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Outline

* Image as a function

* Extracting useful information from Images
* Histegram
. Filtering (linear)
. oy . .
. c ution/Corralat
* |Image Derivatives/Gradient
* Edges



Edge Detection

* |dentify sudden changes in an image
* Semantic and shape information
e Marks the border of an object
* More compact than pixels
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* Edges look like
steep cliffs :



Characterizing edges

e An edge is a place of rapid change in the
image intensity function

intensity function
image (along horizontal scanline) first derivative

\ |

edges correspond to
Source: L. Lazebnik extrema of derivative



Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

v You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?



Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

v You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

v You use finite differences.



Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)
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Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

fle+1)— f(z—1) What convolution kernel
9 does this correspond to?

f'(z) =




Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

fle+1)— f(z—1) 1]0]1
2 1|01

f'(z) =




Example 1D signal

How do we compute the derivative of a discrete signal?

10 20 10 200 210 250 250

|

fle+1) = flzx-1) _210-10
2 2

il s

fx) =

=100 ID derivative filter



The Sobel filter

0|-1 1 1101(-1
210(-2 = 2 * 1D derivative
110(-1 1 filter
Sobel filter What filter

is this?



The Sobel filter

O0|-1 1 1101]-1
2102 = 2 * 1D derivative
110]-1 1 filter
Sobel filter Blurring

In a 2D image, does this filter responses along horizontal or vertical lines?



The Sobel filter

O0|-1 1 1101]-1
2102 = 2 * 1D derivative
110]-1 1 filter
Sobel filter Blurring

Does this filter return large responses on vertical or horizontal lines?



The Sobel filter

Horizontal Sober filter:

0(-1 1101]-1
210][-2 = 2 *
110(-1 1

What does the vertical Sobel filter look like?



The Sobel filter

Horizontal Sober filter:

0|-1 1101]-1
2101]-2 — p) *
1101|-1 1
Vertical Sobel filter:
1211 1 11211
0 0 p— 0 k
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vertical Sobel filter
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Several derivative filters

110]-1 11211 310]-3 3 (10] 3
Sobe| 2 10|-2 O]101]O0 Scharr 10| O [-10 O]l]0]O0
110]-1 11-21-1 310]-3 -3 1-10{ -3
110]-1 11111
0|1 110
Prewitt 110/|-1 01010 Roberts
-110 01]-1
110]-1 11-11-1

 How are the other filters derived and how do they relate to the Sobel filter?
 How would you derive a derivative filter that is larger than 3x3?



Computing image gradients

1. Select your favorite derivative filters.

0]-1 11211
S:=12]0]-2 S,=1(0]0]0
0]-1 1(-2]-1




Computing image gradients

1. Select your favorite derivative filters.

0]-1 11211
S:=12]0]-2 S,=1(0]0]0
0]-1 1(-2]-1

2. Convolve with the image to compute derivatives.

(;%:Sm®f ﬁzSi@'@f



Computing image gradients

1. Select your favorite derivative filters.

0]-1 11211
S:=12]0]-2 S,=1(0]0]0
0]-1 1(-2]-1

2. Convolve with the image to compute derivatives.

(;%:Sm®f ﬁzSi@'@f

3. Form the image gradient, and compute its direction and amplitude.

=loral = (afe) () ()

gradient direction amplitude




Image Gradient

Gradient in x only Gradient in y only Gradient in both x and y
_ |91 [, of _|0f of ]
crrfetd| 1 wr- ) -2

Gradient direction Gradient magnitude

_ .1 [0f ,0f af\°  [of\’
f = tan (ay/ax> |Vf|\/(%) +(3_y)

How does the gradient direction relate to the edge? What does a large magnitude look like in the image?

29



Image gradient example

o
-

original vertical
5 derivative
gradient horizontal
amplitude derivative

How does the gradient direction relate to these edges?



intensity plot
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intensity plot

Using a derivative filter:

I ' L u'f'l'-"l |
b ol A ok o ads

What’s the
Al problem here?

]

derivative plot
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Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

Sigma = 50
. o Jﬂmmmmm
Input UE: - IJI. ....... : ................................... _
0 200 460 E{I]D SII]'U 1EIIEID 12ID'D 1400 1600 1800 2000
Gaussian  § /\
0 200 400 600 800 1000 1200 1400 1600 1800 2000
§ ; : ! ! !
blurred 3 ; /
0 200 400 600 800 1000 1200 1400 1600 1800 2000
derivative of = A How much
blurred éu /\ should we blur?
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derivative of
Gaussian

output (same
as before)

Convolulion
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How many operations
did we save?

Any other advantages
beyond efficiency?



Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

| .first—.order (@) = lim f(z 4+ 0.5h) — f(z — 0.5R) i 1D derivative filter
finite difference h—0 h 1101(-1
second-order (2) = lim flr+h)—=2f(x)+ flz — h) Laplace filter

finite difference h—0 h? ?



Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

| .first—.order (@) = lim f(z 4+ 0.5h) — f(z — 0.5R) i 1D derivative filter
finite difference h—0 h 1101(-1
second-order (2) = lim flr+h)—=2f(x)+ flz — h) Laplace filter

finite difference h—0 h? 1(-211




Laplacian of a Gaussian

The Laplace of Gaussian (LoG) of image f can be written as

Vif+g)=F+Vg

with g the Gaussian kernel and * the comvolution. That is, the Laplace of the image smoothed by a
Gaussian kernel is identical to the image convolved with the Laplace of the Gaussian kernel, This
convolution can be further expanded, in the 20 case, as

o2 2 a2 a2
.f*?ﬁii‘:f*(@Q'F—ﬂ) =.f*@§'+f*3—y3§

Thus, it is possible to compute it as the addition of two convolutions of the input image with
second derivatives of the Gaussian kernel (in 3D this is 3 convelutions, etc.). This is interesting
because the Gaussian kernel is separable, as are its derivatives. That is,

flz,y) = glz,y) = flz,y) = (g(z) = g(y)) = (fz,y) * g(zx)) = g(y)

meaning that instead of a 2D convolution, we can compute the same thing using two 1D
convolutions, This saves a lot of computations. For the smallest thinkable Gaussian kernel you'd
have 5 samples along each dimension. A 2D convolution reguires 25 multiplications and additions,
two 10 comvolutions require 10, The larger the kernel, or the more dimensions in the image, the
more significant these computational savings are.

Thus, the LoG can be computed using four 1D convolutions, The LoG kernel itself, though, is not
separable.

There Is an apgroximation where the image is first corvalved with & Gaussian kernel and then W2 is
implemented using finite differences, leading to the 3x3 kernel with -4 in the middle and 1 in its
four edge neighbors.

The Ricker wavelet or Mexican hat operator are identical to the Lo&, up to scaling and

i glilcglibel e

image processing - What Is the Difference between Difference of Gaussian, Laplace of Gaussian, and Mexican Hat Wavelet? - Signal Processing Stack Exchahge



https://dsp.stackexchange.com/questions/37673/what-is-the-difference-between-difference-of-gaussian-laplace-of-gaussian-and

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Sigma = 50
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Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Sigma = 50
T
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“zero crossings” at edges



Laplacian of Gaussian filtering Laplace filtering
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Laplacian of Gaussian filtering Derivative of Gaussian filtering
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Laplacian of Gaussian filtering Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).
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References

Basic reading:
e Szeliski textbook, Section 3.2



Questions?
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