CAP 4453
Robot Vision
Dr. Gonzalo Vaca-Castaño
Gonzalo.vacacastano@ucf.edu
Administrative details

• REU Program
• Homework 1 issues?
Histogram

• A histogram is a graphic representation of numerical data that shows the data distribution. When the number of observations is large, and the bin's size is small, the histogram will be similar to the distribution density chart.

• How to create a histogram?
 1. Find the range of the numerical data Range = Max - Min.
 2. Choose the number of bins you prefer to present.
 3. Calculate the bin size: Bin size = Range/number of bins.
 4. For every bin count, the total number of observations falls in the bin.
 5. Present the data as a column chart, where each column represents the number of observations in a bin.
Image Histogram
Histogram Example
Intensity profiles for selected (two) rows
import cv2
import numpy as np
import matplotlib.pyplot as plt

reading an image using imread method
my_img = cv2.imread('madanmohan_temple.jpg', 0)
my_img = cv2.imread('Unequalized_Hawkes_Bay_NZ.jpg',0)
equ = cv2.equalizeHist(my_img)

stacking both the images side-by-side orientation
res = np.hstack((my_img, equ))

getting histograms
plt.hist(my_img.ravel(),bins = 256, range = [0,256])
plt.title('Histogram before equalization')
plt.show()
plt.hist(equ.ravel(),bins = 256, range = [0,256])
plt.title('Histogram after equalization')
plt.show()

showing image input vs output
cv2.imshow('image', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
Questions?
Robot Vision

3. Image Filtering
Credits

• Some slides come directly from:
 • Yogesh S Rawat (UCF)
 • Noah Snavely (Cornell)
 • Ioannis (Yannis) Gkioulekas (CMU)
 • Mubarak Shah (UCF)
 • S. Seitz
 • James Tompkin
 • Ulas Bagci
Outline (next 2 weeks)

• **Image as a function**
 • Linear algebra

• **Extracting useful information from Images**
 • Histogram
 • Noise
 • Filtering (linear)
 • Smoothing/Removing noise
 • Convolution/Correlation
 • Image Derivatives/Gradient
 • Edges

• Colab Notes/ homeworks

• Read Szeliski, Chapter 3.

• Read/Program CV with Python, Chapter 1.
What is an image?

- We can think of a (grayscale) image as a function, f, from \mathbb{R}^2 to \mathbb{R}:
 - $f(x, y)$ gives the intensity at position (x, y)

- A digital image is a discrete (sampled, quantized) version of this function
Image transformations

• As with any function, we can apply operators to an image

\[g(x,y) = f(x,y) + 20 \]

\[g(x,y) = f(-x,y) \]

• Today we’ll talk about a special kind of operator, \textit{convolution} (linear filtering)
Basic Linear Algebra
Linear Algebra basics

- Vectors
 - Operations
- Matrix
 - Operations
Linear Algebra basics

Vector

• Scalar: \(x \in \mathbb{R} \)

• Vector: \(\mathbf{x} \in \mathbb{R}^N \)

 • Row Vector \(\mathbf{v} \in \mathbb{R}^{1\times n} \)

 \[\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \]

 • Column vector \(\mathbf{v} \in \mathbb{R}^{n\times 1} : \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [x_1 \ x_2 \ \cdots \ x_n]^T \]

• Transpose
Linear Algebra Basics
Vectors - use

• Store data in memory
 • Feature vectors
 • Pixel values
 • Any other data for processing

• Any point in coordinate system
 • Can be n dimensional

• Difference between two points

$$\begin{bmatrix} x_1 - y_1 & x_2 - y_2 & x_3 - y_3 \end{bmatrix}$$
Linear Algebra Basics

Vector operations

• Norm – size of the vector

• p-norm
 \[\|x\|_p = \left(\sum_i |a_i|^p \right)^{\frac{1}{p}} \quad p \geq 1 \]

• Euclidean norm
 \[\|x\|_2 = \left(\sum_i |a_i|^2 \right)^{1/2} \]

• L1-norm
 \[\|x\|_1 = \sum_i |a_i| \]

• L-infinity
 \[\|x\|_\infty = \max_i |x_i| \]
Linear Algebra Basics

Vector operations

- Inner product (dot product)
 - Scalar number
 - Multiply corresponding entries and add

\[x^T y = [x_1 \ x_2 \ \cdots \ x_n] \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{k=1}^{n} x_k \ y_k \]

Dot Product (mathsisfun.com)
Linear Algebra Basics

Vector operations

- Inner product (dot product)
 \[x_i^T x_i = \sum_k^n (x_k^i)^2 = \text{squared norm of } x_i \]

- \(x.y \) is also \(|x| \ |y| \cos(\text{angle between } x \text{ and } y) \)

- If \(B \) is a unit vector, \(A.B \) gives projection of \(A \) on \(B \)
Linear Algebra Basics

Vector operations

• Outer product

\[
x_i x_j^T = \begin{bmatrix}
x_1^i x_1^j & x_1^i x_2^j & \cdots & x_1^i x_n^j \\
x_2^i x_1^j & x_2^i x_2^j & \cdots & x_2^i x_2^j \\
\vdots & \vdots & \ddots & \vdots \\
x_n^i x_1^j & x_n^i x_2^j & \cdots & x_n^i x_m^j
\end{bmatrix}
\] (a matrix)
Linear Algebra Basics
Matrix

- Array $A \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
 - m rows and n columns

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

- A row vector is a matrix with single row
- A column vector is a matrix with single column
Linear Algebra Basics
Matrix - use

- Image representation – grayscale
 - One number per pixel
 - Stored as nxm matrix
Linear Algebra Basics
Matrix - use

- Image representation – RGB
 - 3 numbers per pixel
 - Stored as nxmx3 matrix
Linear Algebra Basics
Matrix operations

• Addition

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix}
\]

• Both matrices should have same shape, except with a scalar

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 2 = \begin{bmatrix} a + 2 & b + 2 \\ c + 2 & d + 2 \end{bmatrix}
\]

• Same with subtraction
Linear Algebra Basics
Matrix operations

- Scaling

\[s \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} sx \cdot a & sx \cdot b \\ sx \cdot c & sx \cdot d \end{bmatrix} \]

- Hadamard product

\[\begin{bmatrix} a & b \\ c & d \end{bmatrix} \odot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} axe & bxf \\ cxg & dxf \end{bmatrix} \]
Linear Algebra Basics

Matrix operation

- Matrix Multiplication
 - Compatibility?
 - mxn and nxp
 - Results in mxp matrix
Matrix operation

\[
A \cdot B = C
\]
Linear Algebra Basics

Matrix operation

- Transpose

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

\[
A^T = \begin{bmatrix}
a_{11} & a_{21} & \cdots & a_{m1} \\
a_{12} & a_{22} & \cdots & a_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{bmatrix}
\]
Linear Algebra Basics

Matrix operation

• Inverse
 • Given a matrix A, its inverse A^{-1} is a matrix such that
 $$AA^{-1} = A^{-1}A = I$$
• Inverse does not always exist
 • Singular vs non-singular
• Properties
 • $(A^{-1})^{-1} = A$
 • $(AB)^{-1} = B^{-1}A^{-1}$
Linear Algebra Basics

MORE WILL BE INTRODUCED DURING THE COURSE AS IT IS NEEDED
Question: Noise reduction

• Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

Source: S. Seitz
Question: Noise reduction

• Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

Can we something else?

Source: S. Seitz
Thresholding!

\[g(m, n) = \begin{cases}
255, & f(m, n) > A \\
0, & \text{otherwise}
\end{cases} \]
Question: Noise reduction

- This is not a gray scale image

```python
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt

folder = 'C:/Users/gonza/OneDrive/Teaching/CAP4453/class3/'
list_dir = [file for file in os.listdir(folder) if file[-3:] == 'jpg']

for iFile, fname in enumerate(list_dir):
    if iFile == 0:
        sumFile = cv2.imread(folder + fname)
        sumFile = sumFile.astype(np.float)
    else:
        sumFile = sumFile + cv2.imread(folder + fname).astype(np.float)

sumFile = sumFile / len(list_dir)
sumFile[sumFile > 255] = 255
sumFile[sumFile <= 90] = 0

plt.imshow(sumFile.astype(np.uint8))
```

Source: S. Seitz