

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Credits

- Slides comes directly from:
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Noah Snavely (Cornell)
 - Marco Zuliani

Short Review from last class

Last 2 classes

- Feature points
 - Correspondent points on two images

Robot Vision

9. Image warping I

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

Wide-angle lenses

Fish-eye lens: can produce (near) hemispherical field of view.

What are the pros and cons of this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

- 1. Use a very wide-angle lens.
- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

Any alternative to this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

- 1. Use a very wide-angle lens.
- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).
- 2. Capture multiple images and combine them.

Panoramas from image stitching

Capture multiple images from different viewpoints.

2. Stitch them together into a virtual wide-angle image.

Will standard stitching work?

- 1. Translate one image relative to another.
- 2. (Optionally) find an optimal seam.

Will standard stitching work?

- 1. Translate one image relative to another.
- 2. (Optionally) find an optimal seam.

left on top

right on top

Translation-only stitching is not enough to mosaic these images.

What else can we try?

Use image homographies.

Outline

- Linear algebra
 - Matrix addition, Matrix multiplication
 - Inverse, Pseudo Inverse
 - Least squares, SVD
- Image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Matrix

- Array $A \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
 - m rows and n columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- A row vector is a matrix with single row
- A column vector is a matric with single column

Matrix operations

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

• Both matrices should have same shape, except with a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 2 = \begin{bmatrix} a+2 & b+2 \\ c+2 & d+2 \end{bmatrix}$$

Same with subtraction

Matrix operation

- Matrix Multiplication
 - Compatibility?
 - mxn and nxp
 - Results in mxp matrix

Matrix operation

Transpose

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- Diagonal matrix
 - Used for row scaling

- Special diagonal matrix
- 1 along diagonals

$$I.A = A$$

$$A = egin{bmatrix} A_1 & 0 & \cdots & 0 \ 0 & A_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & A_n \end{bmatrix}$$

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

Matrix operation

- Inverse
 - Given a matrix A, its inverse A-1 is a matrix such that

$$AA^{-1} = A^{-1}A = I$$

- Inverse does not always exist
 - Singular vs non-singular
- Properties
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$

PseudoInverse

$$Ax = b$$
 A is not squared $A^TAx = A^tb$ A^TA is squared A^TA is squared A^TA is A^TA is squared A^TA is A^TA is A^TA is squared A^TA is sq

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

What is an image?

grayscale image

What is the range of the image function f?

A (grayscale) image is a 2D function.

Image Warping

• image filtering: change range of image

• image warping: change domain of image

Image Warping

• image filtering: change range of image

• image warping: change domain of image

•
$$g(x) = f(h(x))$$

h

What types of image transformations can we do

Filtering

changes pixel values

changes pixel *locations*

What types of image transformations can we do

Filtering

$$G(\boldsymbol{x}) = h\{F(\boldsymbol{x})\}$$

changes range of image function

changes domain of image function

The persistence of memory by Salvador Dali

Original

Filtering operation (Blurred)

Warping operation (Swirled)

What is the geometric relationship between these two images?

What is the geometric relationship between these two images?

Very important for creating mosaics!

First, we need to know what this transformation is. Second, we need to figure out how to compute it using feature matches.

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Given a set of matched feature points:

and a transformation:

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$
transformation $oldsymbol{\nearrow}$ parameters function

find the best estimate of the parameters

 \boldsymbol{p}

What kind of transformation functions $m{f}$ are there?

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

CAP4453 37

2D transformations

translation

rotation

aspect

affine

perspective

cylindrical

Parametric (global) warping

Transformation M is a coordinate-changing machine:

$$p' = M(p)$$

- What does it mean that M is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* forms (can be represented by a 2x2 matrix):

$$p' = Mp \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$

u

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

$$x' = ax$$

$$x' = ax$$
$$y' = by$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

Ц

$$x' = ax$$
$$y' = by$$

matrix representation of scaling:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

How would you implement rotation?

rotation around the origin

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

Polar coordinates...

$$x = r \cos (\phi)$$

 $y = r \sin (\phi)$
 $x' = r \cos (\phi + \theta)$
 $y' = r \sin (\phi + \theta)$

Trigonometric Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

u

$$x' = x \cos \theta - y \sin \theta$$
 $y' = x \sin \theta + y \cos \theta$ or in matrix form:

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

Common linear transformations

• Rotation by angle θ (about the origin)

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

What is the inverse? For rotations: $\mathbf{R}^{-1} = \mathbf{R}^T$

2D planar and linear transformations

$$x' = f(x; p)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$
parameters p point x

2D planar and linear transformations

Scale

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight]$$

Flip across y

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{ccc} -1 & 0 \ 0 & 1 \end{array}
ight]$$

Rotate

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Flip across origin

$$\mathbf{M} = \left| egin{array}{cc} -1 & 0 \ 0 & -1 \end{array}
ight|$$

Shear

$$\mathbf{M} = \left[egin{array}{ccc} 1 & s_x \ s_y & 1 \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Identity

$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Answer: Similarity transformation (translation, rotation, uniform scale)

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

CAP4453 59

Homogeneous coordinates

heterogeneous coordinates

homogeneous coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 add a 1 here

Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous coordinates

homogeneous coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} ax \\ ay \\ a \end{bmatrix}$$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?

2D translation using homogeneous coordinate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Homogeneous coordinates

Conversion:

heterogeneous → homogeneous

$$\left[\begin{array}{c} x \\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

homogeneous → heterogeneous

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

scale invariance

Special points:

point at infinity (x,y)

$$\left[egin{array}{cccc} x & y & 0 \end{array}
ight]$$

undefined

$$\left[\begin{array}{cccc} 0 & 0 & 0 \end{array} \right]$$

Homogeneous coordinates

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Projective geometry

$$oldsymbol{x} = \left|egin{array}{c} x \ y \end{array}
ight|$$

image point in homogeneous $oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$

$$oldsymbol{X} = egin{bmatrix} x \ y \ 1 \end{bmatrix}$$

What does scaling **X** correspond to?

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

CAP4453 68

2D transformations in heterogeneous coordinate

at The CENTRAL PER CENTRAL PER

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} ? \\ y \\ 1 \end{bmatrix}$$
shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$p' = ? ? ? ? p$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$p' = \text{translation}(t_x, t_y) \quad \text{rotation}(\theta) \quad \text{scale(s,s)} \quad p$$

Does the multiplication order matter?

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

CAP4453 75

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} sR \mid t\end{array}\right]$?
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

OF CENTRAL BOOM

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Translation: $\begin{bmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$

How many degrees of freedom?

Euclidean (rigid): rotation + translation
$$egin{bmatrix} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ 0 & 0 & 1 \ \end{bmatrix}$$

Are there any values that are related?

Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

which other matrix values will change if this increases?

Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

what will happen to the image if this increases?

Euclidean (rigid): rotation + translation

$$\begin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

what will happen to the image if this increases?

Euclidean (rigid): rotation + translation

$$egin{bmatrix} lacksquare & lacksquare \ \cos heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

Similarity: uniform scaling + rotation + translation
$$\begin{bmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Are there any values that are related?

How many degrees of freedom?

what will happen to the image if this increases?

Similarity: uniform scaling + rotation + translation

Affine transform: uniform scaling + shearing + rotation + translation

any transformation represented by a 3x3 matrix with last row [0 0 1] we call an *affine* transformation

Are there any values that are related?

Affine transform: uniform scaling + shearing + rotation + translation
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Are there any values that are related?

similarity shear
$$\left[\begin{array}{cc} sr_1 & sr_2 \\ sr_3 & sr_4 \end{array}\right] \left[\begin{array}{cc} 1 & h_1 \\ h_2 & 1 \end{array}\right] = \left[\begin{array}{cc} sr_1 + h_2sr_2 & sr_2 + h_1sr_1 \\ sr_3 + h_2sr_4 & sr_4 + h_1sr_3 \end{array}\right] \sqrt[r]{\frac{1}{translation}}$$

Affine transform: uniform scaling + shearing + rotation + translation
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

similarity shear
$$\left[\begin{array}{cc} sr_1 & sr_2 \\ sr_3 & sr_4 \end{array}\right] \left[\begin{array}{cc} 1 & h_1 \\ h_2 & 1 \end{array}\right] = \left[\begin{array}{cc} sr_1 + h_2sr_2 & sr_2 + h_1sr_1 \\ sr_3 + h_2sr_4 & sr_4 + h_1sr_3 \end{array}\right] \sqrt[r]{translation}$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Does the last coordinate w ever change?

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Nope! But what does that mean?

How to interpret affine transformations here?

image point in pixel coordinates $oldsymbol{x} = egin{bmatrix} x \ y \end{bmatrix}$

$$oldsymbol{x} = \left|egin{array}{c} x \ y \end{array}
ight|$$

image point in heterogeneous $oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$

$$oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array}
ight]$$

Where do we go from here?

Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[egin{array}{ccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a homography (or planar perspective map)

Homographies

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} \frac{ax+by+c}{gx+hy+1} \\ \frac{dx+ey+f}{gx+hy+1} \\ 1 \end{bmatrix}$$

Alternate formulation for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

where the length of the vector $[h_{00} h_{01} ... h_{22}]$ is 1

Projective transformations (aka homographies)

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

Projective transformations (aka homographies)

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

How to interpret projective transformations here

image point in pixel coordinates $oldsymbol{x} = \left| egin{array}{c} x \ y \end{array} \right|$

$$oldsymbol{x} = \left|egin{array}{c} x \ y \end{array}
ight|$$

image point in heterogeneous $oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$

$$oldsymbol{X} = \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$

Points at infinity

Is this an affine transformation?

OF CENTRAL BOOM

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

When can we use homographies?

We can use homographies when...

1. ... the scene is planar; or

2. ... the scene is very far or has small (relative) depth variation
 → scene is approximately planar

We can use homographies when...

3. ... the scene is captured under camera rotation only (no translation or pose change)

More on why this is the case in a later lecture.

Computing with homographies

Which kind transformation is needed to warp projective plane 1 into projective plane 2?

• A projective transformation (a.k.a. a homography).

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \quad \Rightarrow \quad P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What is the size of the homography matrix?

2. Multiply by the homography matrix:

$$P' = H \cdot P$$

3. Convert back to heterogeneous coordinates:

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x' / w' \\ y' / w' \end{bmatrix}$$

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What is the size of the homography matrix?

Answer: 3 x 3

2. Multiply by the homography matrix:

$$P' = H \cdot P$$

How many degrees of freedom does the homography matrix have?

3. Convert back to heterogeneous coordinates:

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x' / w' \\ y' / w' \end{bmatrix}$$

Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \quad \Rightarrow \quad P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What is the size of the homography matrix?

Answer: 3 x 3

Multiply by the homography matrix:

$$P' = H \cdot P$$

How many degrees of freedom does the homography matrix have? Answer: 8

Convert back to heterogeneous coordinates:

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

What is the size of the homography matrix?

Answer: 3 x 3

$$P' = H \cdot P$$

How many degrees of freedom does the homography matrix have? Answer: 8

How do we compute the homography matrix?

Homography

Under homography, we can write the transformation of points in 3D from camera 1 to camera 2 as:

$$\mathbf{X}_2 = H\mathbf{X}_1 \quad \mathbf{X}_1, \mathbf{X}_2 \in \mathbb{R}^3 \quad \longleftarrow$$
 Homogeneous coordinates

In the image planes, using homogeneous coordinates, we have

$$\lambda_1 \mathbf{x}_1 = \mathbf{X}_1, \quad \lambda_2 \mathbf{x}_2 = \mathbf{X}_2, \quad \text{therefore} \quad \lambda_2 \mathbf{x}_2 = H \lambda_1 \mathbf{x}_1$$
 Heterogeneous coordinates

PP1 PP2 PP2 le ambiguity)

This means that x2 is equal to Hx1 up to a scale (due to universal scale ambiguity)

CAP4453 113

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

CAP4453 114

References

Basic reading:

Szeliski textbook, Section 3.6.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004.

 a comprehensive treatment of all aspects of projective geometry relating to computer vision, and also a very useful reference for the second part of the class.
- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.

 a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).

Questions?

CAP4453 116