

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Administrative details

- REU low inscription rate
- Homework 1 graded
- Homework 2 questions?
- Any Doubts from last classes?

Robot Vision

5. Edge detection

Credits

- Some slides comes directly from:
 - Yogesh S Rawat (UCF)
 - Noah Snavely (Cornell)
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Mubarak Shah (UCF)
 - S. Seitz
 - James Tompkin
 - Ulas Bagci
 - L. Lazebnik
 - D. Hoeim

Outline

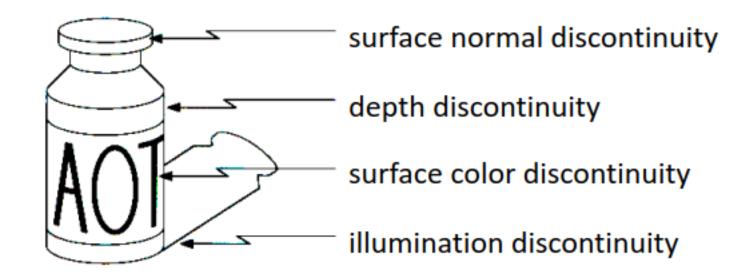
- Image as a function
- Extracting useful information from Images
 - Histogram
 - Filtering (linear)
 - Smoothing/Removing noise
 - Convolution/Correlation
 - Image Derivatives/Gradient
 - Edges

Edge Detection

- Identify sudden changes in an image
 - Semantic and shape information
 - Mark the border of an object
 - More compact than pixels

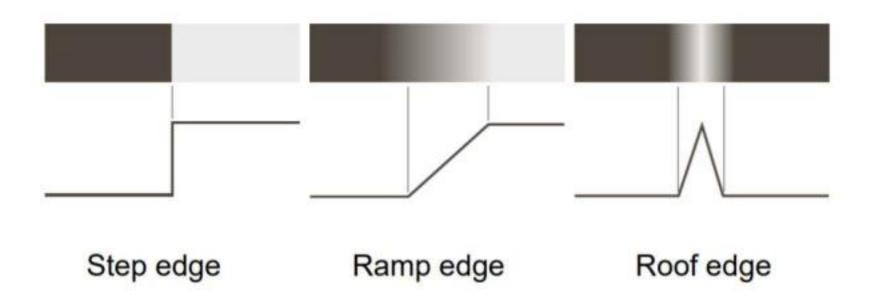
Origin of edges

• Edges are caused by a variety of factors



Type of edges

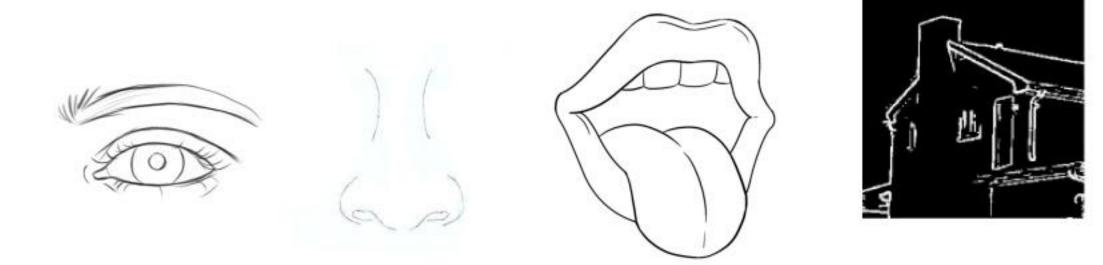
• Edge models



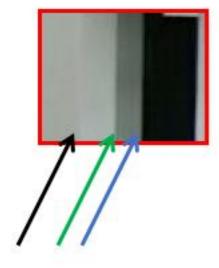
TOF CENTRAL FIGG3 VOTO

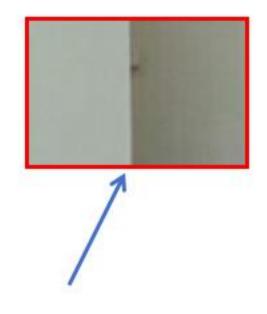
Why edge detection ?

- Extract useful information from images
 - Recognizing objects
- Recover geometry

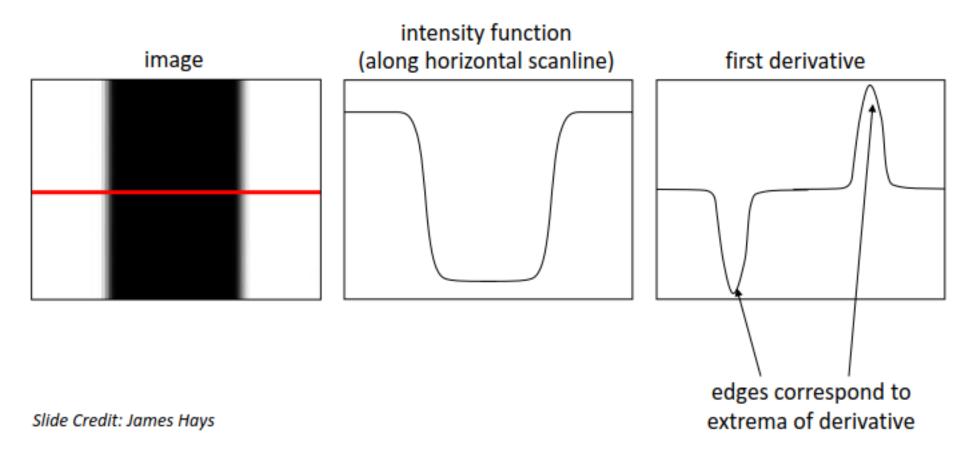


CAP4453

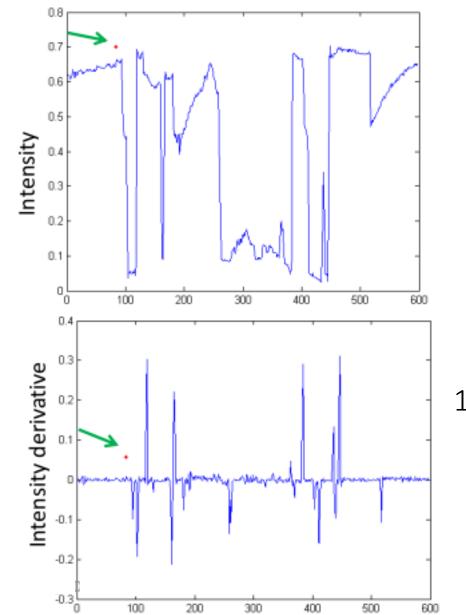




Characterizing edges

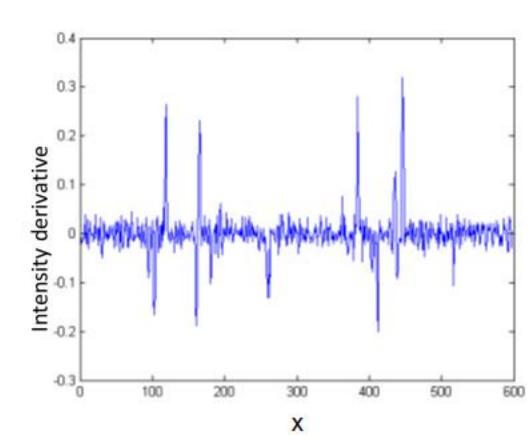


Intensity profile

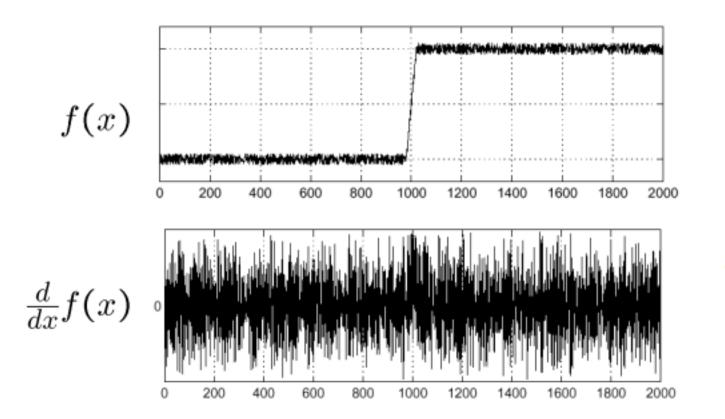


15

With a little bit of gaussian noise

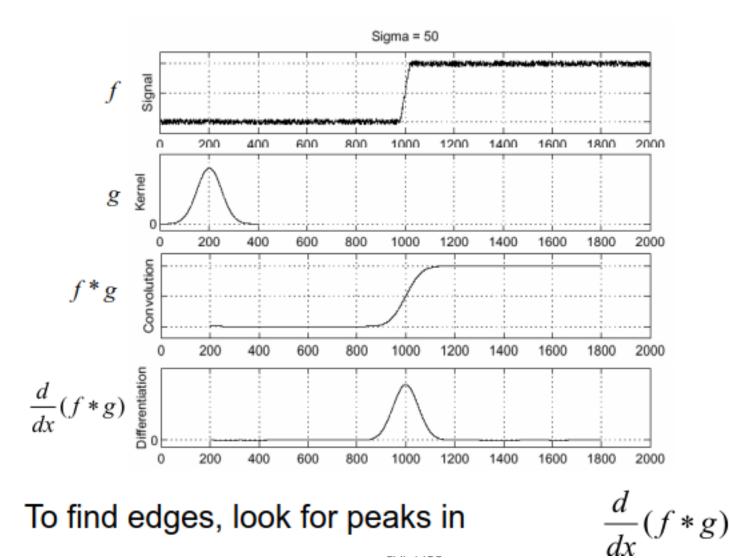


An extreme case

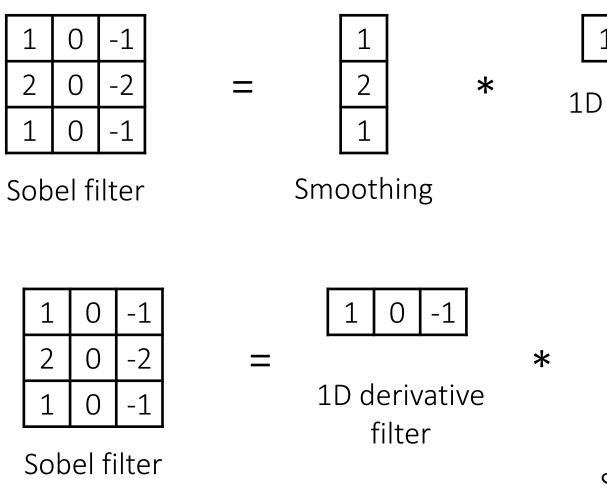


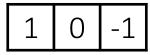
Where is the edge?

Solution: smooth and derivate



The Sobel filter





1D derivative filter

Smoothing

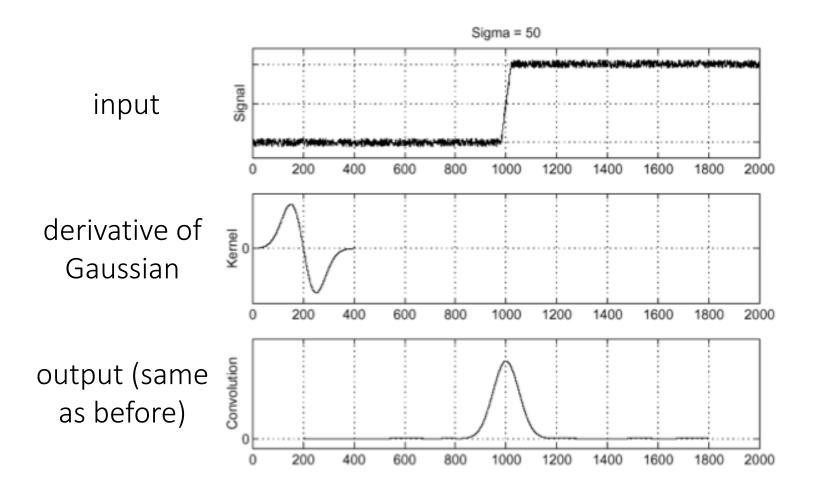
1

2

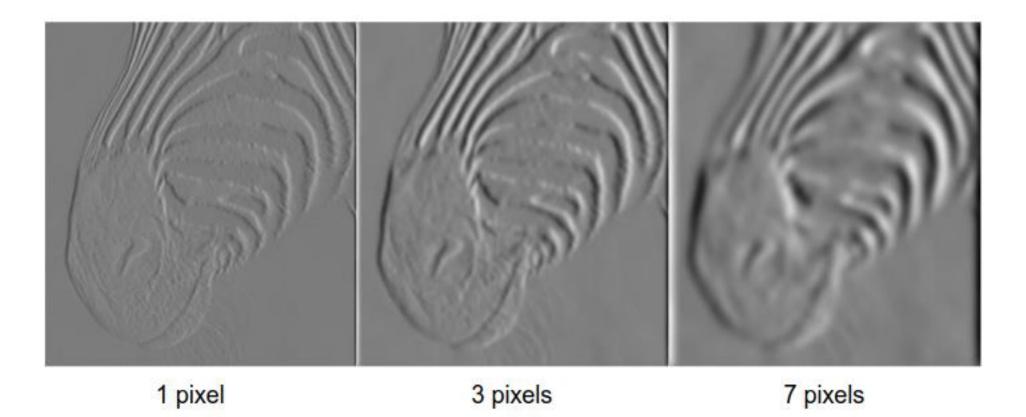
Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



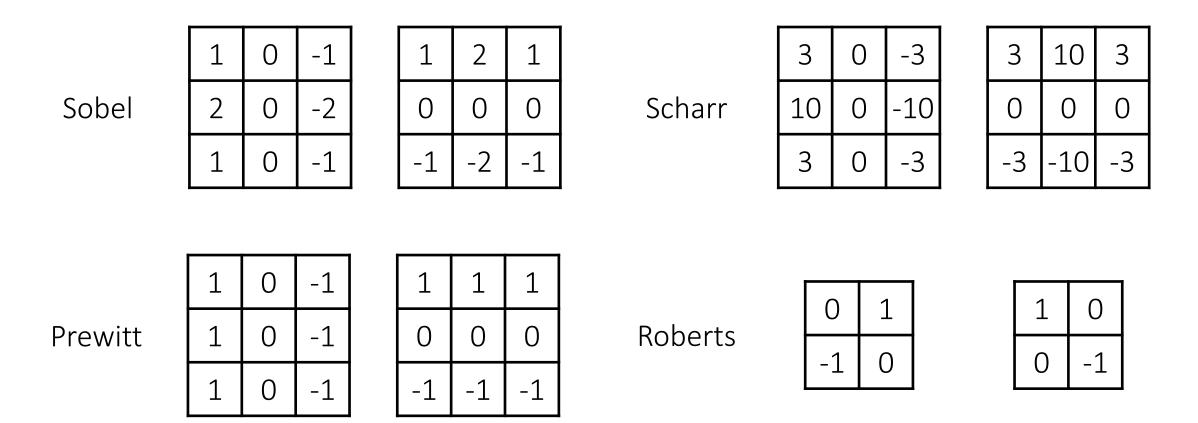
Solution: smoothing



Smoothing remove noise, but also blur the edge

How to obtain the edges of an image?

Several derivative filters



- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

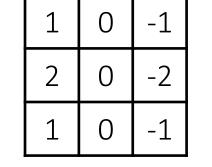
Edge detectors

- Gradient operators
 - Prewit
 - Sobel
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)

Gradient operators edge detector algorithm

- 1. Compute derivatives
 - In x and y directions
 - Use Sobel or Prewitt filters
- 2. Find gradient magnitude
- 3. Threshold gradient magnitude

Sobel



1	2	1
0	0	0
-1	-2	-1

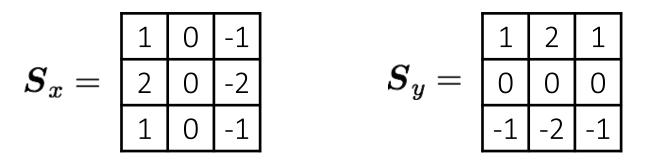
Prewitt

1	0	-1	
1	0	-1	
1	0	-1	

1	1	1
0	0	0
-1	-1	-1

Computing image gradients

1. Select your favorite derivative filters.



2. Convolve with the image to compute derivatives.

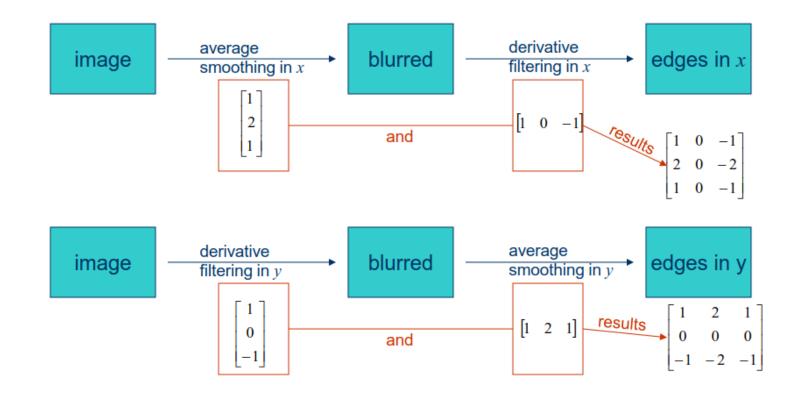
$$rac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f} \qquad \qquad rac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \otimes \boldsymbol{f}$$

3. Form the image gradient, and compute its direction and amplitude.

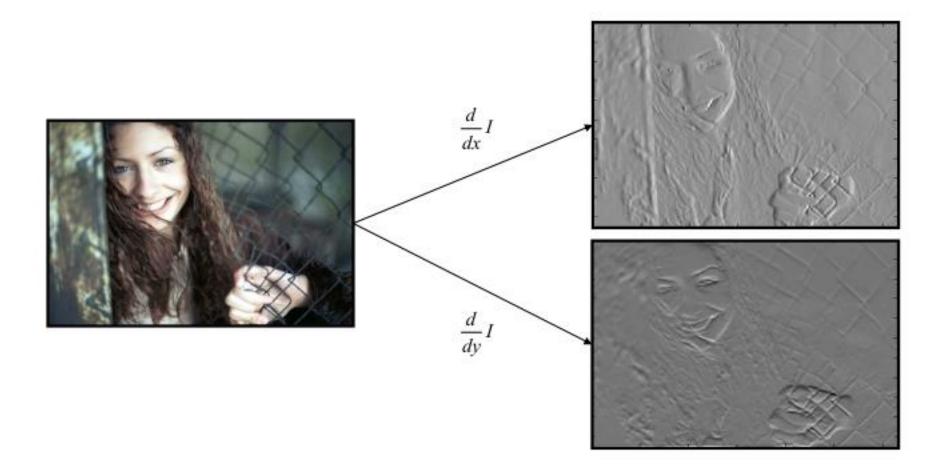
$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
gradient direction amplitude

Sobel edge detector

1. Compute derivatives

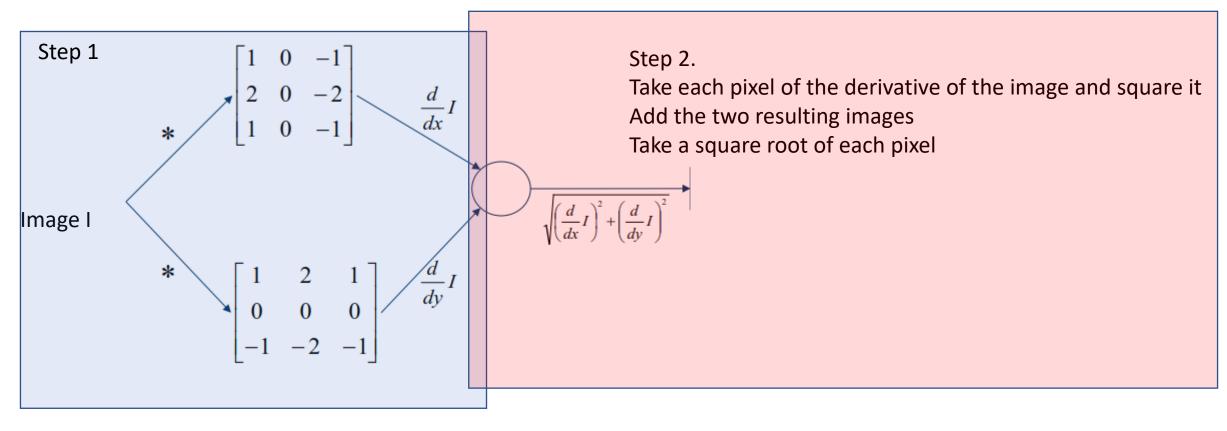


Step 1



Sobel edge detector

2. Find gradient magnitude

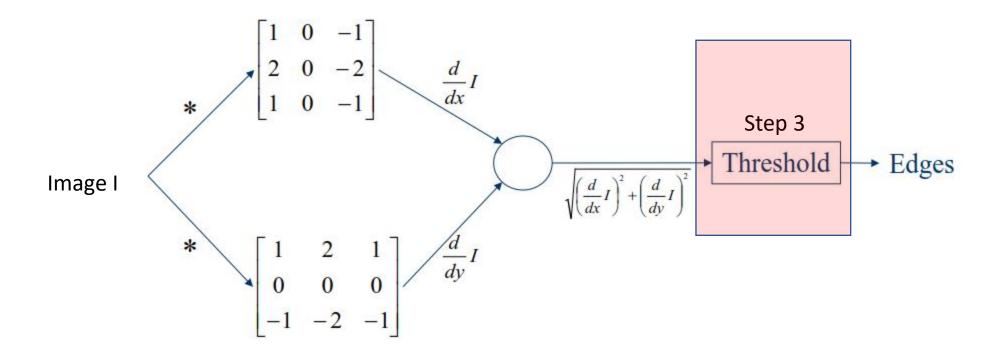


Step 2

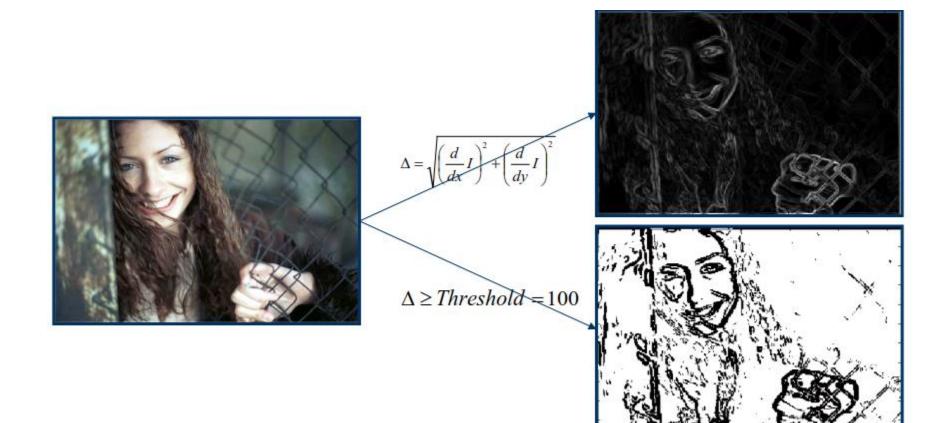
\$2 $\frac{d}{dy}I$ d $\Delta =$

Sobel edge detector

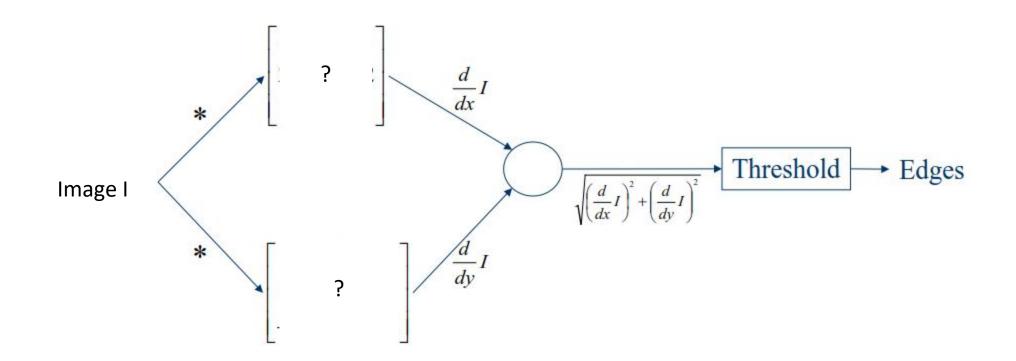
3. Threshold



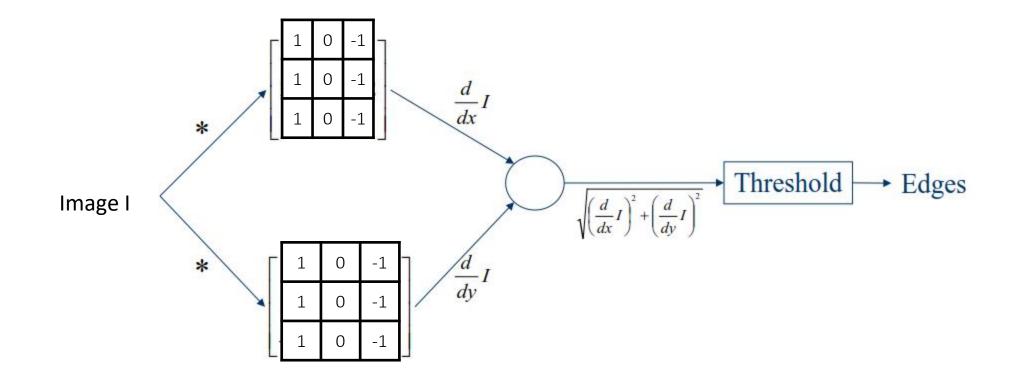
Sobel Edge Detector



Prewitt edge detector



Prewitt edge detector



Edge detectors

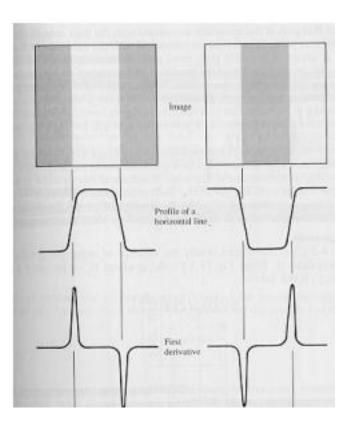
- Gradient operators
 - Prewit
 - Sobel

• Marr-Hildreth (Laplacian of Gaussian)

• Canny (Gradient of Gaussian)

Where are the edges ?

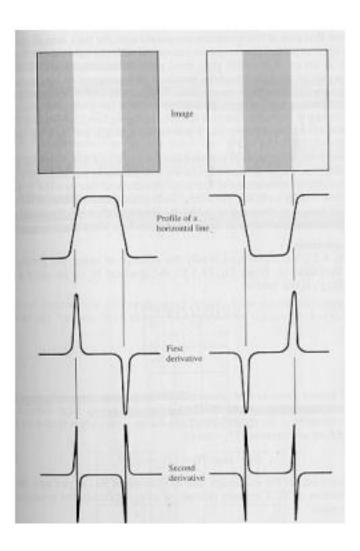
- First derivative ?
 - Maxima or minima



Where are the edges ?

- First derivative ?
 - Maxima or minima

- Second derivative?
 - Zero-crossing



Laplace filter

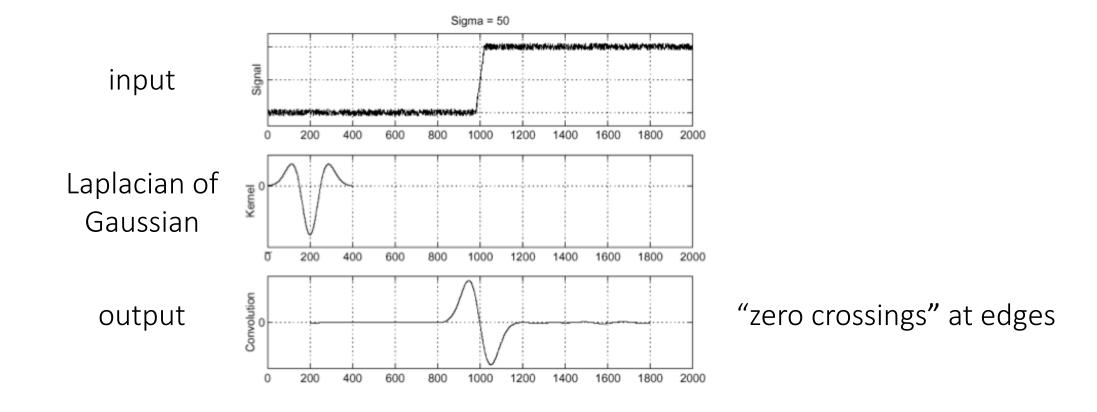
Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow 1D$ derivative filter
 $1 \quad 0 \quad -1$

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

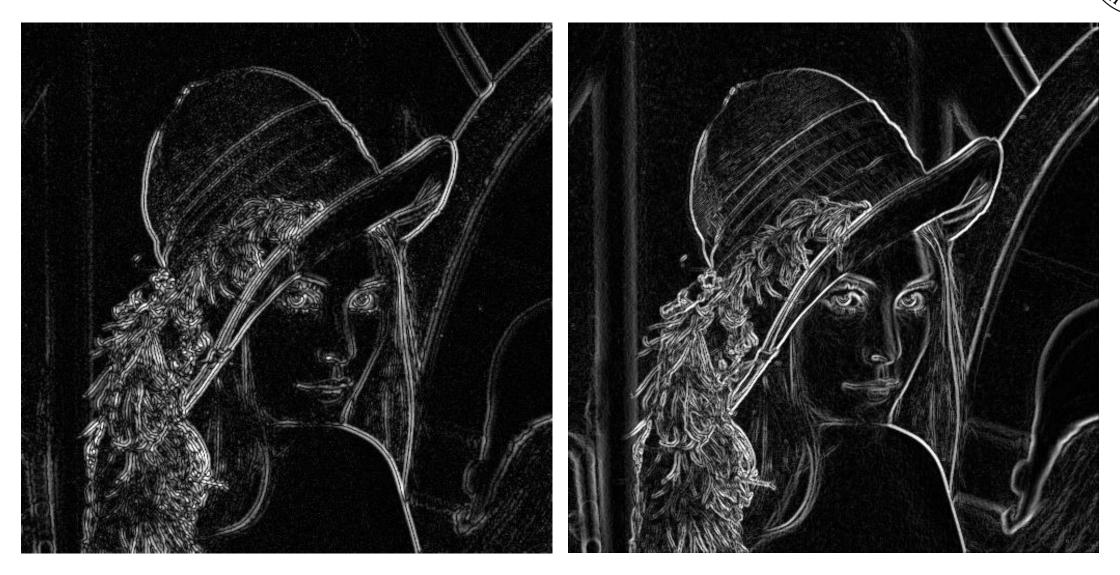


Laplace and LoG filtering examples

Laplacian of Gaussian filtering

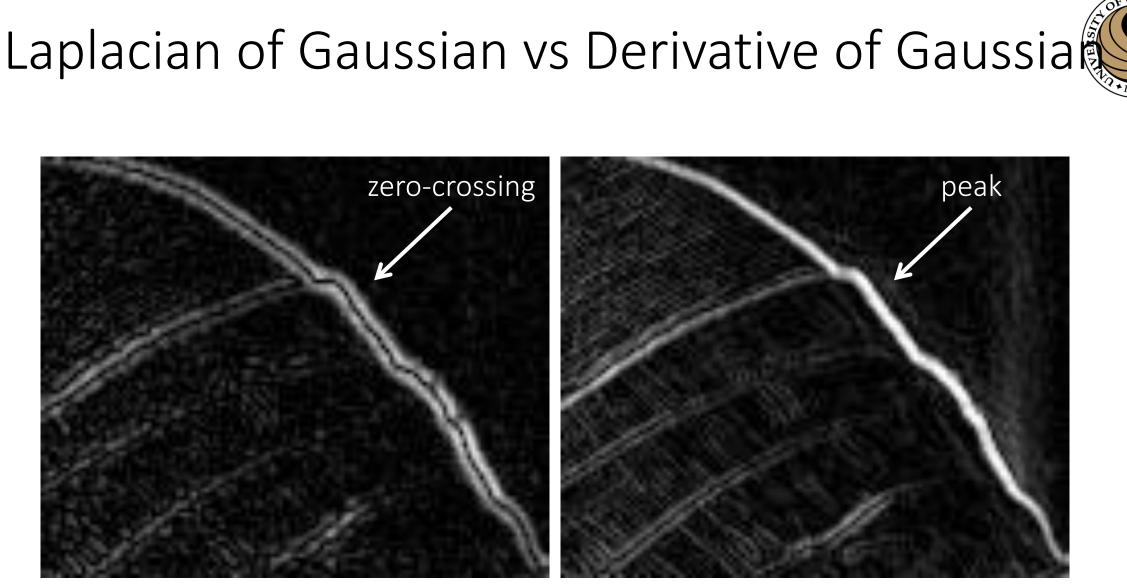
Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussia



Laplacian of Gaussian filtering

Derivative of Gaussian filtering



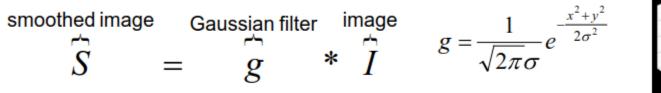
Laplacian of Gaussian filtering

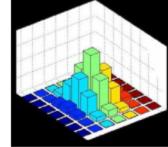
Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges

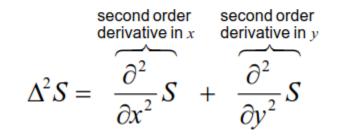
- 1. Smooth image by Gaussian filtering
- 2. Apply Laplacian to smoothed image
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics
- 3. Find Zero crossings

- 1. Smooth image by Gaussian filtering
 - Gaussian smoothing

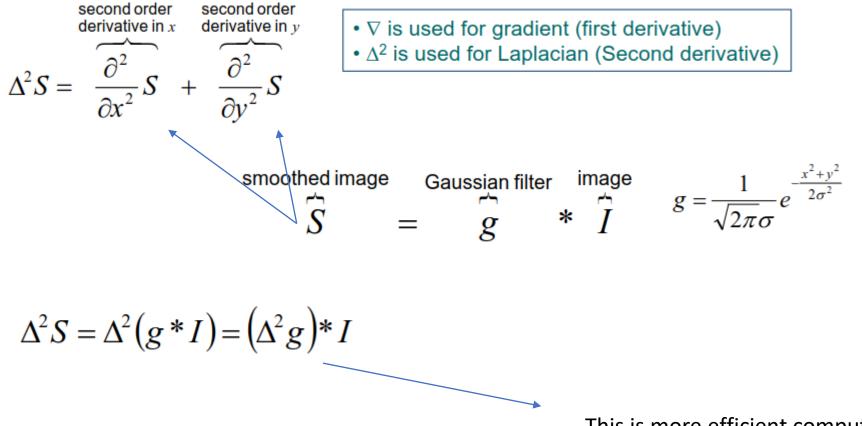




- 2. Apply Laplacian to smoothed image
 - Find Laplacian

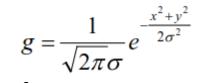


∇ is used for gradient (first derivative)
Δ² is used for Laplacian (Second derivative)



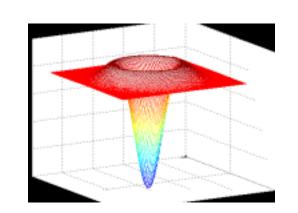
This is more efficient computationally

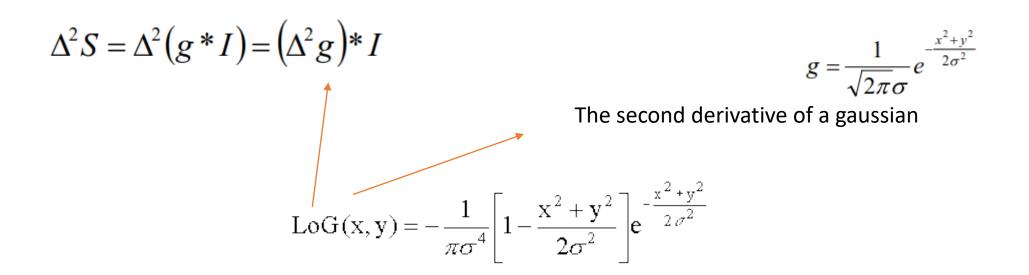
 $\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I$

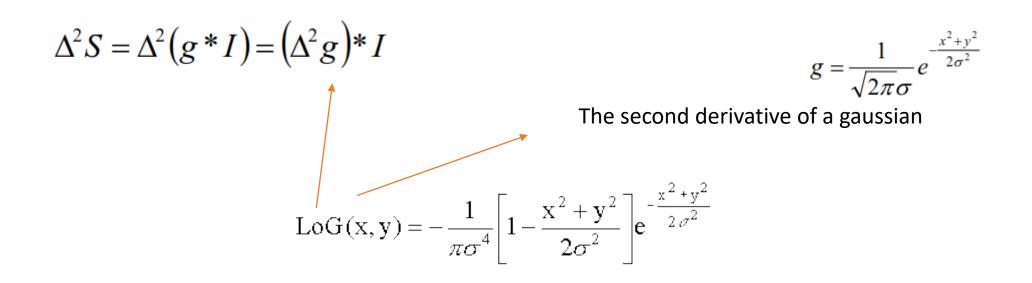


The second derivative of a gaussian

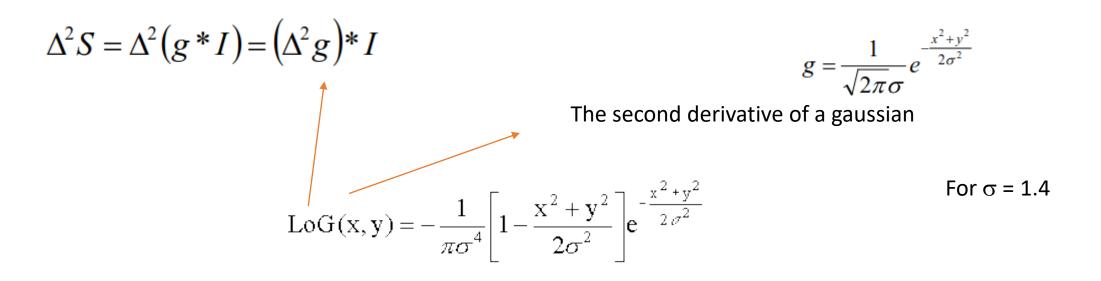
$$LoG(x, y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$





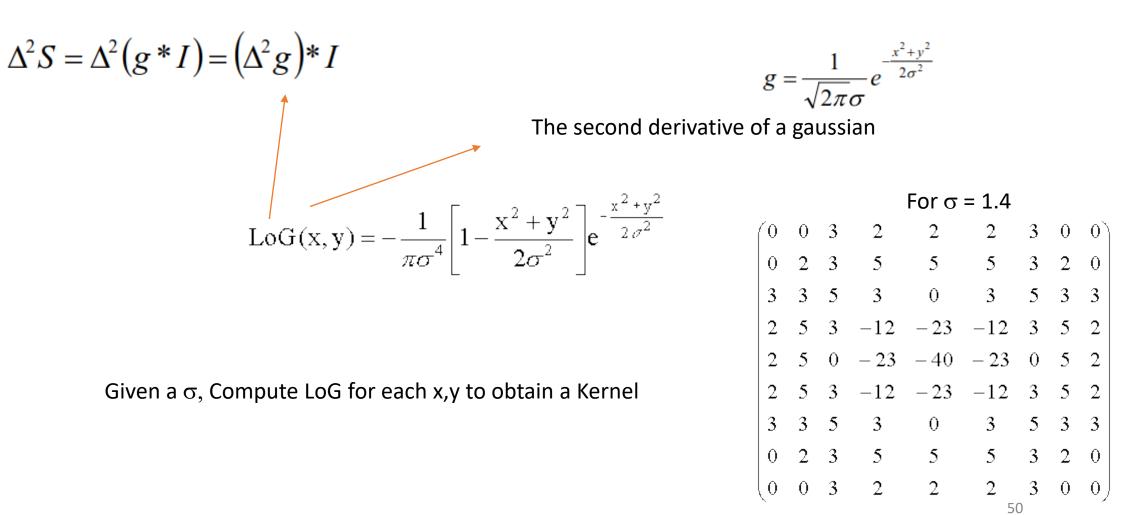


Given a σ , Compute LoG for each x,y to obtain a Kernel



 $LoG(0,0) \approx -0.1624$

Given a σ , Compute LoG for each x,y to obtain a Kernel



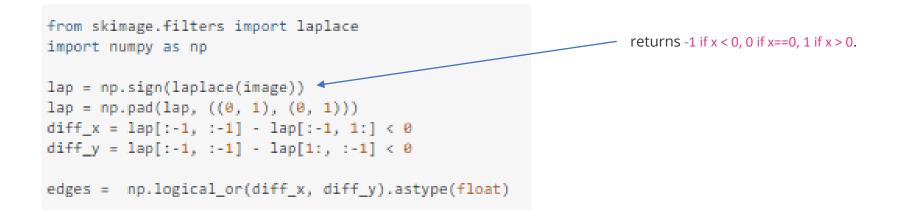
- 1. Smooth image by Gaussian filtering
- 2. Apply Laplacian to smoothed image
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics

- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

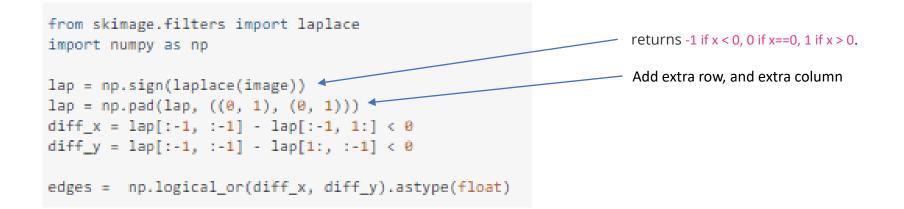
- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

```
from skimage.filters import laplace
import numpy as np
lap = np.sign(laplace(image))
lap = np.pad(lap, ((0, 1), (0, 1)))
diff_x = lap[:-1, :-1] - lap[:-1, 1:] < 0
diff_y = lap[:-1, :-1] - lap[1:, :-1] < 0
edges = np.logical_or(diff_x, diff_y).astype(float)
```

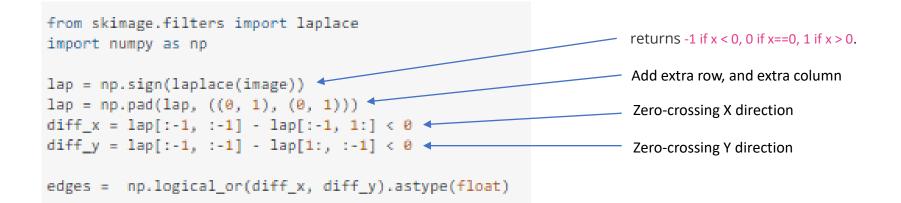

- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column



- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

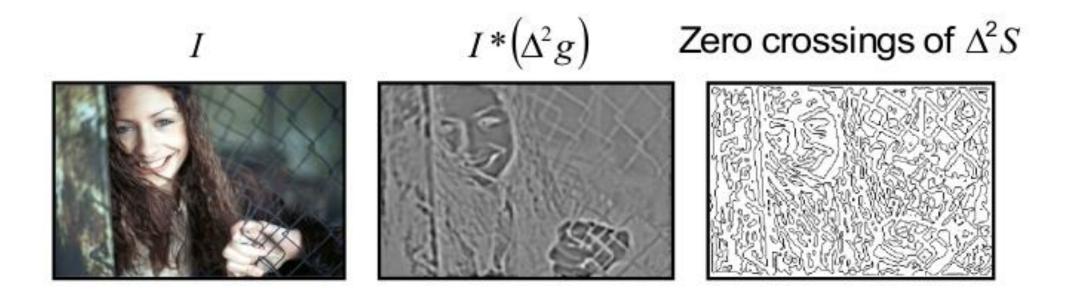


- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column



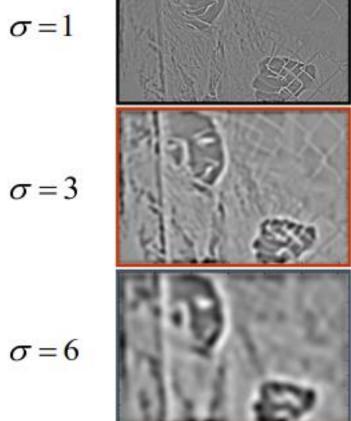
- 3. Find Zero crossings (Another implementation)
 - Four cases of zero-crossings :
 - {+,-}
 - {+,0,-}
 - {-,+}
 - {-,0,+}
 - Slope of zero-crossing {a, -b} is |a+b|.
 - To mark an edge
 - compute slope of zero-crossing
 - Apply a threshold to slope

Example



Example

 $\sigma = 1$



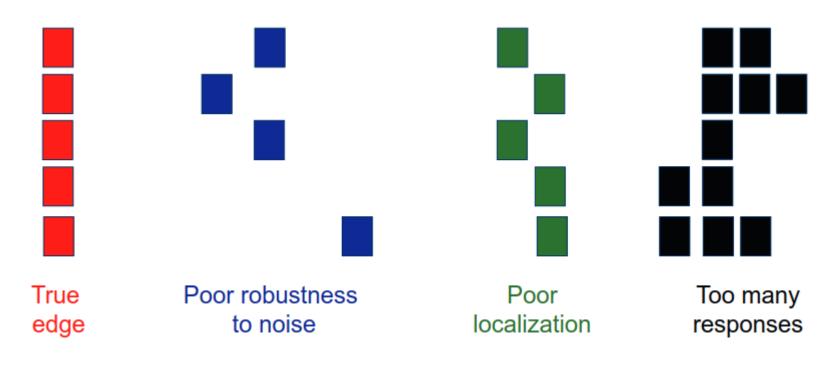


Edge detectors

- Gradient operators
 - Prewit
 - Sobel
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)

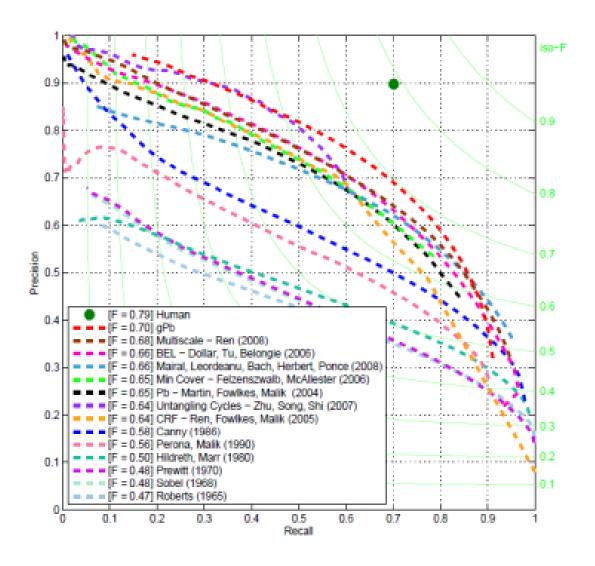
Design Criteria for Edge Detection

- Good detection: find all real edges, ignoring noise or other artifacts
- Good localization
 - as close as possible to the true edges
 - one point only for each true edge point

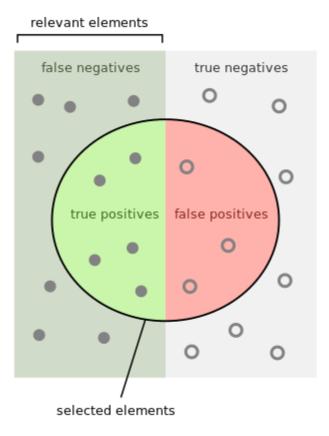


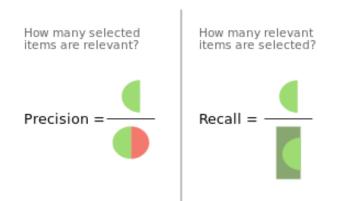
45 years of boundary detection

[Pre deep learning]

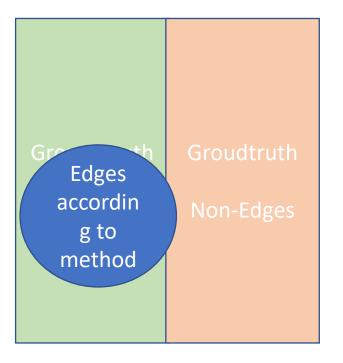


Precision Recall



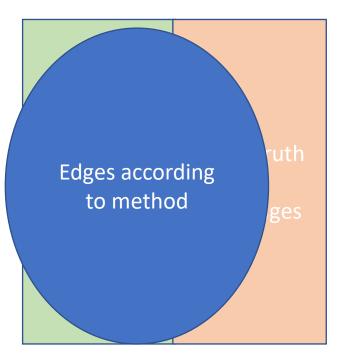


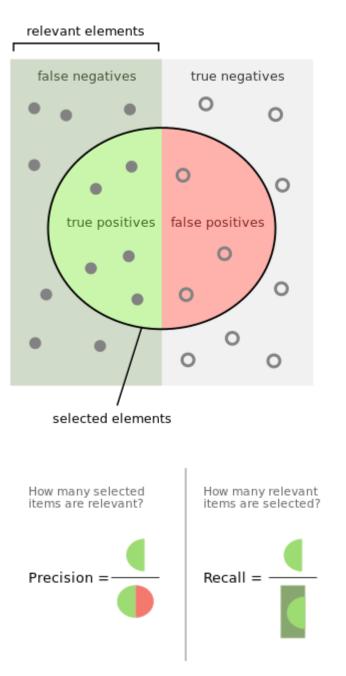
Precision Recall



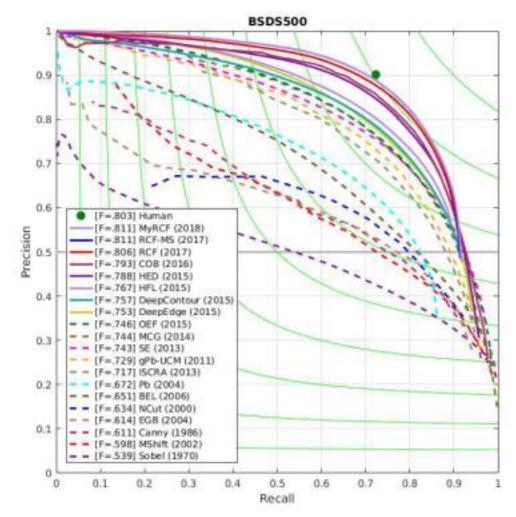
relevant elements false negatives true negatives 0 0 О 0 true positives false positives O 0 0 0 0 selected elements How many selected items are relevant? How many relevant items are selected? Recall = -Precision =-

Precision Recall





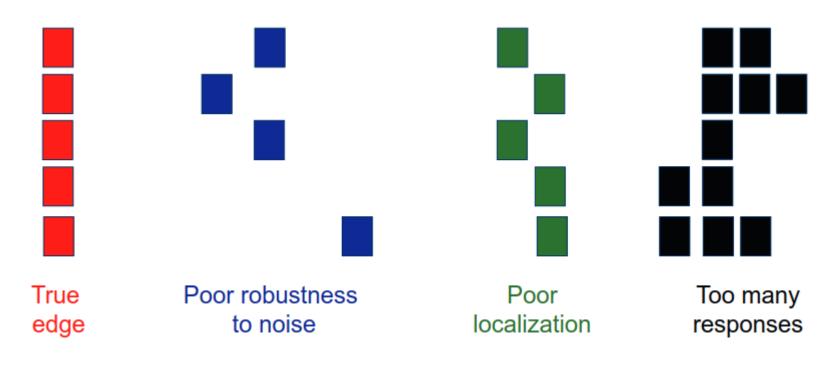
Edge Detection with Deep Learning



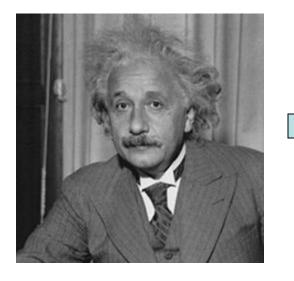
Canny edge detector

Design Criteria for Edge Detection

- Good detection: find all real edges, ignoring noise or other artifacts
- Good localization
 - as close as possible to the true edges
 - one point only for each true edge point



Problems



- We get thick edges
- Redundant, especially if we going to be searching in places where edges are found

Solution

- Identify the local maximums
- Called "non-maximal suppression"

Canny Edge detector algorithm

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

Canny Edge detector algorithm

1. Smooth image with Gaussian filter

$$S = I * g(x, y) = g(x, y) * I$$

$$g(x,y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

2. Compute derivative of filtered '

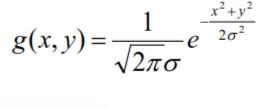
$$\nabla S = \nabla (g * I) = (\nabla g) * I$$
$$\nabla S = \begin{bmatrix} g_x \\ g_y \end{bmatrix} * I = \begin{bmatrix} g_x * I \\ g_y * I \end{bmatrix}$$

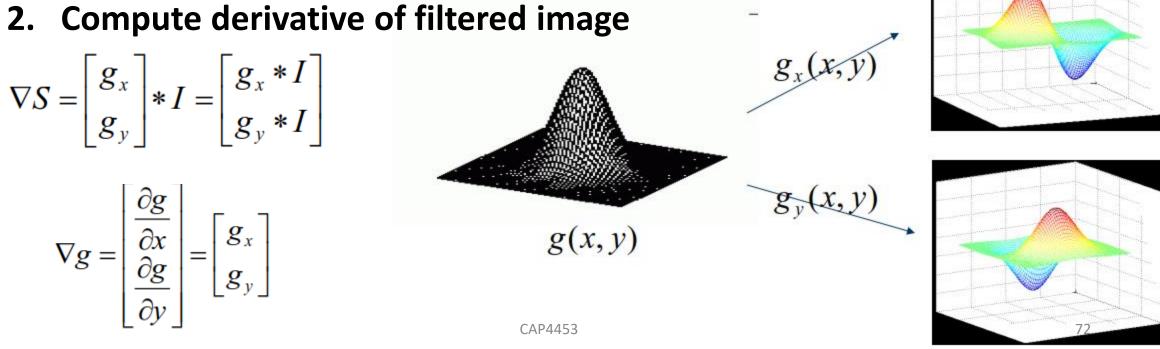
$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$

Canny Edge detector algorithm

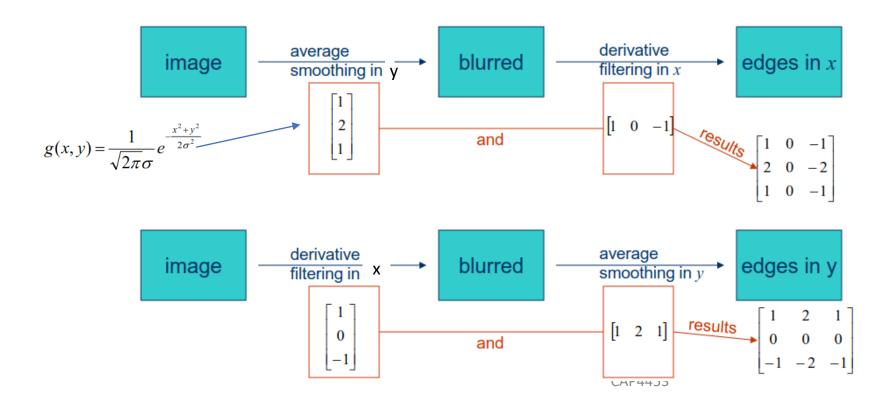
1. Smooth image with Gaussian filter

S = I * g(x, y) = g(x, y) * I



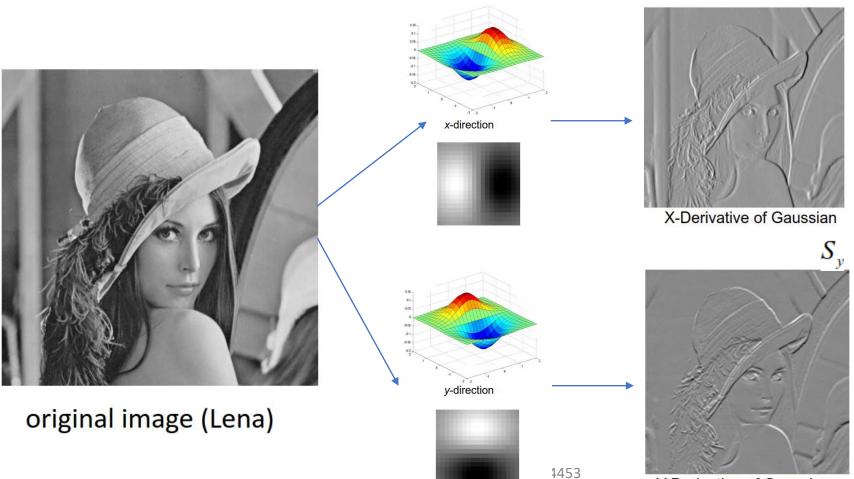


- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image



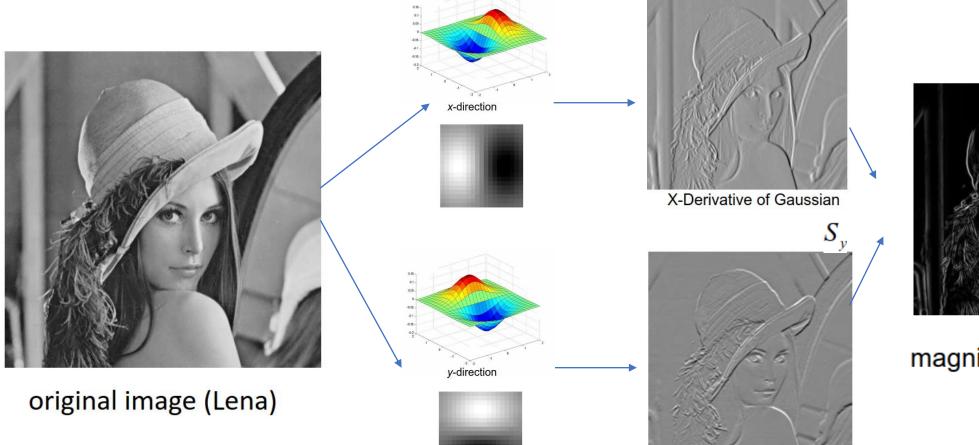
- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

3. Find magnitude and orientation of gradient



 S_{x}

3. Find magnitude and orientation of gradient



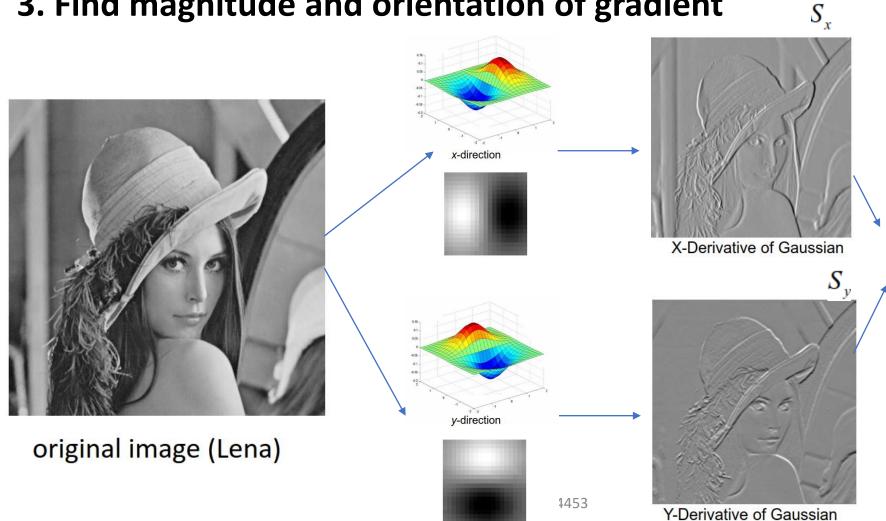
1453

 S_{x}

Y-Derivative of Gaussian

magnitude = $\sqrt{(S_x^2 + S_y^2)}$

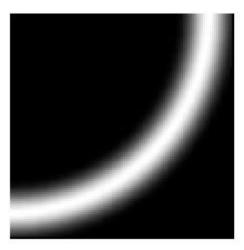
3. Find magnitude and orientation of gradient



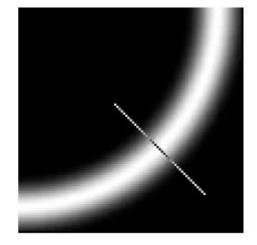
Theta = $atan2(S_y, S_x)$

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

4. Apply "Non-maximum Suppression"

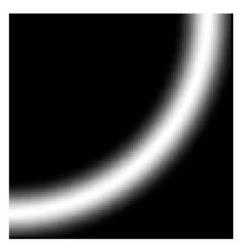


Goal: keep pixels along the curve where magnitude is largest

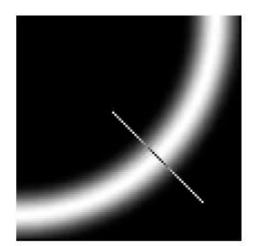


How to: looking for a maximum along a slice normal to the curve

4. Apply "Non-maximum Suppression"



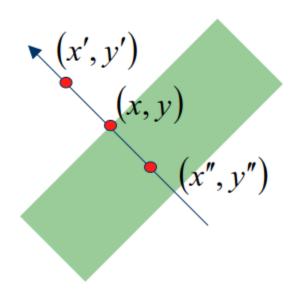
Goal: keep pixels along the curve where magnitude is largest



That is the direction of the gradient !

How to: looking for a maximum along a slice <u>normal to the curve</u>

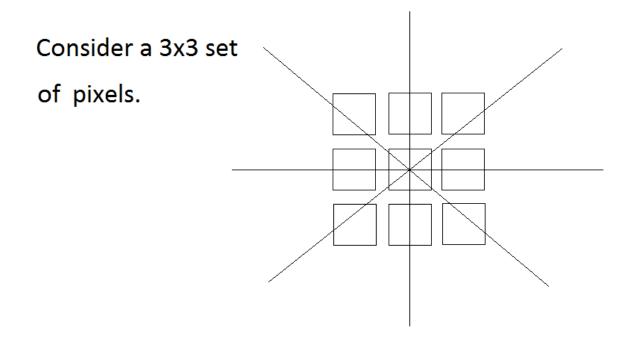
- 4. Apply "Non-maximum Suppression"
 - Suppress the pixels in |∇S| which are not local maximum



$$M(x,y) = \begin{cases} |\nabla S|(x,y) & \text{if } |\nabla S|(x,y) > |\Delta S|(x',y') \\ & \& |\Delta S|(x,y) > |\Delta S|(x'',y'') \\ 0 & \text{otherwise} \end{cases}$$

x' and x" are the neighbors of x along normal direction to an edge

4. Apply "Non-maximum Suppression"

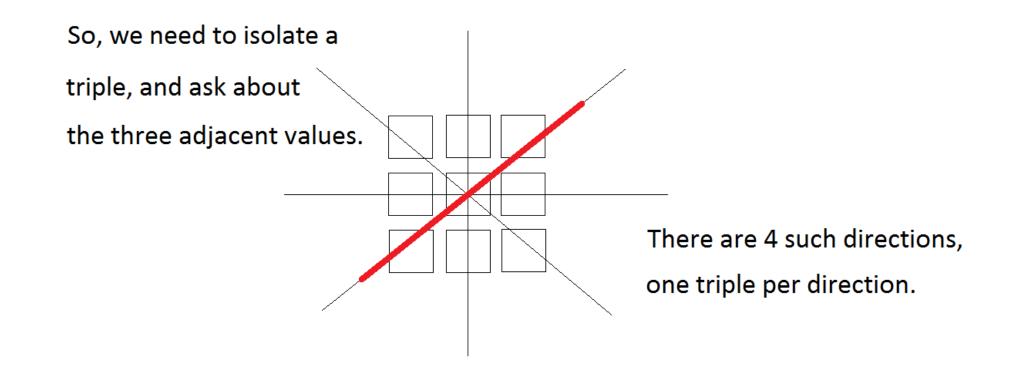


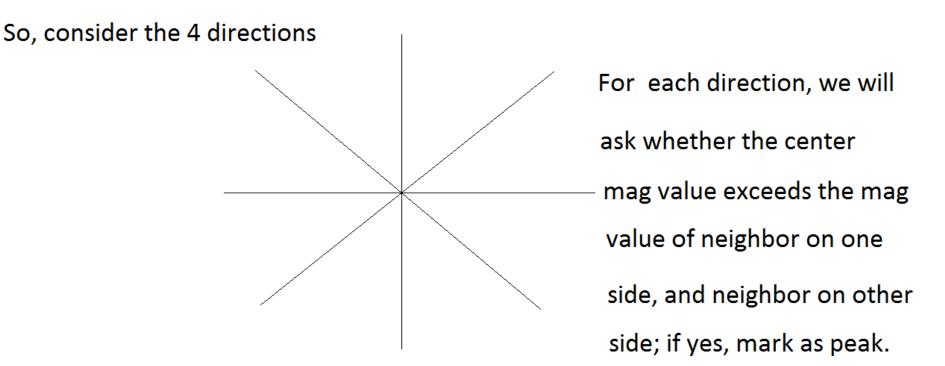
We need to examine triples

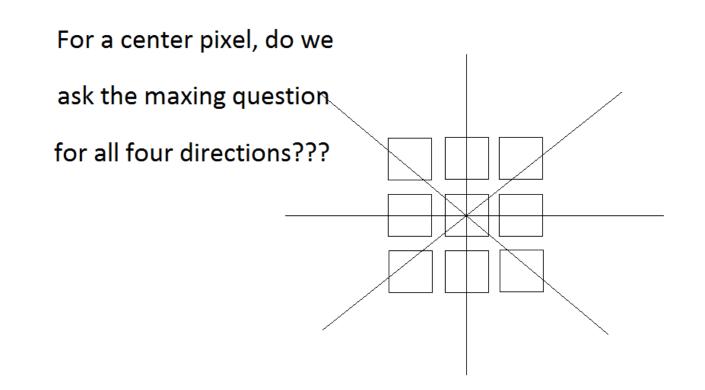
along the directions shown

to see if the center pixel is a

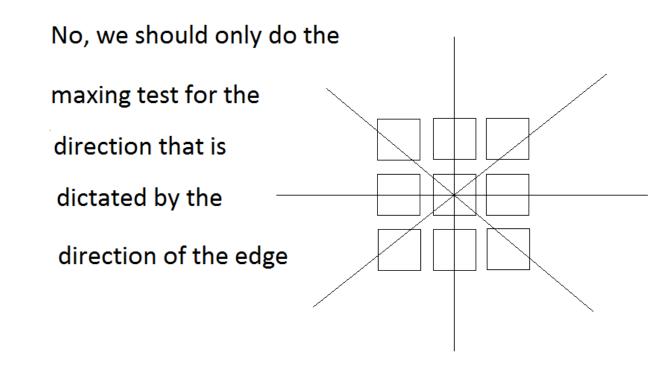
peak (in magnitude) compared to its two neighbors.







4. Apply "Non-maximum Suppression"



We always want to

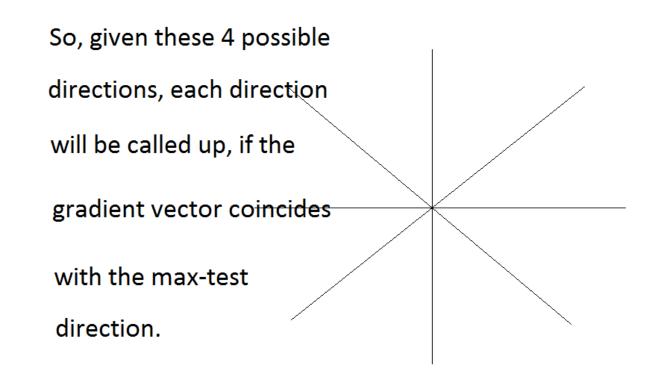
max-test in the direction

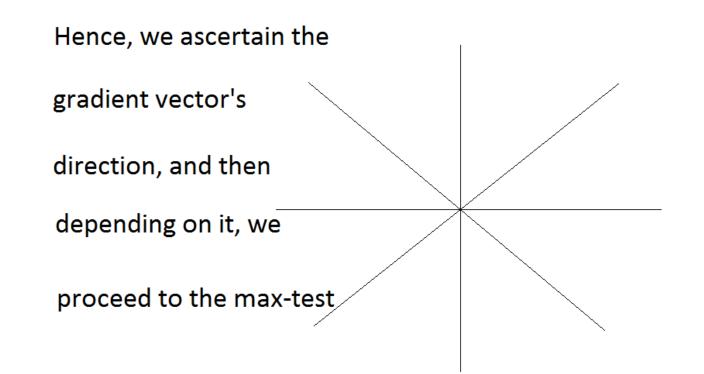
perpendicular to the

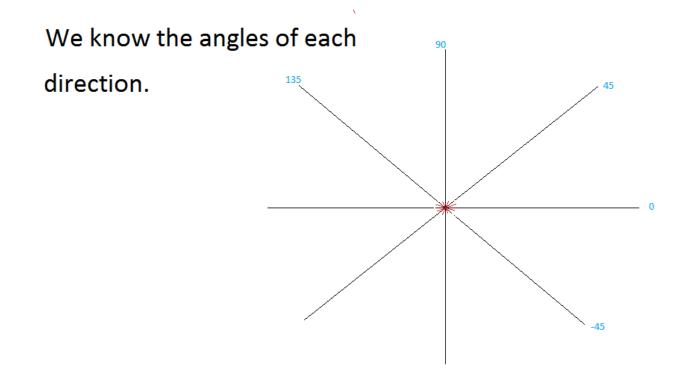
edge, i.e., across the edge.

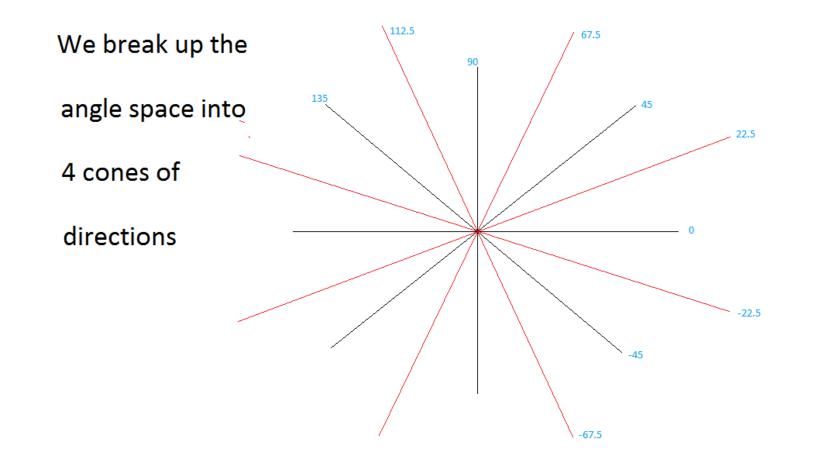
This means in the direction

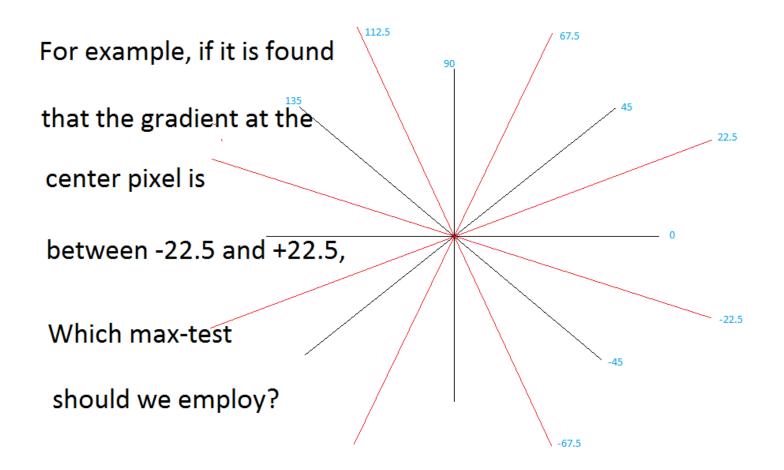
of the gradient vector.











4. Apply "Non-maximum Suppression"

For each pixel (i.e., double-for loop) Get pixel's gradient direction , Dir

If - 22.5 < Dir <=22.5

Employ Horizontal Max-Test

else if +22.5 < Dir <=+67.5

And, remove Vertical cone test, use "otherwise"

So, put = sign in

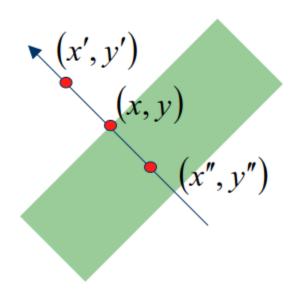
Employ Test involving SW and NE pixels else if -67.5 < Dir <-22.5

Employ Test involving SE and NW pixels

else Employ Vertical test

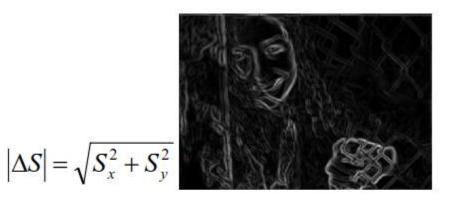
CAP4453

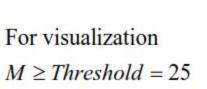
- 4. Apply "Non-maximum Suppression"
 - Suppress the pixels in |∇S| which are not local maximum

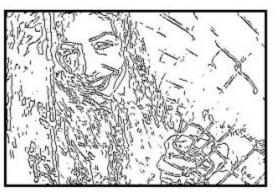


$$M(x,y) = \begin{cases} |\nabla S|(x,y) & \text{if } |\nabla S|(x,y) > |\Delta S|(x',y') \\ & \& |\Delta S|(x,y) > |\Delta S|(x'',y'') \\ 0 & \text{otherwise} \end{cases}$$

x' and x" are the neighbors of x along normal direction to an edge







Comparison

Gradient Thresholding

With non-maximal suppression

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

Hysteresis Thresholding

- Edges tend to be continuous
- Still threshold the gradient
- Use a lower threshold if a neighboring point is an edge
- The "Canny Edge Detector" uses all of these heuristics

- 5. Apply "Hysteresis Threshold"
 - If the gradient at a pixel is
 - above "High", declare it as an 'edge pixel'
 - below "Low", declare it as a "non-edge-pixel"
 - between "low" and "high"
 - Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'edge pixel' directly or via pixels between "low" and "high".

5. Apply "Hysteresis Threshold"

- If the gradient at a pixel is
 - above "High", declare it as an 'edge pixel'
 - below "Low", declare it as a "non-edge-pixel"
 - between "low" and "high"
 - Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'edge pixel' directly or via pixels between "low" and "high".

Connectedness

CAP4453

Х

4 connected

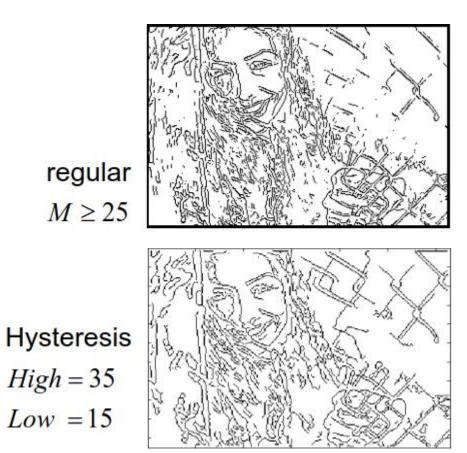
8 connected

6 connected

- 5. Apply "Hysteresis Threshold"
 - Scan the image from left to right, top-bottom.
 - The gradient magnitude at a pixel is above a high threshold declare that as an edge point
 - Then recursively consider the *neighbors* of this pixel.
 - If the gradient magnitude is above the low threshold declare that as an edge pixel.

5. Apply "Hysteresis Threshold"

M



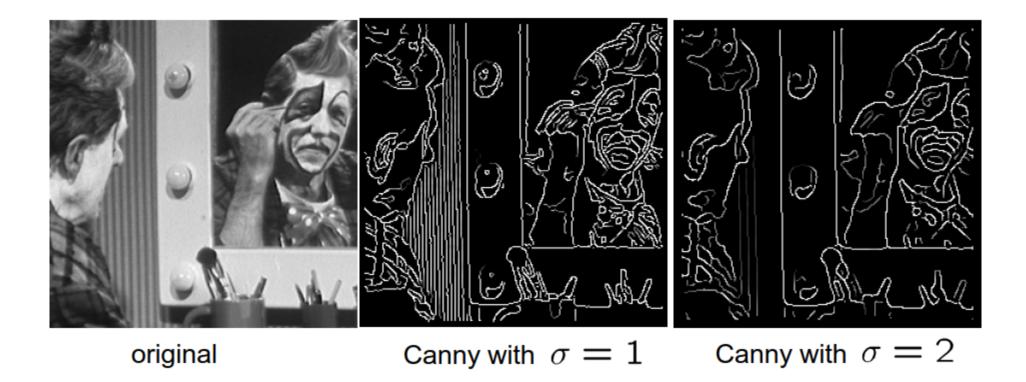
Before non-max suppression

After non-max suppression

Final Canny Edge

Threshold at low/high levels to get weak/strong edge pixelsDo connected components, starting from strong edge pixels

Effect of σ (Gaussian kernel spread/size)



The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Questions?