CAP 4453
Robot Vision
Dr. Gonzalo Vaca-Castaño
gonzalo.vacacastano@ucf.edu
Administrative details

• Allow grader to review your homework:

• Homework 1 review

• Any issues with hw2 ?
Credits

• Some slides comes directly from:
 • Yogesh S Rawat (UCF)
 • Noah Snavely (Cornell)
 • Ioannis (Yannis) Gkioulekas (CMU)
 • Mubarak Shah (UCF)
 • S. Seitz
 • James Tompkin
 • Ulas Bagci
 • L. Lazebnik
Short Review from last class
Last 2 classes

• Gradient operators
 • Prewit
 • Sobel

• Marr-Hildreth (Laplacian of Gaussian)

• Canny (Gradient of Gaussian)
Regions ↔ Boundaries
Robot Vision

7. Segmentation I
Outline

• Image segmentation basics
• Thresholding based
 • Binarization
 • Otsu
• Region based
 • Merging
 • Splitting
• Clustering based
 • K-means (SLIC)
Outline

• **Image segmentation basics**
 • Thresholding based
 • Binarization
 • Otsu
 • Region based
 • Merging
 • Splitting
 • Clustering based
 • K-means (SLIC)
Image segmentation

• Partition an image into a collection of set of pixels
 • Meaningful regions (coherent objects)
 • Linear structures (line, curve, ...)
 • Shapes (circles, ellipses, ...)
Image segmentation

• Content base image retrieval
• Machine vision
• Medical imaging applications
• Object detection (face detection, ..)
• 3D reconstruction
• Object/motion tracking
• ...

Image segmentation

- In computer vision, image segmentation is one of the oldest and most widely studied problems
 - Early techniques -> region splitting or merging
 - Recent techniques -> Energy minimization, hybrid methods, and deep learning
Image segmentation methods

- Thresholding
- Region Based methods (region growing, ...)
- Clustering (K-means, meanshift)
- Energy minimization methods (MRF, ...)
- Graph-based methods (graph-cut, random walk, ...)
- Shape based methods (level set, active contours)
- Machine Learning based methods
Image segmentation

- Image segmentation partitions an image into regions called segments.
Image segmentation

- Image segmentation partitions an image into regions called segments.

- Image segmentation creates segments of connected pixels by analyzing some similarity criteria:
 - intensity, color, texture, histogram, features
Outline

• Image segmentation basics

• **Thresholding based**
 • Binarization
 • Otsu

• Region based
 • Merging
 • Splitting

• Clustering based
 • K-means (SLIC)
Image binarization

- Image binarization applies often just one global threshold T for mapping a scalar image I into a binary image
Image binarization

• Image binarization applies often just one global threshold T for mapping a scalar image I into a binary image

$$J(x, y) = \begin{cases}
0 & \text{if } I(x, y) < T \\
1 & \text{otherwise.}
\end{cases}$$
Image binarization

• Image binarization applies often just one global threshold T for mapping a scalar image I into a binary image

$$J(x, y) = \begin{cases}
0 & \text{if } I(x, y) < T \\
1 & \text{otherwise.}
\end{cases}$$

• The global threshold can be identified by an optimization strategy aiming at creating “large” connected regions and at reducing the number of small-sized regions, called artifacts.
Image binarization

- Thresholding: Most frequently employed method for determining threshold is based on histogram analysis of intensity levels

![Image of a graph showing histogram with peaks for darker and brighter objects with annotations for difficulties.]
Thresholding examples

Original Image

Thresholded Image
Thresholding examples

Threshold Too Low

Threshold Too High
Thresholding examples
Thresholding examples
Outline

• Image segmentation basics

• Thresholding based
 • Binarization
 • Otsu

• Region based
 • Merging
 • Splitting

• Clustering based
 • K-means (SLIC)
Variance

$$\text{Var}(X) = E[(X - \mu)^2] = \sigma_X^2$$

where μ is the expected value. That is,

$$\mu = \sum_{i=1}^{n} p_i x_i,$$

$$p_i = \frac{\text{#values in } i}{\text{sum all values (area under curve)}}$$

Variance - Wikipedia
Variance

\[\text{Var}(X) = \mathbb{E}[(X - \mu)^2] = \sigma_X^2 \]

Discrete random variable

If the generator of random variable \(X \) is discrete with probability mass function \(x_1 \rightarrow p_1, x_2 \rightarrow p_2, \ldots, x_n \rightarrow p_n \), then

\[\text{Var}(X) = \sum_{i=1}^{n} p_i \cdot (x_i - \mu)^2, \]

where \(\mu \) is the expected value. That is,

\[\mu = \sum_{i=1}^{n} p_i x_i. \]

Variance - Wikipedia
Otsu thresholding

- Definition: The method uses grey-value histogram of the given image I as input and aims at providing the best threshold (foreground/background).

- Otsu’s algorithm selects a threshold that maximizes the between-class variance σ_b^2 or minimize within-class variance σ_w^2.

- For each threshold t in $[0, 255]$, pixels can be separated into two classes, C_1 and C_2; those pixels whose $P_i < t$ are put into C_1, otherwise into C_2.

- The possibilities of C_1 and C_2 separated by t, denoted as W_1 and W_2, respectively. For example, $W_1 = \frac{\text{(#pixels in } C_1)}{\text{(total pixels count)}}$.

- Given H, W_1, and W_2, for each t, compute the between-class variance σ_b^2 or within-class variance σ_w^2 ($\sigma_b^2 \rightarrow$ red curve).

- Optimal cut t^* corresponds to t whose σ_b^2 is maximum or σ_w^2 is minimum.
Otsu thresholding

- Definition: The method uses grey-value histogram of the given image as input and aims at providing the best threshold (foreground/background).
- Otsu’s algorithm selects a threshold that maximizes the between-class variance σ_b^2.

Option 1: maximum of:

$$\sigma_b^2(t) = w_1(t)w_2(t)[\mu_1(t) - \mu_2(t)]^2$$

$$\mu_1(t) = \sum_{i=1}^{t} \frac{iP(i)}{w_1(t)}$$
$$w_1(t) = \sum_{i=1}^{t} P(i)$$

$$\mu_2(t) = \sum_{i=t+1}^{I} \frac{iP(i)}{w_2(t)}$$
$$w_2(t) = \sum_{i=t+1}^{I} P(i)$$
Otsu thresholding

• Definition: The method uses grey-value histogram of the given image as input and aims at providing the best threshold (foreground/background)

• Otsu’s algorithm selects a threshold that maximizes the between-class variance σ_w^2 or minimize within-class variance σ_w^2

Option 2: minimum of:

$\sigma_w^2(t) = w_1(t)\sigma_1^2(t) + w_2(t)\sigma_2^2(t)$

\[
\begin{align*}
w_1(t) &= \sum_{i=1}^{t} P(i) \\
w_2(t) &= \sum_{i=t+1}^{I} P(i) \\
\sigma_1^2(t) &= \sum_{i=1}^{t} [i - \mu_1(t)]^2 \frac{P(i)}{w_1(t)} \\
\sigma_2^2(t) &= \sum_{i=t+1}^{I} [i - \mu_2(t)]^2 \frac{P(i)}{w_2(t)}
\end{align*}
\]
Step by step example

• Find Otsu threshold for this image

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>120</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>190</td>
<td>123</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>175</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

• By minimizing within-class variance
Step by step example

Otsu’s method for image thresholding explained and implemented – Muthukrishnan
Step by step example

Otsu’s method for image thresholding explained and implemented – Muthukrishnan
Otsu’s method for image thresholding explained and implemented – Muthukrishnan
Step by step example

Thresholding in t=100

Foreground

Background

Otsu’s method for image thresholding explained and implemented – Muthukrishnan
Otsu’s method for image thresholding explained and implemented – Muthukrishnan
Step by step example

Otsu’s method for image thresholding explained and implemented – Muthukrishnan
Step by step (otsu thresholding)

- The value of variance remains the same from 28 and 120.
- within-class variance is least at t=28 or more precisely between 28 to 120.
- Otsu threshold = 28.

Minimize within-class variance
Otsu threshold implementation

```python
# Set total number of bins in the histogram
bins_num = 256

# Get the image histogram
hist, bin_edges = np.histogram(image, bins=bins_num)

# Get normalized histogram if it is required
if is_normalized:
    hist = np.divide(hist.ravel(), hist.max())

# Calculate centers of bins
bin_mids = (bin_edges[:-1] + bin_edges[1:]) / 2.

# Iterate over all thresholds (indices) and get the probabilities w1(t), w2(t)
weight1 = np.cumsum(hist)
weight2 = np.cumsum(hist[::1][::-1])

# Get the class means mu0(t)
mean1 = np.cumsum(hist * bin_mids) / weight1
# Get the class means mu1(t)
mean2 = (np.cumsum((hist * bin_mids)[::1]) / weight2[::-1][::1])

# inter-class variance = weight1[-1] * weight2[1:] * (mean1[::-1] - mean2[1:]) ** 2

# Maximize the inter_class_variance function value
index_of_max_val = np.argmax(inter_class_variance)
threshold = bin_mids[::-1][index_of_max_val]
print("Otsu's algorithm implementation thresholding result: ", threshold)
```
Otsu threshold implementation

Original image

Manually
Th =90

otsu
Th =127
Otsu threshold implementation

```python
# Applying Otsu's method setting the flag value into cv.THRESH_OTSU.
# Use a bimodal image as an input.
# Optimal threshold value is determined automatically.
otsu_threshold, image_result = cv2.threshold(
    image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU,
)
print("Obtained threshold: ", otsu_threshold)
```

Obtained threshold: 132.0
Otsu thresholding example
The math!

\[\sigma_{total}^2 = E[(X - E[X])^2] = E[X_{total}^2] - \mu_{total}^2 \quad (1) \]

\[P_i = \frac{n_i}{n_{total}} \quad \text{When } i \leq t \]

\[P_i^1 = \frac{n_i}{n_1} \quad \text{When } i \leq t \]

\[P_i^2 = \frac{n_i}{n_2} \quad \text{When } t < i < T \]

\[P_i = \frac{n_1 P_i^1}{n_{total}} = w_1(t) P_i^1 \]

\[P_i = \frac{n_2 P_i^2}{n_{total}} = w_2(t) P_i^2 \]

\[E[X_{total}^2] = \sum_{i=1}^{T} P_i x_i^2 = \sum_{i=1}^{t} P_i x_i^2 + \sum_{i=t+1}^{T} P_i x_i^2 = w_1(t) \sum_{i=1}^{t} P_i^1 x_i^2 + w_2(t) \sum_{i=t+1}^{T} P_i^1 x_i^2 = w_1(t) E[X_1^2] + w_2(t) E[X_2^2] \quad (2) \]

\[\mu_{total}^2 = (w_1(t) \mu_1 + w_2(t) \mu_2)^2 = w_1^2 \mu_1^2 + 2w_1w_2\mu_1\mu_2 + w_2^2 \mu_2^2 = w_1(1-w_2)\mu_1^2 + 2w_1w_2\mu_1\mu_2 + w_2(1-w_1)\mu_2^2 \quad (3) \]

The math!

\[\sigma^2_{total} = E[(X - E[X])^2] = E[X^2_{total}] - \mu^2_{total} \quad (1) \]

\[E[X^2_{total}] = w_1(t)E[X^1_1] + w_2(t)E[X^2_2] \quad (2) \]

\[\mu^2_{total} = w_1(1 - w_2)\mu^1_1 + 2w_1w_2\mu_1\mu_2 + w_2(1 - w_1)\mu^2_2 \quad (3) \]

\[\sigma^2_{total} = w_1E[X^1_1] + w_2E[X^2_2] - [w_1\mu^1_1 + w_1w_2\mu^2_1 + 2w_1w_2\mu_1\mu_2 + w_2\mu^2_2 - w_1w_2\mu^2_2] \]

\[\sigma^2_{total} = w_1E[X^1_1] - w_1\mu^1_1 \quad + \quad w_2E[X^2_2] - w_2\mu^2_2 \quad + \quad [-w_1w_2\mu^2_1 - 2w_1w_2\mu_1\mu_2 + w_1w_2\mu^2_2] \]

\[\sigma^2_{total} = w_1(t)(E[X^1_1] - \mu^2_1) \quad + \quad w_2(t)(E[X^2_2] - \mu^2_2) \quad + \quad w_1(t)w_2(t)(\mu^2_2 - \mu^2_1) \quad (4) \]
The math!

\[\sigma_{total}^2 = E[(X - E[X])^2] = E[X_{total}^2] - \mu_{total}^2 \quad (1) \]

\[\sigma_{total}^2 = w_1(t)(E[X_1^2] - \mu_1^2) + w_2(t)(E[X_2^2] - \mu_2^2) + w_1(t)w_2(t)(\mu_2^2 - \mu_1^2) \]

\[\sigma_{total}^2 = w_1(t)\sigma_1^2(t) + w_2(t)\sigma_2^2(t) + w_1(t)w_2(t)(\mu_2^2(t) - \mu_1^2(t)) \]

within-class variance

between-class variance

\[\text{Minimize} \]

\[\text{Maximize} \]
Questions?