional space:

Slide credit: Andrew Moore

The kernel trick

e Linear SVM decision function:

W-X+b=> ayx-x +b

7/

learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick

e Linear SVM decision function:

W-X+b=> ayx-x +b

e Kernel SVM decision function:
Zai Yio(X;) - o(X) +b = Zai y;K(X;,X) +b

e This gives a nonlinear decision boundary in the
original feature space

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick

e |Instead of explicitly computing the lifting
transformation ¢(X), define a kernel function K such
that

KX,y) = o(X) - o(y)

. (to be valid, the kernel function must satisfy
Mercer’s condition)

d

K(X,y)=(C+X-y)

Polynomial kernel:

2 . : : . . : 2

1.5 1.5

it it

0.5} 0.5

of ol

-0.5} -05

15 -1 -05 0 05 15 2 B R 15 2
linear 2" order polynomial

2 - 2

1.5F ¥ ' 1

1 1k

0.5 0.5

of ol

0.5} . -0.5

dAs = o5 o0 o5 1 15 2 dAs = 5 o0 05 1 15 2

4" order polynomial 8'" order polynomial

Gaussian kernel

 Also known as the radial basis function (RBF)

kernel: 1 ,
K(X,y) = exp(— — x-y| j

O

K(x, y)

[Ix=yl|

Gaussian kerne

5 l

SV’s

. 3 | | | | | | l
=3 -2 =1 0 1 2 3 4 3

* Demo: http://cs.stanford.edu/people/karpathy/svmijs/demo

http://cs.stanford.edu/people/karpathy/svmjs/demo

SVMs: Pros and cons

® Pros
* Kernel-based framework is very powerful, flexible

* Training is convex optimization, globally optimal
solution can be found

 Amenable to theoretical analysis

* SVMs work very well in practice, even with very small
training sample sizes

e Cons

* No “direct” multi-class SVM, must combine two-class
SVMs (e.g., with one-vs-others)

 Computation, memory (esp. for nonlinear SVMs)

Person detection
with HoG’s & linear SVM's (so far)

 Histogram of oriented
gradients (HoG): Map each
grid cell in the input window to
a histogram counting the
gradients per orientation.

TEEEANM

* Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

Dalal & Triggs, CVPR 2005

The Dalal & Triggs detector

Image pyramid CAPass3 ss

1. Compute HOG of the whole image at
multiple resolutions!

Image pyramid HOG:.feature pyramid .

The Dalal & Triggs detector

1. Compute HOG of the whole image
¥ at multiple resolutions!

2. Score every window of the feature
P—_ pyramid

> score(l,p) =w-¢d(,p)

FROM ,
TRAINING

Image pyramid HOG:.feature pyramid 60

1. Compute HOG of the whole image
¥ at multiple resolutions!

2. Score every window of the feature
P—_ pyramid

> score(l,p) =w-¢d(,p)

FROM ,
TRAINING

> W

3. Apply non-maximal
suppression (NMS)

Image pyramid HOG:.feature pyramid 61

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

 Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 62

Non-Maximum Suppression

Before non-max suppression After non-max suppression

Non-Max
Suppression

N
st

CAP4453 63

Non-Maximum Suppression

Algorithm 1 Non-Max Suppression

I: procedure NMS(B,c)

i -

2l

10:
3

Initialize empty set
Bnms = 0 i

for bl e B do “ lterate over all the boxes

Take boolean variable and set it as false. This variable indicates whether b(i)

discard < False stoudvekept or discarded
for b] 6 B do Start another loop to compare with b(i)
if same(b;, b;) > Apms then "hetteetrissmeiot
if score(c, bj) > score(c, b;) then

Compare the scores, If score of b(i) s less than that

discard <+ True of b(j), b(i) should be discarded, so set the flag to

True.

if I'lOt (1l SCca 7'(1 then Once b(i) is compared with all other boxes and still the

discarded flag is False, then b(i) should be considered. So
Bnq'n. S : B‘N ms U T add it to the final list.

Do the same procedure for remaining boxes and return the final list
return B,,,,,

CAP4453

64

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 65

Implementation example (car detector)
Get the data. UIUC Car Database

* 550 positive images * 500 negatives

@ pos-6 @ pos-7 @ pos-8 @ neg-0 ® neg-1 @ neg-2 © neg-3 @ neg-4

I a3 KT7 T
@ g E W m m E m h © neg-16 @ neg-17 @ neg-18 @ neg-19 © neg-20 |

@ pos-16 @ pos-17 @ pos-18 © pos-19 © pos-20 @ pos-21 @ pos-22 @ pos-23 © pos-24
ESCT PTG EREERE 3 “ B © neg-32 @ neg-33 © neg-34 @ neg-35 © neg-36

&= [~ -
@ pos-32 © pos-33 @ pos-34 @ pos-35 @ pos-36 @ pos- 37 @ pos-38 @ pos-39 @ pos-40 m E g ﬂ “

@ pos-0 @ pos-1 © pos-2 @ pos-3

@ neg-48 @ neg 51 @ neg-52

5 - - gene 3 p — L — 48, g v
@ pos-48 @ pos-49 @ pos-50 @ pos-51 @ pos-52 @ pos-53 @ pos-54 @ pos-55 @ pos-56 : o) B i " & y 2
© neg-64 © neg-65 © neg-66 © neg-67 © neg-68
DI LSS P v SEN PSS AN TET o e =N TRY:
© pos-64 @ pos-65 @ pos-66 @ pos-67 © pos-68 @ pos-69 @ pos-70 @ pos-71 @ pos-72 . - .
© neg-80 ® neg-81 © neg-82 © neg-83 @ neg-84

P e i T i = e AR TN i

@ pos-80 @ pos-81 © pos-82 © pos-83 @ pos-84 © pos-85 @ pos-86 @ pos-87 © pos-88 4453 @ neg-95 @ neg‘97 () nEQ'QB @ n59‘99 ®@ n69'100

Implementation example (car detector

e Extract features

[hog]
pr 1n+:

0 in .glob{os. YETY) step size:

» wisualize=visualize, block_norm=

wisualize:

5 p.:th :plltt,lm_pdthil[] normalize:

fd:path = os.path.join(pos feat ph,
jnblib.'dump{fd, fd_path)
print(“Pos

?[]
fd_namej
Positive “.format(pos

Lot e i S I
l:L-ltLh"':b Saved 1 '|=

_feat ph))
"_I lH*E ||'.4Ll LlLLl 1FILJ +Il-ll' I'.'Jll-
for im_path in lllh glob(os.

im 1mrPadQ1m pdthl

T des_type == "HOG":
fd hog(im, orientations, pixe

fd name = os.path.s litﬁim_pathj[l].:plitﬁ’

fd path = os.path.join(neg feat ph, fd name)

joblib. dumpffd fd_path)

"_I lH*E '1|II=LTL4+'I.|.I: II:L4 ures

[paths]

model path:

block, visualize=visualize, block norm=

'W[]

'Fur‘rn.:tt neg_ f

;o r
saved 1a g ‘.

AP4453

VladKha/object detector: Object detector from HOG + Llnear SVI\/I framework (github.com)

min wdw_sSz:

pos_feat ph:
neg feat ph:

[100, 40]
[10, 10]

orientations: 9
Pixels per
cells per bklock:

cell: [8, B8]
[3,
True

True

.fdata/features/pos
Sdata/features/neg
SSdata/models/ svm.model

67

https://github.com/VladKha/object_detector/

from skimage.feature import local binary pattern

from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
. import joblib
import argparse as ap
mpiementation
import os

from config import *

example (car detector) [EEEEECE—.

drg
parser = ap. ArgumentPa ser()
parser.add_argument({'-p’ ’--sss‘éau', help="Path to the positive features dir:chsfy’j required=True)
parser.add_argument('-ﬁ', '--negfeat”, help="Path to the negative features |directory"”, required=True)
parser.add_argument(‘-c’, "--classifier”, help="Classifier to be used”, default="LIN SWM")
args = vars(parser.parse_args())
#print(str(args
pos_feat_path = args["posfeat™]
neg feat path = args["negfeat”]

clf type = args[CLa551fiEP']

labels

far feat_path in glaob.
print(feat_path)

e Train SVM with HOG features Fas.sppand(re)

labels.append(1)

fds = []

gluh(us.path.juin(pus_feat_path,”*.f'at”j):

gluh(us path.join(neg_feat path,"*.feat")):
jubllh load(feat_path)
fds.append(fd)

labels.append(@)

if clf type is "LIN SUM™:
clf = LinearsvC()
print(“Training a Linear WM Classifier™)
print(fds)
print(labels)

clf flt(fds, labels)

f feature directories don't exist == = =

hy[e]):
)

if not os.path.isdir(os.path. spllt(model pat
os.makedirs(os.path.split(model path)[
joblib.dump(clf, model path)

-

print(“Classifier saved to {}".format({model path}))

at
]

from skimage.transform import pyramid gaussian

from skimage.io import imread
from skimage.feature import hog
import joblib

ort cw?

Implementation per rgrse = o
example (car detector)

from config import *
ort numpy as np

Test
* Load image e

for (%, ¥, im window)} in sliding window(im_scaled, min_wdw_sz, step size):

1 print(‘x,y: + str(x) + ' ' +str(y))
* Loop Over dlffe re nt if im window.shape[8] != min_wdw_sz[1] or im_window.shape[1] != min_wdw_sz[8]:
pyramid images e s esrures

(fd,imgVis)= hog(im window, orientations, pixels per cell, cells per block, visualize=True, block norm="L2-Hy:
cv2.imshow("HOGinput® , imgWis)

* IOOp the WindOW _ _cuz.waitl{eyﬁaj
position

« Compute HOG for fd - fdlnp.newais, :]
each window

fd= hog(im window, orientations, pixels per cell, cells per block, visualize=False, block norm="L2-Hys")

pred = clf.predict(fd)
if pred == 1:

print(“Detection:: Leocation -> {* + str{x}+ “," + str(y) +")")
i CompUte Score #print(“scale -» ['+ str(scale) + Confidence Score ™ + clf.decision_function(fd) +"\n™)
print({“Scale -> {} | Confidence Score {} \n".format(scale,clf.decision_function{fd)}})

detections.append(({x, y, clf.decision_function(fd)},
int(min_wdw_sz[@]*(downscale**scale)),
int(min_wdw_sz[1]*({downscale**scale))})

cd.append(detections[-1])

CAP4453

from skimage.transform import pyramid gaussian

from skimage.io import imread
from skimage.feature import hog
import joblib

Implementation o s o
example (car detector)

from config import *
ort numpy as np

Test
* Load image e

for (%, ¥, im window)} in sliding window(im_scaled, min_wdw_sz, step size):

1 print(‘x,y: + str(x) + ' ' +str(y))
* Loop Over dlffe re nt if im window.shape[8] != min_wdw_sz[1] or im_window.shape[1] != min_wdw_sz[8]:
pyramid images e s esrures

(fd,imgVis)= hog(im window, orientations, pixels per cell, cells per block, visualize=True, block norm="L2-Hy:
cv2.imshow("HOGinput® , imgWis)

* IOOp the WindOW _ _cuz.waitl{eyﬁaj
position

« Compute HOG for fd - fdlnp.newais, :]
each window

fd= hog(im window, orientations, pixels per cell, cells per block, visualize=False, block norm="L2-Hys")

pred = clf.predict(fd)
if pred == 1:

print(“Detection:: Location -> (" + str(x))
i CompUte Score #print(“Scale -» ['+ str(scale) + | Confidence Score + clf.decision_function(fd) +"\n™)
print({“Scale -> {} | Confidence Score {} \n".format(scale,clf.decision_function{fd)}})

detections.append(({x, y, clf.decision_function(fd)},
int(min_wdw_sz[@]*(downscale**scale)),
int(min_wdw_sz[1]*({downscale**scale))})

cd.append(detections[-1])

e Perform NMS

T EreEeee— Mem [(Eree S eEE=ae T

detections = nms(detections, threshold)

Testing (different pyramid levels)

CAP4453 71

Before NMS

CAP4453

After NMS

72

Outline

* Overview: What is Object detection?
* Top methods for object detection

e Object detection with Sliding Window and Feature Extraction(HoG)
 Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)
* Non-Maxima Suppression (NMS)

* Implementation examples
* Deformable Part-based Model (DPM)

* Object detection using deeplearning

CAP4453 73

10N

t detect

jec

Ob

-CNN
* Fast R

°R

CNN

-CNN

* Faster R
 SSD

Q
%)
o
@
-
o
o
i
=
o
®
0
>

7))
c
2
7
S
(<]
>
2
2

e Mult

* YOLO —

74

AOERAN

O bJ e Ct d Ete Ct | on R-CNN: Regions with CNN features
R-CNN (2013) i ¢ i

aeroplane? no.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Selective Search: /

1. Generate initial sub-segmentation, we generate many candidate regions
2. Use greedy algorithm to recursively combine similar regions into larger ones
3. Use the generated regions to produce the final candidate region proposals Bboxreg || SVMs

Bbox reg || SVMs

Bbox reg || SVMs

Conv
Conv Net

Conv !

https://arxiv.org/pdf/1311.2524.pdf

https://arxiv.org/pdf/1311.2524.pdf

Object detection

R-CNN (2013)

2. Extract region
image proposals (~2k)

Problems with R-CNN

oIt still takes a huge amount of time to train the
network as you would have to classify 2000 region
proposals per image.

It cannot be implemented real time as it takes
around 47 seconds for each test image.

*The selective search algorithm is a fixed algorithm.
Therefore, no learning is happening at that stage. This
could lead to the generation of bad candidate region
proposals.

https://arxiv.org/pdf/1311.2524.pdf

R-CNN: Regions with CNN features
: =] warped region

....................

Bbox reg

_______________ CNN™
tvmonitor? no.
3. Compute 4. Classify
CNN features regions
Bbox reg || SVMs
Bbox reg || SVMs
SVMs
Conv
Conv Net
Net
Conv

https://arxiv.org/pdf/1311.2524.pdf

Object detection
FAST R-CNN (2014)

1 | Outputs: bb oX
2 W[C)eepN - \ softmax regressor
\ConvNe o
Rol FC i FC

- »)
....

’3 pooling
2 . Rol Iayer FCs _
|— - —\—>

= projection

Conv X Rol feature

'-f I feature map VECtOf For each Rol

* We feed the input image to the CNN to generate a convolutional feature
map. From the convolutional feature map

* We identify the region of proposals and warp them into squares
* Using a Rol pooling layer we reshape them into a fixed size
* they can be fed into a fully connected layer

https://arxiv.org/pdf/1504.08083.pdf 77

https://arxiv.org/pdf/1504.08083.pdf

Object detection ¥ F-ioce: & o

| ConvNet P
FAST R-CNN (2014) in Fc Lrc

pooling

i . layer [Jj_ﬁfﬁ j
projections, '
Al

Conv X Rol feature

L

feature map vector

For each Rol

N Test time (seconds)
Tra' n | ng tl me (HOU I'S) I Including Region propos I Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

https://arxiv.org/pdf/1504.08083.pdf 78

https://arxiv.org/pdf/1504.08083.pdf

@

Object detection = e

% CNN

pooling ’

- e ‘| Dog 0.03
“| Classifier Cat 0.01
’ Duck 0.2
Region

* At each location, the original paper USES: | s 2 é'ﬁ%’i’é’ﬁi“ I A

FASTER CNN (2015)

Network (RPN) Layer

* 3 kinds of anchor boxes for scale _ _ =
¢ 128)(128, 256x256 and 512)(512. Fr— | Faster R-CNN object detection pipeline

_| Anchor

* it uses three aspect ratios o

* So, In total at each location, we have 9 boxes on which
RPN predicts the probability of it being background or
foreground.

https://arxiv.org/pdf/1506.01497.pdf , S

https://arxiv.org/pdf/1506.01497.pdf

% CENON

Fitted
- Regression |Bounding
boxes

Object detection T o P
FASTER CNN (2015) ‘ T : Dog 0.03

™ Classifier | Cat0.01

: Duck 0.2
Region | - d N
4 .| Propose M
Region Proposal Proposal :
Network (RPN) Layer ‘Regiona S

R- CN N TeS t-Ti m e S p e e d // Faster R-CNN object detection pipeline

Anchor |/
Boxes
CV-Tricks.com

R-CNN
SPP-Net
Fast R-CNNIE 2.3

Faster R-CNN| 0.2

0 15 30 45

https://arxiv.org/pdf/1506.01497.pdf 80

https://arxiv.org/pdf/1506.01497.pdf

Object detection
YOLO (2015)

Class probability map

* an image and split it into an SxS grid,
Figure 2: The Model. Our system models detection as a regres-

e within each of the grid we take B bounding boxes.
sign problem.'lt divides the‘ image into an S xS g}'id and for each
° FO r eac h Of th e bo un d I ng bOX, grid cell predicts B bounding boxes, confidence for those boxes,

and C' class probabilities. These predictions are encoded as an

+ the network outputs a class probability and offset values for =~~~
the bounding box.

* The bounding boxes having the class probability above a

threshold value is selected and used to locate the object
within the image.

https://arxiv.org/pdf/1506.02640v5.pdf 81

https://arxiv.org/pdf/1506.02640v5.pdf

Object detection
YOLO (2015)

For evaluating YOLO on PascaL VOC, we use S = T,

B = 2. PascaL VOC has 20 labelled classes so C' = 20. N #1EE@J‘

Our final predictionisa 7 x T x 30 tensor.

448

S x S grid on input

] TSN - [LE] | Rk
Bounding boxes + confidence

Class probability map

? Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S x S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,

nz vy . .
%; and C' class probabilities. These predictions are encoded as an
k1
; I |‘ S xS x (Bx5+ C) tensor.
44E 3 28 SE_\I
3 e 7 7 7
nz 56 a8 3 >< |:|><
| | ! 7 7 7
3 192 54 312 10z4 1024 1024 A40%4 0
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
TnTnbd-s-2 Ix3x192 Ix1x128 1x1x256 wq 1xIx312 7 IxIx1024
Maxpool Layer Maxpool Layer 3x3x256 3Ix3x512 3Ix3x1024 Ixdx1024
2x2-52 2x2-5-2 1x1x256 1x1x312 3Ix3x1024
3x3x512 3x3x1024 3x3x1024+2
Maxpool Layer Maxpool Layer
2x2-5-2 2x2-5-2

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

https://arxiv.org/pdf/1506.02640v5.pdf

82

https://arxiv.org/pdf/1506.02640v5.pdf

Object detection
YOLO (2015)

Class probability map

* The limitation of YOLO algorithm is that it struggles with
small objects within the image, for example it might have
difficulties in detecting a flock of birds. This is due to the
spatial constraints of the algorithm.

https://arxiv.org/pdf/1506.02640v5.pdf 83

https://arxiv.org/pdf/1506.02640v5.pdf

Object detection
SSD (2016)

* Multi-scale feature
maps for detection
(handle scale)

e uses anchor boxes at
various aspect ratio
similar to Faster-RCNN

* |earns the off-set
rather than learning the
box

WIGIG-16

raE=ian

T4 ImaP
59FPS

Mand asirmurm Supp

) 1 | B I
| Deleciions: 8732 per Class |
5

42 Lo
I

BidmAap
45FPS

YOLD
i

| Delecions: 93 per class
[Man-maximum Suppression |

Fig. 2: A comparison between two single shot detection models: SSD and YOLO [5].
Our SSD model adds several feature layers to the end of a base network, which predict
the offsets to default boxes of different scales and aspect ratios and their associated
confidences. SSD with a 300 x 300 input size significantly outperforms its 448 x 448
YOLO counterpart in accuracy on VOC2007 test while also improving the speed.

https://arxiv.org/pdf/1512.02325 8

https://arxiv.org/pdf/1512.02325

SSD Loss

L(z,c,l.9) = (Lm,r(r ¢) + aLio(z,1,9))

N

Esc(®:1; 0) Z Z ;l'fjsm(mlhu(l;"’ —g}}")

i€ Pos me{cx,cy.w,h}

~ex cx cx w ~C e h N
9;* = (¢f* —di)/dY G =(9;" — &;7)/d; o) 7 Log(& , 5 _ _oxp(c)
5 " Leonglz,c) = — Z ilog(cy) — Z log(c where ¢, = T exp()
1 g_-; Ak .qj 1= Pos 1ENeg P .
= log ((]!,,) g; =log (d—,,)

85

SSD training details

* Hard Negative Mining

 Data Augmentation
e entire original input image
e Sample a patch so that the overlap with objects is 0.1, 0.3, 0.5, 0.7 or 0.9.
 Randomly sample a patch

e Atrous Convolution

86

Object detection
COMPARISON OF THESE CLASSICAL METHODS

Accuracy

A Faster RCNN

Il sso
@ YoLo
’ Fast RCNN

Speed

87

Modern object detectors (single stage)

Model Backbone
““““““““““““ Onesmgedetcctor __~~""""71 The backbone is a pre-trained network used to
tapu . Backbone | Neck | DenscProdiction extract rich feature representation for images. This
&y Ve helps reducing the spatial resolution of the image

‘g? i and increasing its feature (channel) resolution.
] Model Neck

The model neck is used to extract feature pyramids.
This helps the model to generalize well to objects on
different sizes and scales.

Model Head

The model head is used to perform the final stage
operations. It applies anchor boxes on feature maps
and render the final output: classes , objectness
scores and bounding boxes.

88

Yolo V5

Backbone: CSPDarknet Neck: PANet Head: Yolo Layer

Convolutional Layer

@ Cross Stage Partial Network
Spatial Pyramid Pooling

Concatenate Function

89

DenseNet

90

Backbone: Cross Stage Partial Network

It uses residual and dense blocks: overcome the vanishing

gradient problem.

CSP network preserves the advantage of DenseNet's feature reuse characteristics
and helps reducing the excessive amount of redundant gradient information by
truncating the gradient flow.

|BH!H.‘ layer tlja:u' layer Base layer

Base laver
Part 1 Part 2 Part 1 Part 2

i I l I-___t___'l
Dense Dense N Res(X)Block |1 I| Res(X)Block |!
Block Block : p ! [[!
[with 1Xn i w0 I1Xn
T I Bottleneck : : Bottleneck :
i | [=T - e e all
, —_— on ---:---- = — —
I'ransition Partial Iransition
(a) DenseNet (b) CSPDenseNet (a) ResNe(X)t (b) CSPResNe(X)t

91

BottleNeckCSP module architecture.

YOLOvV5 employs CSPNet strategy to partition the feature map of the base layer into two parts and
then merges them through a cross-stage hierarchy

v
ConvBNSILU
BRI Applying this strategy comes
BottleNeck 1 PPIYINg 9y
--- ; Boxwx e with big advantages to
! ! YOLOVS5, since it helps reducing
ConvBNSILU ConvBNSiLU C3 | ComvBNSILU the number of parameters and
k ,s,p.c k,s,p.,c ! . .
: k1, s1, p0, ¢ helps reducing an important
v amount of computation (less
BottleNeck1 | X3 ComVBNSILU FLOPS) which lead to increasing
v k3, s1,p1, c the inference speed that is crucial
» Concat parameter in real-time object
| ' »(+ detection models.
ConvBNSILU
k ,s ,p,c

92

Spatial Pyramid Pooling (SPP)

1 20 x 20 x 1024 §

MaxPool2d | MaxPool2d | MaxPool2d ConvBNSILU SPPF |
k5, s1, p2 r k5, s1, p2 k5, s1, p2 k1, s1, p0, 512 §

Concat

Y

Y
ConvBNSILU
k1, s1, p0, c1024

93

Head of the network

YOLOV5 uses the same head as YOLOv3 and YOLOvV4.
three convolution layers that predicts the location of the bounding boxes (x,y,height,width), the scores and

the objects classes.

The equation to compute the target coordinates for the bounding boxes have changed from previous
versions, the difference is shown in the figure bellow.

by = 0(t) +
by = U(ty) T Cy
bw — pw . etw
b, = pp - €

(a)

by = (2 0(t:) — 0.5)
) + ¢y

0.5
b, = (2-0(t,) — 0.5
by = Dy - (2 ' J(t’w>)
bh =pn - (2-0(th))’

(b) 94

https://iq.opengenus.org/architecture-of-yolov3/
https://iq.opengenus.org/yolov4-model-architecture/

Activation Function

0.5-

(b)

SiLU stands for Sigmoid Linear Unit
and it is also called the swish activation
function.

It has been used with the convolution
operations in the hidden layers

Sigmoid activation function has
been used with the convolution
operations in the output layer.

95

Loss function

* YOLOVS5 returns three outputs:
 the classes of the detected objects,
* their bounding boxes
* objectness scores.

* it uses BCE (Binary Cross Entropy) to compute the classes
loss and the objectness loss.

* CloU (Complete Intersection over Union) loss to compute
the location loss.

Loss =)‘l Lc.-!.s' + /\QLDbj + /\SLEDC

96

Yolo V5

Real-time performance: excels at real-
time object detection, achieving high

frame rates on even modest hardware.

High accuracy: YOLOVS also delivers
impressive accuracy. Different versions
like “s,” “m,” “l,” and “x” offer a trade-
off between speed and accuracy.

Flexible and customizable: The model
is open-source and readily
customizable for specific tasks and
datasets.

Easy to use: YOLOVS is built with user-
friendliness in mind, featuring clear
documentation and readily available
pre-trained models.

COCO AP val

50

Better YOLOvsl
45 d "

| YOLOv5x

O
(N

D4

YOLOv5m

B
o

YOLOv5s
35+

30 -~

k{/
&

—eo— YOLOvV5s
—o— YOLOv5mM
—eo— YOLOvVSI
—eo— YOLOvV5x
o EfficientDet

5 10 15
Faster <= GPU Speed (msfimg)

20

25

97

30

Yolo v8&

* State-of-the-Art: Delivers cutting-edge accuracy and speed, competing
with other top models like Efficient and DETR.

* Multi-Task Capable: Handles diverse tasks like object detection, instance
segmentation, and image classification within one framework.

* Anchor-Free Detection: Eliminates the need for pre-defined anchor boxes,
simplifying the architecture and improving accuracy.

e Streamlined Design: Easy to use and customize, with readily available pre-
trained models and a vibrant community.

* Open-Source and Scalable: Freely available under the GNU General Public
License and adaptable to various platforms, from edge devices to cloud Al

98

YOLOvS

Backbone
YOLOv8

Backbone
(P5)

640x640x3
Conv 0
k=3, 5=2, p=1 P1

320%320x64xw
Conv 1
k=3,s=2, p=1 P2

160x160x128xw
c2f 2

shortcut=True, n=3xd

160x160x128xw

Conv 3
k=3, 5=2, p=1 P3

80x80x256xw

c2f 4

shortcut=True, n=6xd

80x80x256xw

Conv 5
k=3,5=2, p=1 P4

40x40x512xw
caf 6
shortcut=True, n=6xd

40x40%512xw

Conv 7
k=3, s=2, p=1 P5

20%20x512xwxr
c2f 8

shortcut=True, n=3xd
| 20%20x512xwxr
SPPF

Note:
heightxwidthxchannel

Backbone

80x80x256xw
Stride=8

40x40x512xw
Stride=16

20x20x512xwxr
Stride=32

Head voLov8Head

Details

hxwxc_in

onv

k=1, s=1,p=0,

c=c_out

hewxc_out
hxwx0.5¢c_out o
b Split

hxwx0.5c_out
h*w»0.5¢_out

Bottleneck

hwx0.5¢_out
shortcut=?
h=wx05¢c_out
L hxwx0.5¢c out
Bottleneck
shortcut=?
hxwx05¢_out
— Concat
hxwx05(n+2)c_out
Conv
k=1,s=1, p=0,
C2f c=c_out
shortcut =7, n | hwxc out
c2f 15
shortcut=False, n=3xd P3
| 80x80x768xw
- Concat 14
| 80x80x512xw
Upsample 13
40x40x512xw
c2f 12 40x40%512xw

shortcut=False, n=3xd
| 40x40x512xwx(1+7)
- Concat 1

40x40x512xwxr

Upsample 10

20%20x512xwxr

20x20%x512xwxr

@ RangeKing

CloU
L p—— 5 +DFL

Head

Detect
Detect
Detect
Loss
model d (depth_mul Tt
n 033 0.5 20
s 033 050 2.0
m 0.67 075 15
l 1.00 1.00 10
x 1.00 125 10
Bottleneck SPPF
shortcut=True . Conv
L hewec Conv ks p.c
Conv ki1, o0
k=3,s=1, p=1 ! |
fohxwic MaxPool2d Conv2d
Conv d k,s.p.c
k=3,s=1,p=1 |
howse :" wxe MaxPool2d
Bottleneck MaxPool2d BatchNorm2d
shortcut=False | hxwxc
Conv .
k=3,5=1,p=1 Concat
1 hxwxc .
Conv Conv SiLU
k=3,5=1,p=1 k=1,s=1,p=0
L hwec v
Detect Anchorree) Assigner: TaL
Conv . Conv EF‘W[\"Z‘!O . Bbox.
k=3,s=1,p=1 k=3,5=1,p=1 kg e Loss
Conv J Conv A C|°"\(2d0 Cls.
s=
k=3,s=1,p=1 k=3,s=1,p=1 il P Loss
80x80x256xw
Detect
80x80x256xw
Conv 16
k=3, s=2, p=1 P3
40x40%256xw
- Concat 17
40x40x768xw
caf 18 40x40x512xy Detect
shortcut=False, n=3xd P4 etec
40x40x512xw
Conv 19
k=3,5=2, p=1
20x20x512xw
- Concat 20
20%20x512xwx(1+1)
caf 21| 20x20x512xwxr
shortcut=False, n=3xd P5 Detect

Changes compared to YOLOVS5:

Replace the C3 module with
the C2f module

Replace the first 6x6 Conv
with 3x3 Conv in the
Backbone

Delete two Convs (No.10 and
No.14 in the YOLOV5 config)

Replace the first 1x1 Conv
with 3x3 Conv in the
Bottleneck

Use decoupled head and
delete the objectness branch

99

Yolov5 vs Yolov8

Feature

Architecture

Meck Module

Head Module

Objectness Prediction

Loss Function

¥OLOvS

Anchor-based

Convolutional
connection layers

present

Single head for class
and bounding box

predictions

Qutputs abjectness

score

Focal Loss + QU
Loss

YOLOvE

Anchor-free

Convolutional connection

layers removed

Split head for class and

bounding box predictions

Mo objectness output,
directly predicts center
point and size of bounding
hoxes

TAL (Tangent-Aided Loss)
+ DFL (Dynamic Focal

Loss)

Feature

Accuracy (mAPS0)

Speed (FPS)

Model Size

User
Interface/Experience
(Uux)

Training Ease

Community Support

YOLOvS

Varies depending on
model size and

dataset

Varies depending on
model size and

hardware

Generally larger than
YOLOwE

Less user-friendly

More complex

training regime

Large and active

community

YOLOvE

Generally higher than
Y¥OLOwS for similar model

sizes

Generally faster than
Y¥OLOWS for similar model

sizes

More compact, requires

fewer parameters

Significantly improved
UK, easier to use and

customize

Simpler training process,

often converges faster

Growing community, but

not as large as YOLOvS yet

Yolo v&?

Speed comparisons:

* Benchmark results: Some benchmarks show YOLOvS8 as slightly faster for certain model
sizes, particularly on image inference. However, for video and live camera applications,
YOLOV5 often holds the edge in speed.

* Individual results may vary: Hardware, dataset size, and specific model configurations
can sri]gnificantly affect performance. What'’s faster for one person might not be faster for
another.

Beyond speed:

* Accuracy: YOLOvS8 generally demonstrates slightly higher accuracy on object detection
tasks compared to YOLOVS.

* Model size: YOLOv8 models tend to be smaller and have fewer parameters, potentially
leading to faster training times and lower deployment memory requirements.

* Ease of use: Both frameworks are user-friendly with extensive documentation and
community support.

Questions?

	Untitled Section
	Slide 1: CAP 4453 Robot Vision
	Slide 2: Administrative details
	Slide 3: Credits
	Slide 4: Histogram of Oriented Gradients (HOG)
	Slide 5: Robot Vision
	Slide 6: Outline
	Slide 7: What is object detection
	Slide 8: Object detection
	Slide 9: Detection Competitions
	Slide 10: Valid detection
	Slide 11: Terms
	Slide 12: Terms
	Slide 13: Terms
	Slide 14: Outline
	Slide 15: Popular algorithms for object detection
	Slide 16: PASCAL VOC 2005-2012
	Slide 17
	Slide 18: Large Scale Visual Recognition Challenge (ILSVRC) 2010-2014
	Slide 19: ILSVRC detection in 2014 (Deep learning) on image classification
	Slide 20: Microsoft COCO: Common Objects in Context
	Slide 21: State of the art methods
	Slide 22: State of the art methods
	Slide 23: Outline
	Slide 24
	Slide 25: Sliding Window Technique
	Slide 26: Sliding Window Technique
	Slide 27: Window-based detection: strengths
	Slide 28: Cons (continued)
	Slide 29: Limitations (continued)
	Slide 30: Outline
	Slide 31: Let’s examine possible feature vectors
	Slide 32: Gradient-based representations
	Slide 33: Histograms of Oriented Gradients (HOG)
	Slide 34: Histogram of Oriented Gradients (HOG)
	Slide 35: Calculate HOG Descriptor vector
	Slide 36: Outline
	Slide 37: Support vector machines
	Slide 38: Support vector machines
	Slide 39
	Slide 40
	Slide 41: Support vector machines
	Slide 42: Finding the maximum margin hyperplane
	Slide 43
	Slide 44
	Slide 45: SVM training in general
	Slide 46: SVM training in general
	Slide 47
	Slide 48: Nonlinear SVMs
	Slide 49: Nonlinear SVMs
	Slide 50: The kernel trick
	Slide 51: The kernel trick
	Slide 52: The kernel trick
	Slide 53: Polynomial kernel:
	Slide 54: Gaussian kernel
	Slide 55: Gaussian kernel
	Slide 56: SVMs: Pros and cons
	Slide 57: Person detection with HoG’s & linear SVM’s (so far)
	Slide 58: The Dalal & Triggs detector
	Slide 59: The Dalal & Triggs detector
	Slide 60: The Dalal & Triggs detector
	Slide 61: The Dalal & Triggs detector
	Slide 62: Outline
	Slide 63: Non-Maximum Suppression
	Slide 64: Non-Maximum Suppression
	Slide 65: Outline
	Slide 66: Implementation example (car detector) Get the data. UIUC Car Database
	Slide 67: Implementation example (car detector)
	Slide 68: Implementation example (car detector)
	Slide 69: Implementation example (car detector)
	Slide 70: Implementation example (car detector)
	Slide 71: Testing (different pyramid levels)
	Slide 72: NMS
	Slide 73: Outline
	Slide 74: Object detection
	Slide 75: Object detection
	Slide 76: Object detection
	Slide 77: Object detection
	Slide 78: Object detection
	Slide 79: Object detection
	Slide 80: Object detection
	Slide 81: Object detection
	Slide 82: Object detection
	Slide 83: Object detection
	Slide 84: Object detection
	Slide 85: SSD Loss
	Slide 86: SSD training details
	Slide 87: Object detection
	Slide 88: Modern object detectors (single stage)
	Slide 89: Yolo V5
	Slide 90: DenseNet
	Slide 91: Backbone: Cross Stage Partial Network
	Slide 92: BottleNeckCSP module architecture.
	Slide 93: Spatial Pyramid Pooling (SPP)
	Slide 94: Head of the network
	Slide 95: Activation Function
	Slide 96: Loss function
	Slide 97: Yolo V5
	Slide 98: Yolo v8
	Slide 99
	Slide 100: Yolov5 vs Yolov8
	Slide 101: Yolo v8?
	Slide 102

