Homework 2
CAP 4453
Fall 2023

1. Considers the image below. What is the dimension of the matrix that represents the image? [10\%]

				115	10	16								
[2	255	210	126			65	65	65	70					
[2	255	193	85	95	85	16	112	104	37	12		221		
[2	215	156	116	103	111	13	143	12	95	159	85	203	224	
[2	1	108	140	103	135	141	143	13	1	150	143	143	173	
[2	1	1	141	103	3	13	143			103				
	168	102	106		1					11				
	2	22			143									
	2	202						162		219		239		
	191	12								152	145	145		
	123									103				
		106							100					
			101		133				130		102			
[1		143	1	68		64	63	64			143	143		
[17	158	13		77		20	25	19		78			158	
[23	229	174	64	71	64	19		19	64	71	65	18	229	
[255	176	109	91	16	186	23	25	236	184	101	91	110	182	
[169	114	93	92	103	227	25	255	25	223	103	92			
[18	88	168	169	17	2	255	25	255	23	172	168	169	,	

2. If we filter using a 3×3 kernel to convolve previous image, and do not perform any padding/mirroring/flipping/copy on the borders of the image (convolution in the regions where filter and image are fully intersected), what will be the dimension of the previous image after filtering? [10\%]
3. What will be the output dimension if the kernel is 5×5 (convolution in the regions where filter and image are fully intersected)? [10\%]
4. Assuming the dimensions of the image are $\mathrm{M} \times \mathrm{N}$. can you come out with a general formula that tells you the dimension of the image after filtering if only consider 'valid' regions (where filter and image fully intersect)? [10\%]
5. Compute the output of applying the filter $\begin{array}{ccc}1 & 2 & 1 \\ 0 & 0 & 0\end{array}$ on the first 5 valid columns of row 2 of $\begin{array}{lll}-1 & -2 & -1\end{array}$ "mario" (row 2 is the one that start with values 255255210 ..). Show your computations and write the obtained output. [10\%]
6. Use the formula of 1D Gaussian function

$$
G(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}} \text { to find coefficients of a }
$$ kernel of size 7 when $\sigma=1.4$. Hint: x is evaluated in interval [$-3-2-10123$ 3] [10\%]

7. The size of a gaussian kernel is usually chosen to have values in the order of 2 or 3 sigmas, since after that the values of the function are almost zero. In the extreme parts of this kernel (when x is either -3 or 3) how many sigmas it corresponds to? Is the chosen size of 7 a good value? [10\%]
8. Approximate the obtained kernel as a fraction of integer numbers. Hint: use 64 as the denominator. [10\%]
9. Compute a 7×7 Gaussian kernel using the 1D estimated kernel you estimated in the previous exercise. Remember, this is a separable filter and can be obtained using matrix multiplication. [10\%]

$$
G=K_{7 x 1} * K_{1 x 7}
$$

10. In class we build a sharpen filter as the sum of original filter + detail. The detail part was built with the original function and a box filter. Create a new kernel for sharpening but this time uses a gaussian filter. [10\%]
