

CAP 4453
 Robot Vision

Dr. Gonzalo Vaca-Castaño
gonzalo.vacacastano@ucf.edu

Credits

- Some slides comes directly from these sources:
- Ioannis (Yannis) Gkioulekas (CMU)
- Kris Kitani.
- Fredo Durand (MIT).
- James Hays (Georgia Tech).
- Yogesh S Rawat (UCF)
- Noah Snavely (Cornell)
- Trym Vegard Haavardsholm (Unik)

Short Review from last class

Image warping

How do we find point correspondences automatically?

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region:
no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris Detector

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x y}=G_{\sigma} * I_{x y}
$$

$$
\begin{aligned}
& S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \\
& S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}}
\end{aligned}
$$

4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

Use threshold on eigenvalues to detect corners

Harris \& Stephens (1988)

$R=\operatorname{det}(M)-\kappa \operatorname{trace}^{2}(M)$

Kanade \& Tomasi (1994)

$R=\min \left(\lambda_{1}, \lambda_{2}\right)$

Nobel (1998)

$$
R=\frac{\operatorname{det}(M)}{\operatorname{trace}(M)+\epsilon}
$$

$$
\begin{aligned}
\operatorname{det} M & =\lambda_{1} \lambda_{2} \\
\operatorname{trace} M & =\lambda_{1}+\lambda_{2}
\end{aligned}
$$

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

$$
\operatorname{trace}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a+d
$$

Harris corner detection and translation

- What happens if image is translated?
- Derivatives, second moment matrix obtained through convolution, which is translation equivariant
- Eigenvalues based only on derivatives so cornerness is invariant
- Thus Harris corner detection location is equivariant to translation, and response is invariant to translation

What about rotation?

- Now every patch is rotated, so problem?
- Recall properties of second moment matrix
- Eigenvalues and eigenvectors of M

- Define shift directions with the smallest and largest change in error
- $x_{\max }=$ direction of largest increase in E (across the edge)
- $\lambda_{\max }=$ amount of increase in direction $x_{\max }$
- $x_{\text {min }}=$ direction of smallest increase in E (along the edge)
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$

What about rotation?

- What happens to eigenvalues and eigenvectors when a patch rotates?
- Eigenvectors represent the direction of maximum / minimum change in appearance, so they rotate with the patch
- Eigenvalues represent the corresponding magnitude of maximum/minimum change so they stay constant
- Corner response is only dependent on the eigenvalues so is invariant to rotation
- Corner location is as before equivariant to rotation.

What about scaling?

- What was one patch earlier is now many

implementation

```
For each level of the Gaussian pyramid
    compute feature response (e.g. Harris, Laplacian)
For each level of the Gaussian pyramid
    if local maximum and cross-scale
    save scale and location of feature (x,y,s)
```


Implementation

- Instead of computing f for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid

Blob detection

Laplacian of Gaussian

- "Blob" detector

- Find maxima and minima of LoG operatakakmspace and scale

Characteristic scale

- We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2): pp 77--116.

optimal scale

Full size image

$3 / 4$ size image

Robot Vision

11. Feature points description

Outline

- Motivation
- Detecting key points
- Harris corner detector
- Blob detection
- Feature descriptors
- HOG
- MOPS
- SIFT

Matching feature points

We know how to detect good points Next question: How to match them?

Two interrelated questions:

1. How do we describe each feature point?
2. How do we match descriptions?

Feature descriptor

Feature matching

Feature Descriptor

Feature detection and description

- Harris corner detection gives:
- Location of each detected corner
- Orientation of the corner (given by $\mathbf{x}_{\max }$)
- Scale of the corner (the image scale which gives the maximum response at this location)
- Want feature descriptor that is
- Invariant to photometric transformations, translation, rotation, scaling
- Discriminative

Multiscale Oriented PatcheS descriptor

- Describe a corner by the patch around that pixel
- Scale invariance by using scale identified by corner detector
- Rotation invariance by using orientation identified by corner detector
- Photometric invariance by subtracting mean and dividing by standard deviation

Multiscale Oriented PatcheS descriptor

- Take 40×40 square window around detected feature at the right scale
- Scale to $1 / 5$ size (using prefiltering)
- Rotate to horizontal
- Sample $8 x 8$ square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the
 window

MOPS

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

Towards a better feature descriptor

- Match pattern of edges
- Edge orientation - clue to shape
- Invariant to almost all photometric transformations
- Be resilient to small deformations
- Deformations might move pixels around, but slightly
- Deformations might change edge orientations, but slightly

Invariance to deformation

- Precise edge orientations are not resilient to out-of-plane rotations and deformations
- But we can quantize edge orientation: only record rough orientation

Between 30 and 45

Invariance to deformation

$$
g(\theta)=\left\{\begin{array}{lr}
0 & \text { if } 0<\theta<2 \pi / N \\
1 & \text { if } 2 \pi / N<\theta<4 \pi / N \\
2 & \text { if } 4 \pi / N<\theta<6 \pi / N \\
& \ldots \\
N-1 & \text { if } 2(N-1) \pi / N
\end{array}\right.
$$

Invariance to deformation

- Deformation can also move pixels around
- Again, instead of precise location of each pixel, only want to record rough location
- Divide patch into a grid of cells
- Record counts of each orientation in each cell: orientation histograms

Histogram of Oriented Gradients (HOG)

- Revisiting histogram

0	1	1	2	4
2	1	0	0	2
5	2	0	0	4
1	1	2	4	1

image

histogram

Histogram of Oriented Gradients (HOG)

- Given an image I , and a pixel location (i, j).
- We want to compute the HOG feature for that pixel.
- The main operations can be described as a sequence of five steps.

Histogram of Oriented Gradients (HOG)

- Step 1: Extract a square window (called "block") of some size.

Histogram of Oriented Gradients (HOG)

- Step 2: Divide block into a square grid of sub-blocks (called "cells") (2×2 grid in our example, resulting in four cells).

Histogram of Oriented Gradients (HOG)

- Step 3: Compute orientation histogram of each cell.

Gradient direction $\quad \theta=\tan ^{-1} \frac{f_{x}}{f_{y}}$

Histogram of Oriented Gradients (HOG)

- Step 3: Compute orientation histogram of each cell.

Gradient direction $\quad \theta=\tan ^{-1} \frac{f_{x}}{f_{y}}$

- Cell size is 8×8
- Quantize the gradient orientation into 9 bins (0-180)
- The vote is the gradient magnitude

Histogram of Oriented Gradients (HOG)

- Step 4: Concatenate the four histograms of each block.

Histogram of Oriented Gradients (HOG)

Let vector v be concatenation of the four histograms from step 4.

- Step 5: Normalize v.

Here we have three options for how to do it:

- Option 1: Divide v by its Euclidean norm.
- Option 2: Divide v by its L1 norm (the L1 norm is the sum of all absolute values of v).
- Option 3:
- Divide v by its Euclidean norm.
- In the resulting vector, clip any value over 0.2
- Then, renormalize the resulting vector by dividing again by its Euclidean norm.

Summary of HOG computation

- Step 1: Extract a square window (called "block") of some size around the pixel location of interest.
- Step 2: Divide block into a square grid of sub-blocks (called "cells") (2×2 grid in our example, resulting in four cells).
- Step 3: Compute orientation histogram of each cell.
- Step 4: Concatenate the four histograms.
- Step 5: normalize v using one of the three options described previously.

Histogram of Oriented Gradients (HOG)

- Parameters and design options:
- Angles range from 0 to 180 or from 0 to 360 degrees?
- In the Dalal \& Triggs paper, a range of 0 to 180 degrees is used, and
- HOGs are used for detection of pedestrians.
- Number of orientation bins.
- Usually 9 bins, each bin covering 20 degrees.
- Cell size.
- Cells of size 8×8 pixels are often used.
- Block size.
- Blocks of size 2×2 cells (16×16 pixels) are often used.
- Usually a HOG feature has 36 dimensions.
- 4 cells * 9 orientation bins.

Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients

Scale Invariant Feature Transform (SIFT)

A feature detector and a feature descriptor

Scale Invariant Feature Transform (SIFT)

-Lowe., D. 2004, IJCV

cited $>58 \mathrm{~K}$

Distinctive Image Features from Scale-Imvariant Keypeints

Cepatr Skev Bpertane D Bivio Qiown

1. Inimebstive

 Shifing

 caim. a is axtesmese thinety is was: anacerd (ananim hastre widesty pes
 2 Enverite

 nubluy
thers Chinstir

 stavreith elypit atovits evie mothe

Scale Invariant Feature Transform (SIFT)

- Image content is transformed into local feature coordinates
- Invariant to
- translation
- rotation
- scale, and
- other imaging parameters

Scale Invariant Feature Transform (SIFT)

- Image content is transformed into local feature coordinates

Scale Invariant Feature Transform (SIFT)

- Procedure at High Level

SIFT. Automatic scale selection

How to find patch sizes at which f response is equal?
What is a good f ?

SIFT. Automatic scale selection

What is a useful signature function f ?

Blob detection

Original signal

Formally...
Laplacian filter

Original signal

Highest response when the signal has the same characteristic scale as the filter

What is a useful signature function f ?

"Blob" detector is common for corners

- Laplacian (2 $2^{\text {nd }}$ derivative) of Gaussian (LoG)

Function
response

Image blob size

Find local maxima in position-scale space

What happens if you apply different Laplacian filters?

What happened when you applied different Laplacian filters?

Full size

2.1
4.2
6.0

15.5

2.1
9.8

4.2
6.0

15.5

optimal scale

Full size image

$3 / 4$ size image

optimal scale

Full size image

$3 / 4$ size image

Scale Invariant Detection

- Functions for determining scale $f=$ Kernel $*$ Image Kernels:
$\nabla^{2} g=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}$
(Laplacian)
$D o G=G(x, y, k \sigma)-G(x, y, \sigma)$ (Difference of Gaussians)
where Gaussian

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

> Note: The LoG and DoG operators are both rotation equivariant

Alternative to compute Laplacian of Gaussian

- Approximate LoG with Difference-of-Gaussian (DoG).

1. Blur image with σ Gaussian kernel
2. Blur image with ko Gaussian kernel
3. Subtract 2. from 1.

Scale-Space

Find local maxima in position-scale space of DoG

Results: Difference of Gaussians

- Larger circles = larger scale
- Descriptors with maximal scale response

SIFT Orientation estimation

- Compute gradient orientation histogram
- Select dominant orientation Θ

A keypoint

SIFT Orientation Normalization

- Compute gradient orientation histogram
- Select dominant orientation Θ
- Normalize: rotate to fixed orientation

SIFT Detector

- In addition to position x, y of the feature,
- Scale σ (determined by smoothing value)
- Orientation of dominant gradient θ

SIFT detections

Patch at detected position, scale, orientation

SIFT descriptor

- Compute on local 16×16 window around detection.
- Rotate and scale window according to discovered orientation Θ and scale σ (gain invariance).
- Compute gradients weighted by a Gaussian of variance half the window (for smooth falloff).

Actually 16×16, only showing 8×8

SIFT descriptor

- 4×4 array of gradient orientation histograms weighted by gradient magnitude.
- Bin into 8 orientations $\times 4 \times 4$ array $=128$ dimensions.

Showing only 2×2 here but is 4×4

Image gradients

SIFT Descriptor Extraction

SIFT descriptor

- Extract patch around detected keypoint
- Normalize the patch to canonical scale and orientation

SIFT descriptor

- Extract patch around detected keypoint
- Normalize the patch
to canonical scale and orientation
- Resize patch to $16 x 16$ pixels

SIFT descriptor

- Compute the gradients

SIFT descriptor

- Compute the gradients
- Unaffected by additive intensity change
- Apply a Gaussian weighting function

SIFT descriptor

- Compute the gradients
- Unaffected by additive intensity change
- Apply a Gaussian weighting function
- Weighs down gradients far from the centre
- Avoids sudden changes in the descriptor with small changes in the window position

SIFT descriptor

- Compute the gradients
- Unaffected by additive intensity change
- Apply a Gaussian weighting function
- Weighs down gradients far from the centre
- Avoids sudden changes in the descriptor with small changes in the window position
- Divide the patch into 164×4 pixels squares

SIFT descriptor

- Compute gradient direction histograms over 8 directions in each square
- Trilinear interpolation
- Robust to small shifts, while preserving some spatial information

SIFT descriptor

- Compute gradient direction histograms over 8 directions in each square
- Trilinear interpolation
- Robust to small shifts, while preserving some spatial information

SIFT descriptor

- Concatenate the histograms to obtain a 128 dimensional feature vector

Reduce effect of illumination

-128-dim vector normalized to 1

- Threshold gradient magnitudes to avoid excessive influence of high gradients
- After normalization, clamp gradients >0.2
- Renormalize

SIFT descriptor

- Concatenate the histograms to obtain a 128 dimensional feature vector
- Normalize to unit length
- Invariant to multiplicative contrast change
- Threshold gradient magnitudes to avoid excessive influence of high gradients

- Clamp gradients > 0.2
- Renormalize

SIFT summary

- Extract a 16×16 patch around detected keypoint
- Compute the gradients and apply a Gaussian weighting function
- Divide the window into a 4×4 grid of cells
- Compute gradient direction histograms over 8 directions in each cell
- Concatenate the histograms to obtain a 128 dimensional feature vector
- Normalize to unit length

Review: Local Descriptors

- Most features can be thought of as
- templates,
- histograms (counts),
- or combinations
- The ideal descriptor should be

- Robust and Distinctive
- Compact and Efficient
- Most available descriptors focus on edge/gradient information
- Capture texture information
- Color rarely used

Binary descriptors

- Extremely efficient construction and comparison
- Based on pairwise intensity comparisons
- Sampling pattern around keypoint
- Set of sampling pairs
- Feature descriptor vector is a binary string:

$$
\begin{aligned}
& F=\sum_{0 \leq a \leq N} 2^{a} T\left(P_{a}\right) \\
& T\left(P_{a}\right)= \begin{cases}1 & \text { if } I\left(P_{a}^{r 1}\right)>I\left(P_{a}^{r 2}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Matching using Hamming distance:

$$
L=\sum_{0 \leq a \leq N} X O R\left(F_{a}^{1}, F_{a}^{2}\right)
$$

BRISK sampling pairs

Binary descriptors

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

BRIEF sampling pairs

Binary descriptors

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

ORB sampling pairs

Binary descriptors

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

BRISK sampling pairs

Binary descriptors

Method	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None	None	Random
ORB	None	Moments	Learned pairs
BRISK	Concentric circles, More points on outer rings	Comparing gradients of long pairs	Short pairs
FREAK	Overlapping concentric circles, more points on inner rings	Comparing gradients of preselected 45 pairs	Learned pairs

FREAK sampling pattern

FREAK sampling pairs

Binary descriptors

- Often achieves very good performance compared to SIFT/SURF
- Much faster than SIFT/SURF

Time per keypoint	SIFT	SURF	BRISK	FREAK
Description in $[\mathrm{ms}]$	2.5	1.4	0.031	0.018
Matching time in $[\mathrm{ns}]$	1014	566	36	25

Table 1: Computation time on 800×600 images where approximately 1500 keypoints are detected per image. The computation times correspond to the description and matching of all keypoints.

References

Basic reading:

- Szeliski textbook, Sections 4.1.
- Gil's CV blog | Gil's Computer vision blog (gilscvblog.com)

Questions?

