9 CAP 4453
Robot Vision

Administrative details

* Homework 1 issues ?

Outline

s tmageasafunction
+—Linearalgebra

Extracting useful information from Images
* Histegram

Noise

Filtering (linear)

Smoothing/Removing noise

Convolution/Correlation

Image Derivatives/Gradient

Edges

Colab Notes/ homeworks
Read Szeliski, Chapter 3.
e Read/Program CV with Python, Chapter 1.

Image noise

* Light Variations
 Camera Electronics
 Surface Reflectance
* Lens

* Noise is random,
* it occurs with some probability
* |t has a distribution

Additive Noise

Iopservea (X,¥) = Ioriginal(x: y) +n(x,y)

True pixel value at x,y \

Noise at x,y

CAP4453 5

Multiplicative Noise

Iobservea (X,¥) = Ioriginal (x,y) X n(x,y)

True pixel value at x,y \

Noise at x,y

CAP4453 6

Gaussian Noise

—112

n(x,y)~ g(n)=e>’

09t
08t
o7t
06
g(n) | =
D4t
03t
02+

LR

Probability Distribution
n is a random variable

CAP4453 7

Gaussian function

Py - (%)

10

08

02

0o

EEEE

o o o}
[T

L 07=05,—

G202, -
e C
ZEEE N JE——

CAP4453

Salt and pepper noise

* Each pixel is randomly made black or white with a uniform probability
distribution

Salt-pepper

CAP4453 9

Uniform distribution

0 a b X

CAP4453 10

#Parameterﬁ

$image : nd
Input image data. Will be converted to float.
fmode @ str
¥ Cne of the following strings, selecting the type of noise to add:
[] ° []
m m # 'gauss' Gaussian-distributed additive noise.
O I S e I e e n a I O n # 'poisson’ Poisson-distributed nolse generated from the data.

¥ "sip' Eeplaces random pixels with 0 or 1.
¥ 'speckle’ Multiplicative noise u g out = image + n*image,where
n,is uwniform noise with specified mean &

import numpy as np
import os
import cwv2

|def =« r(noise_typ,image) :
if noise_typ == "c =RH

row,col ,ch= image.shape
mean = 0
] var = 1
sigma = wvar¥*(Q,5
gauss = np.random.normal {(mean,sigma, (row,col,ch))
gauss = gauss.reshape (row,col,ch)
noisy = image + gauss
retorn noisy
1 elif noise typ = "s4&]
row,col,ch

s vs p=2=0
amount = 0.

out = image
$# Salt mode
num salt = np.ceil (amount * image.size * s_vs p)
1 coords = [np.random.randint(0, i - 1, int(num salt))
for i in image.shape]
out [coords] = 1

Pepper mode

num pepper = np.cell (amount* image.size * (1. - s _vs_p))
| coords = [np.random.randint(0, i - 1, int(num pepper))
for i in image.shape]
out [coords] = 0

retarn out
] elif noise_typ — "poi
wvals = len(np.unigue {(image))

wvals = 2 %% np.ceil(np.log2(vals))
noisy = np.random.poisson(image * wals) J/ float(vals)
retonrn noisy

| elif noise_typ ="
row,col,ch = image.shape

gauss = np.random.randn{row,col,ch)

CAP4453 gauss = gauss.reshape (row,col,ch) 11
noisy = image + image * gauss
return noisy

Outline

s lmageasafunction
e Extracting useful information from Images
* Histegram
* Neoise
* Filtering (linear)
* Smoothing/Removing noise
e Convolution/Correlation

Image Derivatives/Gradient
Edges

* Colab Notes/ homeworks
* Read Szeliski, Chapter 3.
* Read/Program CV with Python, Chapter 1.

Filters
* Filtering

— Form a new image whose pixels are a combination
of the original pixels

e Why?
— To get useful information from images

e E.g., extract edges or contours (to understand shape)

— To enhance the image
* E.g., to remove noise
e E.g., to sharpen and “enhance image” a la CSI

— A key operator in Convolutional Neural Networks

Linear shift-invariant image filtering

Replace each pixel by a linear combination of its neighbors (and possibly itself).

The combination is determined by the filter’s kernel.

The same kernel is shifted to all pixel locations so that all pixels use the same linear
combination of their neighbors.

Filtering

* Modify pixels based on some function of neighborhood

10 |30 (10

200 |11 |20 ——— 5.7
1 (9 |1

CAP4453 15

Image filtering

* Image filtering: compute function of local neighborhood at
each position

(kernel)
h=output f=filter I=image

hm,n)=>" flk,[11[m+k,n+I]

2d coords=k, 1 2d coords=m,n

I

CAP4453 16

Image filtering

* Image filtering: compute function of local neighborhood at
each position

* Enhance images
* Denoise, resize, increase contrast, etc.

e Extract information from images
* Texture, edges, distinctive points, etc.

* Detect patterns
* Template matching

CAP4453 17

Let’s run the box filter
i Al]

image output

Box filter

0 o fo lo fo |o Jo |o |o

g[-,] 0 o fo lo fo |o Jo |o |o D
kernel 0 0 f90 |90 |90 |90 |90 o [o
NEHENE 0 0 90 |90 |90 |90 |90 |0 [o
—Ih 1 1 0 |o o |90 o |90 |90 |90 |0 |o
9111 o |o |o [90]90 |90 |90 |90 |o |o
0o lo Jofo oo o o]o |o
0o lo Jlofo oo o [o]o |o
0o o |9ofo [o Jo |o [o o |o
oo oo oo oo]o |o

note that we assume that
the kernel coordinates are h[m, n] — Z g[k, l]f[m T k: n + l]

centered output k.l filter image (signal)

Let’s run the box filter
i Al]

image output

0o loJofJo oo o oo]o
g[-,-] o o lo o oo]o E

kernel o lo |o Joo |90 |90 |90 |90 |0 |o
1l]e o lo |o |90 |90 |90 |90 |90 |0 |o
— 11 |1 |1 0o lo |o |90 0 |20 |90 900 |o
9111 0o lo |o |90 |90 |90 |90 |90 |0 |o
0 lo oo oo o oo]o

0o lo o oo oo oo o

0o lo |9olo o |o |o [o |o o

0o lo oo oo o oo]o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output

0 o lo lo o |o
9[‘:'] 0 o lo |o |o 0 D&
kernel o fo 90 [90 |9 wn,\\ \
1+ 1 i — T E shift-invariant:
— |1 |1 |1 o |o 90 |90 |90 [0 |o ~t— . :
9 1 |1 |1 o o 90 {90 |90 |0 o as the pixel
o |o o lo oo lo o [o shifts, so does
o |o o lo o lo o |o [o the kernel
o lo |eofo [o Jo o |o o |o
oo o foloo oo oo

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image o output h[':]
0 0 |o
g[:] 0 o 0 |o 0
kernel 0 Jo 0 [0
R E 0 |o |o |90 |90 |90 |90 |90 |0 |o
— 11 1 |1 0 lo |o |90 |0 |20 |90 90 |0 |o
9111 0 lo |o |90 |90 |90 |90 |90 |0 |o
0o lo oo oo |o o o |o
0o lo Jo o oo |o o o |o
0 |o |90]o |o Jo o |o |o |o
oo oo oo oo |o|o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image fl output hl-]
0 lofJoloJofo [o o |o[o
gl] o |o o 0o oo 0 10D
kernel 0 |o Jo |90 |90f90 |90 |90 |o |o
1l]e 0 |o |o |90 90 |90 |90 |90 |o |o
— 11 |1 |1 o |o [o [90]o {90 |90 |90 |0 [o
9111 0o |o [o |90]90 |90 |90 f90 |0 o
0 loJoJoJo oo o |o o
0 loJoJoJo oo o oo
0 lo |90]o Jo |o [o |o |o [o
0 loJoJoJo oo o oo

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image fl output hl-]
o lofo fo]ofo |ofo oo
gl] o |o o lo o |o |o 0 |10
kernel 0o |o Jo |90 |sofjo0 |20 f90 o |o
T 0 lo |o |e0]90 |90 |90 |90 |0 |o
— 1 |1 |1 0o lo [o |90]o {20 |90 |90 |0 [o
9111 0o |o [o |90]90]90 |90 |90 |0 o
oo o fofoJofofo]olo
oo o fofoJofofo]o]o
0o lo [90fo Jo Jo |o o Jo |o
oo o fo]oJoofo]o o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
o [o |o o |o
g[-,] o [o |o o |o 0 |10 zoD
kernel 0 |0 |O (N [0
R E o |o |o o |o
— 11 1 |1 0o |o |o |900 |90 |90 |90 o |o
9111 o |o |o |90 |90 |90 |90 |20 |0 |o
0o lo Jofo oo o o]o |o
0o lo Jlofo oo o [o]o |o
0o o |9ofo [o Jo |o [o o |o
oo oo oo oo]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
0o o o |o
gl o [o |o o |o 0 |10 |20
kernel 0 |0 |O (N [0
1l]e 0o lo Jo o |o
—l1 1 1 0 lo |o 900 |90 |90 |90 |o |o
9111 0 |o |o |90 90 |90 |90 |90 |o |o
0 loJoJoJo o oo oo
0 loJoJoJo oo o |o o
0 lo |90]o Jo |o [o |o |o |o
0 loJoJoJo o oo |o o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
o |o |o o |o

gl] o lo |o o |o 0 |10 20|30
kernel 0 |0 |O (N [0
1l]e 0o o o o |o
—h 1 s o o |o |90 |0 |20 |90 |90 |0 [o
9111 o o |o 90|90 |20 |90 |90 |o |[o
oo oo o oo fo]o [o
oo oo o oo oo [o
o o |9o]o |o |o Jo o |o [o
oo oo o oo oo [o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
o lo |o o |o
gl] o lo |o o |o 0 10|20 |30 |30
kernel 0 |0 |O (N [0
T o lo |o o |o
—11 h | o lo o |90 fe Jo0 |90 |o0 [0 |o
9111 o lo |o |90 |90 |90 |90 |90 [0 |o
oo fo]o oo oo fo]o
oo fo]o oo oo fo]o
0o lo 90]o o Jo o |o |0 |o
oo fo]o oo oo fo]o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o o o |]o o [o o fjo
g[-,-] o [o |o |o Jo o o 0 |10]20 |30 |30 |30 |20
kernel 0 [o |o |90 |90 |90}90 [90 |o fo
L 0 [o |o |90 [90 |90 |90 (90 |0 |o
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo [o o |ofJo o |o
g[-,-] 0 [o |lofo [o]o |ofJo o |o 0 |10 |20 |30 |30 |30 |20
kernel 0 [o |o |90 [90 |90 |90f90 |o |o
L 0 [o |o |90 [90 |90 |90 (90 |0 |o
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo |o]o o [o]o |o
g[-,-] 0 [o |lo o [o Jo |o [o o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 90 {90 |90 |90 |90 |o |o E
L 0 [o |o J90 |90 |90 |90 |90 |o |o
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 |o 0 |o
g[-,'] o lo o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 0_|o ol 0 2°D
L 0 |o 0 |o
— 11 11 |1 0 |0 0 |0
) 1 |11 |1 0 |0 0 |0
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filte

I

image Il output Al]
0 |o 0 |o
g[-,'] o lo o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel o o 0 [0 0 |20
1l s 0 |o o |o
—1h 1 |1 0 |o o [o
9 1|11 1 o [o o [o
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo |o]o o [o]o |o
g[-,-] 0 [o Jo fo [o |]o |o [o o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel o o |o 90 [90 |90 |90 [0 |o 0 |20 [40 |60 |60 |60 |40 |20
L o o |o 90 |90 |90 |90 [0 |o OD
ol FO O it o fo |o 0 90|90 |90 o |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
o oo fofofofofo oo
gl 0o JoJo oo fofofo oo 0 |10]2030 3030 |20 |10
kernel o fo |o 90 |90 |90 |90 [0 |o 0 |20 |40 |60 |60 |60 [40 |20
1] o fo |o 90 |90 |90 90 |o |o 0 30|
—1 1 |1 0 fo o 0 9090|900 [o
T T 0 |o |o [90]s0 |90 [0 |90 Jo |o
o oo fofofofofo oo
o oo fofofofofo oo
0 Jo |9ofo [o fo fo [o o |o
o oo fofofofofo oo

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

(Vo)
(@)

o[]

image output
0 [o o fo |o]o o [o]o |o
g[-,] 0 [o Jlofo [o]o |o [o]o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 0 [o |o |90 [90 |90 |90 (90 |o |o 0 |20 [40 |60 |60 |60 |40 |20
L 0 [o |o |90 [90 |90 |90 (90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
9111 0 |o [o 90|90 |90 |90 |90 |0 |o 0 |20 |30 |50 |50 |60 |40 |20
o [o |o 0 |o 0 |10 |20 |30 |30 |30 |20 |10
o fo |o o [o 10 |10 {10 |10 |0 Jo |o |o
o fo o [o
o fo o [o

0
0
0
0

o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo |o]o o [o]o |o
g[-,] 0 [o Jlofo [o]o |o [o]o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 0 [o |o |90 [90 |90 |90 (90 |o |o 0 |20 [40 |60 |60 |60 |40 |20
L 0 [o |o |90 [90 |90 |90 (90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
9111 0 |o [o 90|90 |90 |90 |90 |0 |o 0 |20 |30 |50 |50 |60 |40 |20
0 |o o [o o |o oo |o o 0 |10 |20 |30 |30 |30 |20 |10
0 [o o fo [o]o |o fo o |o 10 |10 {10 |10 |0 Jo |o |o
0 [o |9ofo [o Jo |o fo |o |o 10101010000E
0 [o o fo o Jo o Jo Jo |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

... and the result is
f[:] h[':']

image output
0 [o o fo |o]o o [o]o |o
g[-,-] 0 [o Jlofo [o]o |o [o]o |o
kernel 0 [o |o |90 [90 |90 |90 (90 |o |o
L 0 [o |o |90 [90 |90 |90 (90 |0 |o
— |1 |1 | 00090.90909000
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =" glk, || f[m + k,n+]

output k,l filter image (signal)

Correlation (linear relationship)

f®h= ;Z £k, Dn(k,1)

f =Image

h = Kernel

/ h
£ | |f h, |h, |h S ®h=fih+ f,h, + fih,
£, |f. |f ® |n, |h |, | + fuh, + fhs + f R
£, | |6 h, |hg |h, + foh, + fohy + foh

CAP4453 39

f =Image
h = Kernel

Convolution

f*h= ;Zf(k,f)h(— k1)

oh [5 ~

Oﬂl_h

h
h, |hy |h X—ﬂlp h, |h, |h;
114 115 6 114 115 }]6
hl h2 h3 h’? 8 9
Y — flip
hy |hy |h S h= fihy+ frhs + f5h
hy |hs |hy [+ fahs + fshs + fh
hy |h, |h, + fohy + foh, + foh,

CAP4453

40

Correlation and Convolution

* Convolution is a filtering operation

» expresses the amount of overlap of one function as it is shifted over another
function

* Correlation compares the similarity of two sets of data
* relatedness of the signals!

CAP4453 42

Key properties of linear filters

Linearity:
filter(f, + f,) = filter(f,) + filter (f,)

Shift invariance: same behavior regardless of
pixel location
filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be
represented as a convolution

CAP4453
Source: S. Lazebnik

43

More properties

e Commutative:a*b=b*a
— Conceptually no difference between filter and signal
— But particular filtering implementations might break this equality

e Associative:a*(b*c)=(a*b)*c
— Often apply several filters one after another: (((a * by) * b,) * b;)
— This is equivalent to applying one filter: a * (b, * b, * b,)

e Distributes over addition:a * (b+c¢)=(a * b)+ (a * ¢)

e Scalars factorout: ka *b=a *kb=k (a * b)

e |dentity: unit impulsee =10, 0, 1, O, 0],
a*e=a

44

Filtering Examples - 1

CAP4453 45

Filtering Examples - 2

an‘
0:?

0

0

0

CAP4453

46

Filtering Examples - 2

CAP4453 47

Example: box filter Average: mean

e Dividing the sum of N values by N

What does it do? gl]
e Replaces each pixel with an
average of its neighborhood 1 1| 1] 1
— 1 1 1

CAP4453 48

Filtering Examples - 3

49

Filtering Examples - 3

50

Example: box filter

What does it do?

e Replaces each pixel with an
average of its neighborhood

e Achieve smoothing effect
(remove sharp features)

51

Filtering Examples - 4

52

CAP4453

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

example:
box filter

What is the rank of this filter matrix?

Matrix rank is 1 for separable filters

s = svd(G);
sum(s > eps('single'))

column

Y4

11111

* row

Let's say our 20 Linear Operator is given by the Matrix G € B™*™,
Using the 5VD Decomposition the operator can be written as:

n
_ T
= E Tyl U,
i=1

Separable Linear 2D Operator is defined as operator which can be composed by Quier Product of 2

vectors.
Locking at the SWD Decomposition of (& we can conclude that (7 is separable operator if and only
f%i > 1 a; = 0and it is given by:

G = ;v
Usually LPF 20 Linear Operators, such as the Gaussian Filter, in the Image Processing world are
normalized to have sum of 1 (Keep DC) which suggests &y = 1 moreover, they are also symmetric
and hence »y = my (If you want, in those cases, it means you can use the Elgen Value
Decomposition instead of the SV,
So basically, to prove that a Linear 20 Operator is Separable you must show that it has only 1 non
vanishing singular value.

image processing - How to Prove a 2D Filter Is Separable? - Signal Processing Stack Exchange

https://dsp.stackexchange.com/questions/35190/how-to-prove-a-2d-filter-is-separable#:~:text=For%20this%20reason%2C%20as%20soon%20as%20G%20%28x%2C,a%20kernel%20is%20separable%2C%20just%20check%20the%20rank%3A

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
 Whatis the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
* What is the cost of convolution with a non-separable filter? ——> M?x N?
 Whatis the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
* What is the cost of convolution with a non-separable filter? ——> M?x N?
 Whatis the cost of convolution with a separable filter? —> 2xNxM?

The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 452 ' I

fi,7) = e 20

Qro?

* weight falls off with distance from center pixel

e theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?

Standard deviation o

a4

oa Q1 Oz O3

CAP4453 61

The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 4 52 1 I 1 X

fi,7) = e 20

Qro?

s this a separable filter?
e weight falls off with distance from center pixel P

e theoretically infinite, in practice truncated to 1 2
some maximum distance kernel 16 21412
11211

Any heuristics for selecting where to truncate?
e usually at 2-30

The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 4 52 1 I 1 X

fi,7) = e 20

Qro?

. . , s this a separable filter? Yes!
e weight falls off with distance from center pixel

e theoretically infinite, in practice truncated to 1 2
some maximum distance kernel 16 21412
11211

Any heuristics for selecting where to truncate?
e usually at 2-30

The Gaussian Filter

g(x)=[011 .13 6 1 .6 .13 .011]

Gaussian filters

(O =5 pixels (O =10 pixels (O =30 pixels

Filtering Examples - 5

66

Filtering Examples - 5

Gaussian Smoothing

67

Filtering Examples - 6

Gaussian Smoothing Smoothing by Averaging

68

Filtering Examples - 7

After additive After Averaging After Gaussian Smoothing
Gaussian Noise

CAP4453 69

Filtering Examples — 8
Sharpening

filter
0 0 1 1
0o[2]0]| " g 1
olo]o 11111

(Note that filter sums to 1)

* do nothing for flat areas
e stress intensity peaks

CAP4453

output

70

Filtering Examples — 8

Sharpening

CAP4453

Accentuates differences with local average

/

filter
0 0 1
01210 - 5
01010 1

1

1

(Note that filter sums to 1)

e do nothing for flat areas
e stress intensity peaks

output

71

Sharpening

 What does blurring take away?

= detail

(This “detail extraction” operation
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

(This “detail extraction” operation
is also called a high-pass filter)

detail ‘_ \

el -

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

2 times original Smoothed
oflofo)
ofz2]o0 - =~
oflofo 1

/ \ (This “detail extraction” operation
is also called a high-pass filter)

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

(This “detail extraction” operation
is also called a high-pass filter)

\ —
'
D giel. -

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening examples

Median Filter

* A Median Filter operates over a window by
selecting the median intensity in the window.

77

Image filtering - median

/1] hl.,.]

CAP4453 78

Image filtering - median

/1]

Median of {0,0,0,0, 90, 90,90,90,90}

20

30

CAP4453

79

Median Filter

* A Median Filter operates over a window by
selecting the median intensity in the window.

* Great to deal with salt and pepper noise !

-
Q
o o

Median F

Gaussian Median

Mean

~
L
~

81

CAP4453

Image Boundary Effect

The filter window falls off at the edge of image.

82

Practical matters

What about near the edge?
* The filter window falls off the edge of the image

* Need to extrapolate ' - — “

* methods:
* clip filter (black)
* wrap around
* copy edge
* reflect across edge

Source: S. Marschner

CAP4453 83

Zero wrap clamp mirror

Copy edge Reflect across edge

CAP4453 84

Questions?

	Untitled Section
	Slide 1: CAP 4453 Robot Vision
	Slide 2: Administrative details
	Slide 3: Outline
	Slide 4: Image noise
	Slide 5: Additive Noise
	Slide 6: Multiplicative Noise
	Slide 7
	Slide 8: Gaussian function
	Slide 9
	Slide 10
	Slide 11: Noise implementation
	Slide 12: Outline
	Slide 13: Filters
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19: Let’s run the box filter
	Slide 20: Let’s run the box filter
	Slide 21: Let’s run the box filter
	Slide 22: Let’s run the box filter
	Slide 23: Let’s run the box filter
	Slide 24: Let’s run the box filter
	Slide 25: Let’s run the box filter
	Slide 26: Let’s run the box filter
	Slide 27: Let’s run the box filter
	Slide 28: Let’s run the box filter
	Slide 29: Let’s run the box filter
	Slide 30: Let’s run the box filter
	Slide 31: Let’s run the box filter
	Slide 32: Let’s run the box filter
	Slide 33: Let’s run the box filter
	Slide 34: Let’s run the box filter
	Slide 35: Let’s run the box filter
	Slide 36: Let’s run the box filter
	Slide 37: Let’s run the box filter
	Slide 38: … and the result is
	Slide 39
	Slide 40
	Slide 42
	Slide 43: Key properties of linear filters
	Slide 44: More properties
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Separable filters
	Slide 54: Separable filters
	Slide 55: Separable filters
	Slide 56: Separable filters
	Slide 57: Separable filters
	Slide 58: Separable filters
	Slide 59: Separable filters
	Slide 60: The Gaussian filter
	Slide 61: Standard deviation s
	Slide 62: The Gaussian filter
	Slide 63: The Gaussian filter
	Slide 64: The Gaussian Filter
	Slide 65: Gaussian filters
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Filtering Examples – 8 Sharpening
	Slide 71: Filtering Examples – 8 Sharpening
	Slide 72: Sharpening
	Slide 73: Sharpening
	Slide 74: Sharpening
	Slide 75: Sharpening
	Slide 76: Sharpening examples
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

