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Administrative details

* Homework 1 issues ?



Outline

s tmageasafunction
+—Linearalgebra

Extracting useful information from Images
* Histegram

Noise

Filtering (linear)

Smoothing/Removing noise

Convolution/Correlation

Image Derivatives/Gradient

Edges

Colab Notes/ homeworks
Read Szeliski, Chapter 3.
e Read/Program CV with Python, Chapter 1.



Image noise

* Light Variations
 Camera Electronics
 Surface Reflectance
* Lens

* Noise is random,
* it occurs with some probability
* |t has a distribution



Additive Noise

Iopservea (X,¥) = Ioriginal(x: y) +n(x,y)

True pixel value at x,y \

Noise at x,y
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Multiplicative Noise

Iobservea (X,¥) = Ioriginal (x,y) X n(x,y)

True pixel value at x,y \

Noise at x,y
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Gaussian Noise
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Gaussian function
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Salt and pepper noise

* Each pixel is randomly made black or white with a uniform probability
distribution

Salt-pepper
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Uniform distribution

0 a b X
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#Parameterﬁ

$image : nd
# Input image data. Will be converted to float.
fmode @ str
¥ Cne of the following strings, selecting the type of noise to add:
[] ° []
m m # 'gauss' Gaussian-distributed additive noise.
O I S e I e e n a I O n # 'poisson’ Poisson-distributed nolse generated from the data.

¥ "sip' Eeplaces random pixels with 0 or 1.
¥ 'speckle’ Multiplicative noise u g out = image + n*image,where
# n,is uwniform noise with specified mean &

import numpy as np
import os
import cwv2

|def =« r(noise_typ,image) :
if noise_typ == "c =RH

row,col ,ch= image.shape
mean = 0
] var = 1
sigma = wvar¥*(Q,5
gauss = np.random.normal {(mean,sigma, (row,col,ch))
gauss = gauss.reshape (row,col,ch)
noisy = image + gauss
retorn noisy
1 elif noise typ = "s4&]
row,col,ch

s vs p=2=0
amount = 0.

out = image
$# Salt mode
num salt = np.ceil (amount * image.size * s_vs p)
1 coords = [np.random.randint(0, i - 1, int(num salt))
for i in image.shape]
out [coords] = 1

# Pepper mode

num pepper = np.cell (amount* image.size * (1. - s _vs_p))
| coords = [np.random.randint(0, i - 1, int(num pepper))
for i in image.shape]
out [coords] = 0

retarn out
] elif noise_typ — "poi
wvals = len(np.unigue {(image))

wvals = 2 %% np.ceil(np.log2(vals))
noisy = np.random.poisson(image * wals) J/ float(vals)
retonrn noisy

| elif noise_typ ="
row,col,ch = image.shape

gauss = np.random.randn{row,col,ch)

CAP4453 gauss = gauss.reshape (row,col,ch) 11
noisy = image + image * gauss
return noisy



Outline

s lmageasafunction
e Extracting useful information from Images
* Histegram
* Neoise
* Filtering (linear)
* Smoothing/Removing noise
e Convolution/Correlation

Image Derivatives/Gradient
Edges

* Colab Notes/ homeworks
* Read Szeliski, Chapter 3.
* Read/Program CV with Python, Chapter 1.



Filters
* Filtering

— Form a new image whose pixels are a combination
of the original pixels

e Why?
— To get useful information from images

e E.g., extract edges or contours (to understand shape)

— To enhance the image
* E.g., to remove noise
e E.g., to sharpen and “enhance image” a la CSI

— A key operator in Convolutional Neural Networks




Linear shift-invariant image filtering

Replace each pixel by a linear combination of its neighbors (and possibly itself).

The combination is determined by the filter’s kernel.

The same kernel is shifted to all pixel locations so that all pixels use the same linear
combination of their neighbors.



Filtering

* Modify pixels based on some function of neighborhood

10 |30 (10

200 |11 |20 ——— 5.7
1 (9 |1
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Image filtering

* Image filtering: compute function of local neighborhood at
each position

(kernel)
h=output f=filter I=image

hm,n)=>" flk,[11[m+k,n+I]

2d coords=k, 1 2d coords=m,n

I
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Image filtering

* Image filtering: compute function of local neighborhood at
each position

* Enhance images
* Denoise, resize, increase contrast, etc.

e Extract information from images
* Texture, edges, distinctive points, etc.

* Detect patterns
* Template matching
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Let’s run the box filter
i Al ]

image output

Box filter
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note that we assume that
the kernel coordinates are h[m, n] — Z g[k, l]f[m T k: n + l]

centered output k.l filter image (signal)



Let’s run the box filter
i Al ]

image output
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him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)



Let’s run the box filter
i Al ]

image output
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him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)



Let’s run the box filter

image o output h[': ]
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output k,l filter image (signal)



Let’s run the box filter

image fl output hl- ]
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output k,l filter image (signal)



Let’s run the box filter

image fl output hl- ]
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output k,l filter image (signal)



Let’s run the box filter

image output h[': ]
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him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)



Let’s run the box filter

image output h[': ]
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output k,l filter image (signal)



Let’s run the box filter

image output h[': ]
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output k,l filter image (signal)



Let’s run the box filter

image output h[': ]
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output k,l filter image (signal)



Let’s run the box filter
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image output
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output k,l filter image (signal)



Let’s run the box filter
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Let’s run the box filter
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output k,l filter image (signal)



Let’s run the box filter
i Al ]

image output
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output k,l filter image (signal)



Let’s run the box filte
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Let’s run the box filter
i Al ]
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Let’s run the box filter
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Let’s run the box filter
i Al ]
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Let’s run the box filter
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image output
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... and the result is
f[:] h[':']
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Correlation (linear relationship)

f®h= ;Z £k, Dn(k,1)

f =Image

h = Kernel

/ h
£ | |f h, |h, |h S ®h=fih+ f,h, + fih,
£, |f. |f ® |n, |h |, | + fuh, + fhs + f R
£, | |6 h, |hg |h, + foh, + fohy + foh
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f =Image
h = Kernel

Convolution

f*h= ;Zf(k,f)h(— k1)

oh [ 5 ~

Oﬂl_h

h
h, |hy |h X—ﬂlp h, |h, |h;
114 115 6 114 115 }]6
hl h2 h3 h’? 8 9
Y — flip
hy |hy |h S h= fihy+ frhs + f5h
hy |hs |hy [ + fahs + fshs + fh
hy |h, |h, + fohy + foh, + foh,

CAP4453
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Correlation and Convolution

* Convolution is a filtering operation

» expresses the amount of overlap of one function as it is shifted over another
function

* Correlation compares the similarity of two sets of data
* relatedness of the signals!
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Key properties of linear filters

Linearity:
filter(f, + f,) = filter(f,) + filter (f,)

Shift invariance: same behavior regardless of
pixel location
filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be
represented as a convolution

CAP4453
Source: S. Lazebnik
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More properties

e Commutative:a*b=b*a
— Conceptually no difference between filter and signal
— But particular filtering implementations might break this equality

e Associative:a*(b*c)=(a*b)*c
— Often apply several filters one after another: (((a * by) * b,) * b;)
— This is equivalent to applying one filter: a * (b, * b, * b,)

e Distributes over addition:a * (b+c¢)=(a * b)+ (a * ¢)

e Scalars factorout: ka *b=a *kb=k (a * b)

e |dentity: unit impulsee =10, 0, 1, O, 0],
a*e=a

44



Filtering Examples - 1
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Filtering Examples - 2

an‘
0:?

0

0

0

CAP4453
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Filtering Examples - 2
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Example: box filter Average: mean

e Dividing the sum of N values by N

What does it do? gl ]
e Replaces each pixel with an
average of its neighborhood 1 1| 1] 1
— 1 1 1
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Filtering Examples - 3
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Filtering Examples - 3
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Example: box filter

What does it do?

e Replaces each pixel with an
average of its neighborhood

e Achieve smoothing effect
(remove sharp features)

51



Filtering Examples - 4
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Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

What is the rank of this filter matrix?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

example:
box filter

What is the rank of this filter matrix?

Matrix rank is 1 for separable filters

s = svd(G);
sum(s > eps('single'))

column

Y4

11111

* row

Let's say our 20 Linear Operator is given by the Matrix G € B™*™,
Using the 5VD Decomposition the operator can be written as:

n
_ T
= E Tyl U,
i=1

Separable Linear 2D Operator is defined as operator which can be composed by Quier Product of 2

vectors.
Locking at the SWD Decomposition of (& we can conclude that (7 is separable operator if and only
f%i > 1 a; = 0and it is given by:

G = ;v
Usually LPF 20 Linear Operators, such as the Gaussian Filter, in the Image Processing world are
normalized to have sum of 1 (Keep DC) which suggests &y = 1 moreover, they are also symmetric
and hence »y = my (If you want, in those cases, it means you can use the Elgen Value
Decomposition instead of the SV,
So basically, to prove that a Linear 20 Operator is Separable you must show that it has only 1 non
vanishing singular value.

image processing - How to Prove a 2D Filter Is Separable? - Signal Processing Stack Exchange



https://dsp.stackexchange.com/questions/35190/how-to-prove-a-2d-filter-is-separable#:~:text=For%20this%20reason%2C%20as%20soon%20as%20G%20%28x%2C,a%20kernel%20is%20separable%2C%20just%20check%20the%20rank%3A

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

Why is this important?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
 Whatis the cost of convolution with a non-separable filter?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
* What is the cost of convolution with a non-separable filter? ——> M?x N?
 Whatis the cost of convolution with a separable filter?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
* What is the cost of convolution with a non-separable filter? ——> M?x N?
 Whatis the cost of convolution with a separable filter? —> 2xNxM?



The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 452 ' I

fi,7) = e 20

Qro?

* weight falls off with distance from center pixel

e theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?



Standard deviation o

a4

oa Q1 Oz O3
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The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 4 52 1 I 1 X

fi,7) = e 20

Qro?

s this a separable filter?
e weight falls off with distance from center pixel P

e theoretically infinite, in practice truncated to 1 2
some maximum distance kernel 16 21412
11211

Any heuristics for selecting where to truncate?
e usually at 2-30



The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 4 52 1 I 1 X

fi,7) = e 20

Qro?

. . , s this a separable filter? Yes!
e weight falls off with distance from center pixel

e theoretically infinite, in practice truncated to 1 2
some maximum distance kernel 16 21412
11211

Any heuristics for selecting where to truncate?
e usually at 2-30



The Gaussian Filter

g(x)=[011 .13 6 1 .6 .13 .011]



Gaussian filters

(O =5 pixels (O =10 pixels (O =30 pixels



Filtering Examples - 5
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Filtering Examples - 5

Gaussian Smoothing
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Filtering Examples - 6

Gaussian Smoothing Smoothing by Averaging
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Filtering Examples - 7

After additive After Averaging After Gaussian Smoothing
Gaussian Noise

CAP4453 69



Filtering Examples — 8
Sharpening

filter
0 0 1 1
0o[2]0]| " g 1
olo]o 11111

(Note that filter sums to 1)

* do nothing for flat areas
e stress intensity peaks

CAP4453

output

70



Filtering Examples — 8

Sharpening

CAP4453

Accentuates differences with local average

/

filter
0 0 1
01210 - 5
01010 1

1

1

(Note that filter sums to 1)

e do nothing for flat areas
e stress intensity peaks

output

71



Sharpening

 What does blurring take away?

= detail

(This “detail extraction” operation
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/



https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

(This “detail extraction” operation
is also called a high-pass filter)

detail ‘_ \

el -

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/



https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

2 times original Smoothed
oflofo )
ofz2]o0 - =~
oflofo 1

/ \ (This “detail extraction” operation
is also called a high-pass filter)



https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

(This “detail extraction” operation
is also called a high-pass filter)

\ —
'
D giel. -

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/



https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening examples




Median Filter

* A Median Filter operates over a window by
selecting the median intensity in the window.

77



Image filtering - median

/1] hl.,.]
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Image filtering - median

/1]

Median of {0,0,0,0, 90, 90,90,90,90}

20

30

CAP4453
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Median Filter

* A Median Filter operates over a window by
selecting the median intensity in the window.

* Great to deal with salt and pepper noise !



-
Q
o o

Median F

Gaussian Median

Mean

~
L
~
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Image Boundary Effect

The filter window falls off at the edge of image.

82



Practical matters

What about near the edge?
* The filter window falls off the edge of the image

* Need to extrapolate ' - — “

* methods:
* clip filter (black)
* wrap around
* copy edge
* reflect across edge

Source: S. Marschner

CAP4453 83



Zero wrap clamp mirror

Copy edge Reflect across edge

CAP4453 84



Questions?
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