

CAP 4453
 Robot Vision

Dr. Gonzalo Vaca-Castaño
gonzalo.vacacastano@ucf.edu

Credits

- Slides comes directly from:
- Ioannis (Yannis) Gkioulekas (CMU)
- Noah Snavely (Cornell)
- Marco Zuliani

Short Review from last class

Last 2 classes

- Feature points
- Correspondent points on two images

Robot Vision
 9. Image warping I

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

Wide-angle lenses

Fish-eye lens: can produce (near) hemispherical field of view.

What are the pros and cons of this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

Any alternative to this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

2. Capture multiple images and combine them.

Panoramas from image stitching

1. Capture multiple images from different viewpoints.
2. Stitch them together into a virtual wide-angle image.

How do we stitch images from different viewpoins)

Will standard stitching work?

1. Translate one image relative to another.
2. (Optionally) find an optimal seam.

How do we stitch images from different viewpoins)

Will standard stitching work?

1. Translate one image relative to another.
2. (Optionally) find an optimal seam.

right on top

Translation-only stitching is not enough to mosaic these images.

How do we stitch images from different viewpoins

What else can we try?

How do we stitch images from different viewpoins
Wh

Use image homographies.

Outline

- Linear algebra
- Matrix addition, Matrix multiplication
- Inverse, Pseudo Inverse
- Least squares, SVD
- Image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Matrix

- Array $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
- m rows and n columns

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- A row vector is a matrix with single row
- A column vector is a matric with single column

Matrix operations

- Addition

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]
$$

- Both matrices should have same shape, except with a scalar

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+2=\left[\begin{array}{ll}
a+2 & b+2 \\
c+2 & d+2
\end{array}\right]
$$

- Same with subtraction

Matrix operation

- Matrix Multiplication
- Compatibility?
- mxn and nxp
- Results in mxp matrix

Matrix operation

- Transpose

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

$$
\boldsymbol{A}^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
$$

Special matrices

- Diagonal matrix
- Used for row scaling

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{n}
\end{array}\right]
$$

- Identity matrix
- Special diagonal matrix
- 1 along diagonals

$$
I . A=A
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix operation

- Inverse
- Given a matrix A, its inverse A^{-1} is a matrix such that

$$
A A^{-1}=A^{-1} A=I
$$

- Inverse does not always exist
- Singular vs non-singular
- Properties
- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$

Pseudolnverse

$$
\begin{gathered}
A x=b \\
A^{T} A x=A^{t} b \longleftarrow \\
\left(A^{T} A\right)^{-1}\left(A^{T} A\right) x=\left(A^{T} A\right)^{-1} A^{t} b \\
x=\left(A^{T} A\right)^{-1} A^{t} b \\
\text { Ps squared squared } \\
\end{gathered}
$$

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

What is an image?

$f(\boldsymbol{x})$

grayscale image

What is the range of the image function f ?

$$
\text { domain } \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

A (grayscale) image is a 2D function.

Image Warping

- image filtering: change range of image
- $g(x)=h(f(x))$

- image warping: change domain of image

- $g(x)=f(h(x))$

Image Warping

- image filtering: change range of image

- $g(x)=h(f(x))$

- image warping: change domain of image

- $g(x)=f(h(x))$

What types of image transformations can we d

What types of image transformations can we d

The persistence of memory by Salvador Dali

Original

Filtering operation
(Blurred)

Warping operation (Swirled)

What is the geometric relationship between these two images?

What is the geometric relationship between these two images?

Very important for creating mosaics!
First, we need to know what this transformation is.
Second, we need to figure out how to compute it using feature matches.

Warping example: feature matching

Warping example: feature matching

Warping example: feature matching

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Warping example: feature matching

Given a set of matched feature points:
 image
point in the other image
and a transformation:

find the best estimate of the parameters

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

2D transformations

translation

affine

rotation

perspective

aspect

cylindrical

Parametric (global) warping

$$
\mathbf{p}=(x, y)
$$

- Transformation M is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=M(\mathrm{p})
$$

- What does it mean that M is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)
- Let's consider linear forms (can be represented by a 2×2 matrix):

$$
p^{\prime}=M p
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\boldsymbol{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D planar transformations

y

2D planar transformations

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =b y
\end{aligned}
$$

Scale

> What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =b y
\end{aligned}
$$

matrix representation of scaling:
Scale

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix S }}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Each component multiplied by a scalar
- Uniform scaling - same scalar for each component

2D planar transformations

y

How would you implement shearing?

2D planar transformations

$$
\begin{gathered}
x^{\prime}=x+a \cdot y \\
y^{\prime}=b \cdot x+y \\
\text { or in matrix form: } \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Shear

2D planar transformations

y

How would you implement rotation?
rotation around the origin

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D planar transformations

y

2D planar transformations

y

Polar coordinates...

$$
\begin{aligned}
& x=r \cos (\phi) \\
& y=r \sin (\phi) \\
& x^{\prime}=r \cos (\phi+\theta) \\
& y^{\prime}=r \sin (\phi+\theta)
\end{aligned}
$$

Trigonometric Identity...
$x^{\prime}=r \cos (\phi) \cos (\theta)-r \sin (\phi) \sin (\theta)$
$y^{\prime}=r \sin (\phi) \cos (\theta)+r \cos (\phi) \sin (\theta)$

Substitute...
$x^{\prime}=x \cos (\theta)-y \sin (\theta)$
$y^{\prime}=x \sin (\theta)+y \cos (\theta)$

2D planar transformations

y

Common linear transformations

- Rotation by angle θ (about the origin)

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

What is the inverse?
For rotations:

$$
\mathbf{R}^{-1}=\mathbf{R}^{T}
$$

2D planar and linear transformations

$$
\begin{aligned}
& x^{\prime}=f(x ; p) \\
& \downarrow \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=M\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& \text { parameters } p
\end{aligned}
$$

2D planar and linear transformations

Scale
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$

Rotate

$$
\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]
$$

Shear

$$
\mathbf{M}=\left[\begin{array}{cc}
1 & s_{x} \\
s_{y} & 1
\end{array}\right]
$$

2D planar transformations

$$
\begin{aligned}
& y \\
& \text { Scale } \\
& \begin{array}{l}
\text { Rotate } \\
\mathbf{M}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \\
\mathbf{M}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{array} \\
& \begin{array}{l}
\mathbf{M}=\left[\begin{array}{cc}
1 & s_{x} \\
s_{y} & 1
\end{array}\right], ~ S h e a r \\
\\
\end{array}
\end{aligned}
$$

Flip across y

$$
\mathbf{M}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

Flip across origin

$$
\mathbf{M}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Identity

$$
\mathbf{M}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Mirror
- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the geometric relationship between these two images?

Answer: Similarity transformation (translation, rotation, uniform scale)

2D translation

y $\xrightarrow{\text { How would you implement translater }}$

2D translation

y

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{x}
\end{aligned}
$$

What about matrix representation?

$$
\mathbf{M}=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]
$$

2D translation

y

Not possible.

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

- Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

$\left[\begin{array}{l}x \\ y\end{array}\right] \Rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{c}a x \\ a y \\ a\end{array}\right]$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

2D translation

y $x^{\prime}=x+t_{x}$
$y^{\prime}=y+t_{x}$
What about matrix representation
using homogeneous coordinates?

2D translation

y

2D translation using homogeneous coordinate

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Homogeneous coordinates

Conversion:

- heterogeneous \rightarrow homogeneous

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]
$$

- point at infinity (x, y)

Special points:

$$
\left[\begin{array}{lll}
x & y & 0
\end{array}\right]
$$

- undefined
-

$$
\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- scale invariance

$$
\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}=\lambda\left[\begin{array}{lll}
x & y & w
\end{array}\right]^{\top}
$$

Homogeneous coordinates

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Projective geometry

What does scaling X correspond to?

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

2D transformations in heterogeneous coordinat

Re-write these transformations as 3×3 matrices:

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\\
\text { translation }
\end{array} \begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{l}
?
\end{array}\right]}_{\text {scaling }}\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
& ?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

rotation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
\\
\hline
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

shearing

2D transformations in heterogeneous coordinat

Re-write these transformations as 3×3 matrices:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\text { translation }
\end{gathered}\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]}
\end{array}=\underset{\text { scaling }}{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[
$$

rotation
shearing

2D transformations in heterogeneous coordinat

Re-write these transformations as 3×3 matrices:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\text { translation }
\end{gathered}\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]}
\end{array}=\underset{\text { scaling }}{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=[
$$

$$
]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

rotation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

shearing

2D transformations in heterogeneous coordinat

Re-write these transformations as 3×3 matrices:

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } {\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] } \\
& \text { translation }
\end{aligned}
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]} \\
\qquad \begin{array}{ccc}
{\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right] \\
\text { scaling }
\end{array}\right.
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}_{\text {rotation }}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { shearing }}{\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
\mathrm{p}^{\prime} & =?
\end{aligned}\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathbf{p}^{\prime} & =\operatorname{translation}\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right) \quad \operatorname{rotation}(\theta)
\end{aligned}
$$

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Classification of 2D transformations

Classification of 2D transformations

Name	Matrix	\# D.O.F.
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$	$?$
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$	$?$
similarity	$[s \boldsymbol{R} \mid t]$	$?$
affine	$[\boldsymbol{A}]$	$?$
projective	$[\tilde{\boldsymbol{H}}]$	$?$

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Classification of 2D transformations

Translation: $\left[\begin{array}{ccc}1 & 0 & t_{1} \\ 0 & 1 & t_{2} \\ 0 & 0 & 1\end{array}\right]$

How many degrees of freedom?

Classification of 2D transformations

$$
\underset{\text { Euclidean (rigid): }}{\text { rotation + translation }} \quad\left[\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
0 & 0 & 1
\end{array}\right]
$$

Are there any values that are related?

Classification of 2D transformations

How many degrees of freedom?

Classification of 2D transformations

Classification of 2D transformations

Classification of 2D transformations

what will happen to the
image if this increases?

Euclidean (rigid): rotation + translation

Classification of 2D transformations

Are there any values that are related?

Classification of 2D transformations

multiply these four by scale s

Similarity: uniform scaling + rotation

+ translation

How many degrees of freedom?

Classification of 2D transformations

Classification of 2D transformations

Affine transform:

uniform scaling + shearing
+ rotation + translation

a_{4} \& a_{5} \& a_{6}

0 \& 0 \& 1\end{array}\right] \quad\)| any transformation |
| :--- |
| represented by a 3x3 matrix |
| with last row [0 0 1] we call |
| an affine transformation |

Are there any values that are related?

Classification of 2D transformations

Are there any values that are related?

Classification of 2D transformations

How many degrees of freedom?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines

- ratios are preserved
- compositions of affine transforms are also affine transforms

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines

- ratios are preserved
- compositions of affine transforms are also affine transforms

How to interpret affine transformations here?

Where do we go from here?

$$
\underbrace{\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]}_{\text {affine transformation }} \underset{\substack{\text { what happens when we } \\
\text { mess with hins row? }}}{ }
$$

Projective Transformations aka Homographies aka Planar Perspective Maps

$$
\mathbf{H}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]
$$

Called a homography
 (or planar perspective map)

Homographies

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\sim\left[\begin{array}{c}
\frac{a x+b y+c}{g x+h y+1} \\
\frac{d x+e y+f}{g x+h y+1} \\
1
\end{array}\right]
$$

Alternate formulation for homographies

$$
\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

where the length of the vector $\left[h_{00} h_{01} \ldots h_{22}\right]$ is 1

Projective transformations (aka homographies

Projective transformations are combinations of

- affine transformations; and
- projective wraps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

How many degrees of freedom?
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

Projective transformations (aka homographies

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

How to interpret projective transformations her

mage plane

Points at infinity

Is this an affine transformation?

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

When can we use homographies?

We can use homographies when...

1. ... the scene is planar; or

2. ... the scene is very far or has small (relative) depth variation \rightarrow scene is approximately planar

We can use homographies when...

3. ... the scene is captured under camera rotation only (no translation or pose change)

More on why this is the case in a later lecture.

Computing with homographies

Classification of 2D transformations

Which kind transformation is needed to warp projective plane 1 into projective plane 2?

- A projective transformation (a.k.a. a homography).

Applying a homography

1. Convert to homogeneous coordinates:

$$
p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow P=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the size of the homography matrix?
2. Multiply by the homography matrix:

$$
P^{\prime}=H \cdot P
$$

3. Convert back to heterogeneous coordinates: $P^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \Rightarrow p^{\prime}=\left[\begin{array}{c}x^{\prime} / w^{\prime} \\ y^{\prime} / w^{\prime}\end{array}\right]$

Applying a homography

1. Convert to homogeneous coordinates:

$$
p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow P=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the size of the homography matrix? \searrow Answer: 3×3
2. Multiply by the homography matrix:

$$
P^{\prime}=H \cdot P
$$

How many degrees of freedom does the homography matrix have?
3. Convert back to heterogeneous coordinates: $P^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \Rightarrow p^{\prime}=\left[\begin{array}{l}x^{\prime} / w^{\prime} \\ y^{\prime} / w_{w^{\prime}}\end{array}\right]$

Applying a homography

1. Convert to homogeneous coordinates:

$$
p=\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow P=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What is the size of the homography matrix? \searrow
graphy matrix: $\quad P^{\prime}=H \cdot P$
How many degrees of freedom does the homography matrix have? Answer: 8
3. Convert back to heterogeneous coordinates: $P^{\prime}=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right] \Rightarrow p^{\prime}=\left[\begin{array}{l}x^{\prime} / w^{\prime} \\ y^{\prime} / w_{w^{\prime}}\end{array}\right]$

Applying a homography

What is the size of the homography matrix? Answer: 3×3

$$
P^{\prime}=H \cdot P
$$

How many degrees of freedom does the homography matrix have? \nearrow Answer: 8

How do we compute the homography matrix?

Homography

Under homography, we can write the transformation of points in 3D from camera 1 to camera 2 as:

$$
\mathbf{X}_{2}=H \mathbf{X}_{1} \quad \mathbf{X}_{1}, \mathbf{X}_{2} \in \mathbb{R}^{3} \quad \longleftarrow \text { Homogeneous coordinates }
$$

In the image planes, using homogeneous coordinates, we have

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

References

Basic reading:

- Szeliski textbook, Section 3.6.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004. a comprehensive treatment of all aspects of projective geometry relating to computer vision, and also a very useful reference for the second part of the class.
- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.
a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).

Questions?

