

CAP 4453
 Robot Vision

Dr. Gonzalo Vaca-Castaño
gonzalo.vacacastano@ucf.edu

Administrative details

- Issues submitting homework

Credits

- Slides comes directly from:
- Ioannis (Yannis) Gkioulekas (CMU)
- Kris Kitani.
- Fredo Durand (MIT).
- James Hays (Georgia Tech).
- Yogesh S Rawat (UCF)
- Noah Snavely (Cornell)

Short Review from last class

Warping with different transformations

translation

affine

pProjective (homography)

View warping

original view

synthetic top view

synthetic side view

What are these black areas near the boundaries?

Virtual camera rotations

original view
synthetic rotations

Image rectification

Image warping

Recap: Two Common Optimization Problems

Problem statement

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

Solution

$$
\mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

import numpy as $n p$
$\mathrm{x}, \mathrm{resid}, \mathrm{rank}, \mathrm{s}=\mathrm{np} . \operatorname{linalg} . \operatorname{lstsq}(\mathrm{A}, \mathrm{b})$

Problem statement

Solution
$\operatorname{minimize} \quad \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^{T} \mathbf{x}=1$

$$
\begin{aligned}
& {[\mathbf{v}, \lambda]=\operatorname{eig}\left(\mathbf{A}^{T} \mathbf{A}\right)} \\
& \lambda_{1}<\lambda_{2 . n}: \mathbf{x}=\mathbf{v}_{1}
\end{aligned}
$$

non - trivial lsq solution to $\mathbf{A x}=0$

Affine transformations

- Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & & & & \\
& & & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]} \\
& \text { A } \\
& \mathbf{t}_{\mathrm{w}}=\mathbf{b}
\end{aligned}
$$

Solving for homographies

$$
\left[\begin{array}{cccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Defines a least squares problem: minimize $\|\mathrm{Ah}-0\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Recap: Two Common Optimization Problems

Problem statement

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

Solution

$$
\mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

import numpy as $n p$
$\mathrm{x}, \mathrm{resid}, \mathrm{rank}, \mathrm{s}=\mathrm{np} . \operatorname{linalg} . \operatorname{lstsq}(\mathrm{A}, \mathrm{b})$

Problem statement

Solution
$\operatorname{minimize} \quad \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^{T} \mathbf{x}=1$

$$
\begin{aligned}
& {[\mathbf{v}, \lambda]=\operatorname{eig}\left(\mathbf{A}^{T} \mathbf{A}\right)} \\
& \lambda_{1}<\lambda_{2 . n}: \mathbf{x}=\mathbf{v}_{1}
\end{aligned}
$$

non - trivial lsq solution to $\mathbf{A x}=0$

Image warping

How do we find point correspondences automatically?

Robot Vision

11. Feature points detection

Outline

- Motivation
- Detecting key points
- Harris corner detector
- Blob detection

Location Recognition

Robot Localization

Image matching

Structure from motion

3D photosynth

O- Microsoft Pix

Image matching

Matching

NASA Mars Rover images

Where are the corresponding points?

Application: KeyPoint Matching

1. Find a set of distinctive key-points
2. Define a region around each key-point
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

Finding interest points

The aperture problem

- Individual pixels are ambiguous
- Idea: Look at whole patches!

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?
a corner

What is an interest point?

Properties of interest points algorithm

- Detect all (or most) true interest points
- No false interest points
- Well localized
- Robust with respect to noise
- Efficient detection
- Detect points that are repeatable and distinctive

Outline

- Motivation
- Detecting key points
- Harris corner detector
- Blob detection

Corner detection: Possible approaches

- Based on brightness of images
- Usually image derivatives
- Based on boundary extraction
- First step edge detection
- Curvature analysis of edges

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region:
no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris corner detector

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."1988.

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} \quad I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}} \quad S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \quad S_{x y}=G_{\sigma^{\prime}} * I_{x y}
$$

Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."1988.
4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region:
no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corner detection the math

- Consider shifting the window $W_{n n}$ by (u, v)
- how do the pixels in W change?
- Write pixels in window as a vector:

$$
\begin{aligned}
\phi_{0} & =[I(0,0), I(0,1), \ldots, I(n, n)] \\
\phi_{1} & =[I(0+u, 0+v), I(0+u, 1+v), \ldots, I(n+u, n+v)]
\end{aligned}
$$

$$
E(u, v)=\left\|\phi_{0}-\phi_{1}\right\|_{2}^{2}
$$

Corner detection: the math

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" $E(u, v)$:

$$
\begin{aligned}
& E(u, v) \\
& =\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
\end{aligned}
$$

- We want $\mathrm{E}(\mathrm{u}, \mathrm{v})$ to be as high as possible for all u, v !

Small motion assumption

Taylor Series expansion of I :

$$
I(x+u, y+v)=I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+\text { higher order terms }
$$

If the motion (u, v) is small, then first order approximation is good

$$
\begin{aligned}
I(x+u, y+v) & \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v \\
& \approx I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& \text { shorthand: } I_{x}=\frac{\partial I}{\partial x}
\end{aligned}
$$

Plugging this into the formula on the previous slide...

Corner detection: the math

Consider shifting the window W by (u, v)

- define an SSD "error" $E(u, v)$:

$$
\begin{aligned}
E(u, v) & =\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I(x, y)+I_{x} u+I_{y} v-I(x, y)\right]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2}
\end{aligned}
$$

Corner detection: the math

Consider shifting the window W by (u, v)

- define an "error" $E(u, v)$:

$$
\begin{aligned}
& E(u, v) \approx \sum_{(x, y) \in W}\left[I_{x} u+I_{y} v\right]^{2} \\
& \approx A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \quad B=\sum_{(x, y) \in W} I_{x} I_{y} \quad C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

- Thus, $E(u, v)$ is locally approximated as a quadratic error function

A more general formulation

- Maybe all pixels in the patch are not equally important
- Consider a "window function" $w(x, y)$ that acts as weights
- $E(u, v)=\sum_{(x, y) \in W} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}$
- Case till now:
- $w(x, y)=1$ inside the window, 0 otherwise

Using a window function

- Change in appearance of window $w(x, y)$ for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Redoing the derivation using a window

 function$$
\begin{aligned}
& E(u, v)=\sum_{x, y \in W} w(x, y)[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{x, y \in W} w(x, y)\left[I(x, y)+u I_{x}(x, y)+v I_{y}(x, y)-I(x, y)\right]^{2} \\
& =\sum_{x, y \in W} w(x, y)\left[u I_{x}(x, y)+v I_{y}(x, y)\right]^{2} \\
& =\sum_{x, y \in W} w(x, y)\left[u^{2} I_{x}(x, y)^{2}+v^{2} I_{y}(x, y)^{2}+2 u v I_{x}(x, y) I_{y}(x, y)\right]
\end{aligned}
$$

Redoing the derivation using a window function

$$
\begin{aligned}
& E(u, v) \approx \sum_{x, y \in W} w(x, y)\left[u^{2} I_{x}(x, y)^{2}+v^{2} I_{y}(x, y)^{2}+2 u v I_{x}(x, y) I_{y}(x, y)\right] \\
& =A u^{2}+2 B u v+C v^{2} \\
& A=\sum_{x, y \in W} w(x, y) I_{x}(x, y)^{2} \\
& B=\sum_{x, y \in W} w(x, y) I_{x}(x, y) I_{y}(x, y) \\
& C=\sum_{x, y \in W} w(x, y) I_{y}(x, y)^{2}
\end{aligned}
$$

The second moment matrix

Second moment matrix

The second moment matrix

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\underbrace{\sum_{x, y \in W} w(x, y)\left[\begin{array}{c}
I_{x}(x, y)^{2} \\
I_{x}(x, y) I_{y}(x, y)
\end{array} \begin{array}{c}
I_{x}(x, y) I_{y}(x, y) \\
I_{y}(x, y)^{2}
\end{array}\right]}_{\text {Second moment matrix }}
\end{gathered}
$$

Recall that we want $E(u, v)$ to be as large as possible for all u, v

What does this mean in terms of M ?

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& \begin{aligned}
& A= \sum_{(x, y) \in W} I_{x}^{2} \\
& B= \sum_{x} I_{y} \\
& C= I_{y}^{2} \\
&(x, y) \in W
\end{aligned} \\
& \begin{array}{ll}
\square & M=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
E(u, v)=0 \quad \forall u, v
\end{array} \\
& \text { Flat patch: } \quad I_{x}=0 \\
& I_{y}=0
\end{aligned}
$$

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \\
& B=\sum_{(x, y) \in W} I_{x} I_{y} \\
& C=\sum_{(x, y) \in W} I_{y}^{2} \\
& \\
& \\
& \text { vertical edge: } I_{y}=0
\end{aligned} \quad M=\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{M}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
A=\sum_{(x, y) \in W} I_{x}^{2} \\
B=\sum_{(x, y) \in W} I_{x} I_{y} \\
C=\sum_{(x, y) \in W} I_{y}^{2} \\
M r
\end{gathered} M_{\text {Horizontal edge: } I_{x}=0} E\left[\begin{array}{ll}
0 & 0 \\
0 & C
\end{array}\right]
$$

What about edges in arbitrary orientation?

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Leftrightarrow E(u, v)=0
\end{gathered}
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Solutions to $\mathrm{Mx}=0$ are directions for which E is 0 : window can slide in this direction without changing appearance

For corners, we want no such directions to exist

$2+1963+4$

Harris Detector

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x y}=G_{\sigma} * I_{x y}
$$

$$
\begin{aligned}
& S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \\
& S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}}
\end{aligned}
$$

4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]=\text { constant }
$$

Visualization as an ellipse

Since M is symmetric, we have $\quad M=R^{-1}\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] R$
We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:
$\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const

SVD

$A=U \Sigma V^{-1} \quad \Sigma=\left[\begin{array}{llll}\sigma_{1} & & & \\ & \sigma_{2} & & \\ & & . & \\ & & & \sigma_{N}\end{array}\right]$
$\mathrm{U}, \mathrm{V}=$ orthogonal matrix $\longrightarrow U^{-1}=U^{r}$

$$
\begin{array}{ll}
\sigma_{i}=\sqrt{\lambda_{i}} & \sigma=\text { singular value } \\
\lambda=\text { eigenvalue of } A^{\mathrm{t}} \mathrm{~A}
\end{array}
$$

- U,V becomes Rotation Matrix R
- Diagonal matrix has eigenvalues of A

Compute eigenvalues and eigenvectors

Compute eigenvalues and eigenvectors

1. Compute the determinant of $\quad M-\lambda I$

(returns a polynomial)

Compute eigenvalues and eigenvectors

1. Compute the determinant of $\quad M-\lambda I$
(returns a polynomial)
2. Find the roots of polynomial $\underset{\substack{\text { (returns eigenvauces) }}}{\operatorname{det}}(M-\lambda I)=0$

Compute eigenvalues and eigenvectors

1. Compute the determinant of $\quad M-\lambda I$
(returns a polynomial)
2. Find the roots of polynomial $\operatorname{\text {(reumnseigenvalues)}} \operatorname{det}(M-\lambda I)=0$
3. For each eigenvalue, solve
(returns eigenvectors)
$(M-\lambda I) \boldsymbol{e}=0$

Eigenvalues \& Eigenvector computation example

- Compute eigenvalues, eigenvectors of $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
- determinant of the matrix ($A-\lambda I$) equals zero are the eigenvalues

$$
\begin{aligned}
|A-\lambda I| & =\left|\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right|=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| \\
& =3-4 \lambda+\lambda^{2} .
\end{aligned}
$$

- Setting the characteristic polynomial equal to zero, it has roots at $\underline{\lambda=1}$ and $\underline{\lambda=3}$, which are the two eigenvalues of A.

Eigenvalues \& Eigenvector computation example

- Compute eigenvalues, eigenvectors of $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
- For $\lambda=1$,

$$
\begin{gathered}
(A-I) \mathbf{v}_{\lambda=1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
1 v_{1}+1 v_{2}=0
\end{gathered}
$$

- Any nonzero vector with $\mathrm{v} 1=-\mathrm{v} 2$ solves this equation.

$$
\mathbf{v}_{\lambda=1}=\left[\begin{array}{c}
v_{1} \\
-v_{1}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

For $\lambda=3$,

$$
\begin{aligned}
(A-3 I) \mathbf{v}_{\lambda=3} & =\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
-1 v_{1}+1 v_{2} & =0 \\
1 v_{1}-1 v_{2} & =0
\end{aligned}
$$

Any nonzero vector with v1 = v2 solves this equation. Therefore,

$$
\mathbf{v}_{\lambda=3}=\left[\begin{array}{l}
v_{1} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Eigenvalues and eigenvectors of M

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{M} x_{\max }=\lambda_{\max } x_{\max } \\
& \mathrm{M} x_{\min }=\lambda_{\min } x_{\min }
\end{aligned}
$$

Eigenvalues and eigenvectors of M

- Define shift directions with the smallest and largest change in error
- $\mathrm{x}_{\max }=$ direction of largest increase in E
- $\lambda_{\text {max }}=$ amount of increase in direction $x_{\max }$
- $\mathrm{x}_{\text {min }}=$ direction of smallest increase in E
- $\lambda_{\text {min }}=$ amount of increase in direction $x_{\text {min }}$

Interpreting the eigenvalues

Use threshold on eigenvalues to detect corners

Use threshold on eigenvalues to detect corners

Use threshold on eigenvalues to detect corners

 (a function of)

Use the smallest eigenvalue as the response function

$$
R=\min \left(\lambda_{1}, \lambda_{2}\right)
$$

Corner response function

$R=\min \left(\lambda_{1}, \lambda_{2}\right)$

Use threshold on eigenvalues to detect corners (a function of)

Corner response function $R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$

Use threshold on eigenvalues to detect corners (a function of)

Harris \& Stephens (1988)

$$
R=\operatorname{det}(M)-\kappa \operatorname{trace}^{2}(M)
$$

Kanade \& Tomasi (1994)

$$
R=\min \left(\lambda_{1}, \lambda_{2}\right)
$$

Nobel (1998)

$$
R=\frac{\operatorname{det}(M)}{\operatorname{trace}(M)+\epsilon}
$$

Harris Detector

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x y}=G_{\sigma} * I_{x y}
$$

$$
\begin{aligned}
& S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \\
& S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}}
\end{aligned}
$$

4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

Final step: Non-maxima suppression

- Pick a pixel as corner if cornerness at patch centered on it > cornerness of neighboring pixels
- And if cornerness exceeds a threshold

Harris Detector

1. Compute x and y derivatives of image

$$
I_{x}=G_{\sigma}^{x} * I \quad I_{y}=G_{\sigma}^{y} * I
$$

2. Compute products of derivatives at every pixel

$$
I_{x^{2}}=I_{x} \cdot I_{x} \quad I_{y^{2}}=I_{y} \cdot I_{y} I_{x y}=I_{x} \cdot I_{y}
$$

3. Compute the sums of the products of derivatives at each pixel

$$
S_{x y}=G_{\sigma} * I_{x y}
$$

$$
\begin{aligned}
& S_{y^{2}}=G_{\sigma^{\prime}} * I_{y^{2}} \\
& S_{x^{2}}=G_{\sigma^{\prime}} * I_{x^{2}}
\end{aligned}
$$

4. Define the matrix at each pixel

$$
M(x, y)=\left[\begin{array}{ll}
S_{x^{2}}(x, y) & S_{x y}(x, y) \\
S_{x y}(x, y) & S_{y^{2}}(x, y)
\end{array}\right]
$$

5. Compute the response of the detector at each pixel

$$
R=\operatorname{det} M-k(\operatorname{trace} M)^{2}
$$

6. Threshold on value of R; compute non-max suppression.

Harris detector example

f value (red high, blue low)

Threshold ($\mathrm{f}>$ value)

Find local maxima of f

Harris features (in red)

Harris corner response is invariant to rotation

Ellipse rotates but its shape (eigenvalues) remains the same

Corner response \mathbf{R} is invariant to image rotation

Harris corner response is invariant to intensity changes

Partial invariance to affine intensity change

\square Only derivatives are used => invariance to intensity shift $\boldsymbol{I} \rightarrow \boldsymbol{I}+\boldsymbol{b}$
\square Intensity scale: I $\rightarrow \boldsymbol{a}$ I

The Harris detector is not invariant to changes in ...

The Harris corner detector is not invariant to scale

edge!

Multi-scale detection

How can we make a feature detector scale-invariant?

How can we automatically select the scale?

Scale invariant detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum of cornerness

- in both position and scale
- One definition of cornerness: the Harris operator

Intuitively...
Find local maxima in both position and scale

Automatic scale selection

Lindeberg et al., 1996

$f\left(I_{i_{1} \ldots i_{n}}(x, \sigma)\right)$

Automatic scale selection

$f\left(I_{i \ldots i_{m}}(x, \sigma)\right)$

Automatic scale selection

$f\left(I_{i_{1}-I_{m}}(x, \sigma)\right)$

Automatic scale selection

Automatic scale selection

$f\left(I_{i_{-}-i_{m}}(x, \sigma)\right)$

Automatic scale selection

Implementation

- Instead of computing f for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid

Gaussian pyramid implementation

How would you implement scale selection?

implementation

```
For each level of the Gaussian pyramid
    compute feature response (e.g. Harris, Laplacian)
For each level of the Gaussian pyramid
    if local maximum and cross-scale
    save scale and location of feature (x,y,s)
```

Blob detection

Scale-space blob detector: Example

Feature extraction: Corners and blobs

Formally...
Laplacian filter

Original signal

Highest response when the signal has the same characteristic scale as the filter

Another common definition of f

- The Laplacian of Gaussian (LoG)

$$
\nabla^{2} g=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}} \quad \begin{aligned}
& \text { (very similar to a Difference of Gaussians (DoG) - } \\
& \text { i.e. a Gaussian minus a slightly smaller Gaussian) }
\end{aligned}
$$

Laplacian of Gaussian

- "Blob" detector

- Find maxima and minima of LoG operatakakmspace and scale

Scale-space blob detector: Example

sigma $=11.9912$

Scale-space blob detector: Example

Scale selection

- At what scale does the Laplacian achieve a maximum response for a binary circle of radius r?

image

Laplacian

Characteristic scale

- We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2): pp 77--116.

What happens if you apply different Laplacian filters?

Full size

3/4 size

sigma=2.1

jet color scale blue: low, red: high
sigma $=4.2$

What happened when you applied different Laplacian filters?

Full size

sigma $=2.1$

sigma $=4.2$

What happened when you applied different Laplacian filters?

Full size

2.1
4.2
6.0

15.5

2.1
9.8

4.2
6.0

15.5

optimal scale

Full size image

$3 / 4$ size image

optimal scale

Full size image

$3 / 4$ size image

Scale Invariant Detection

- Functions for determining scale $f=$ Kernel $*$ Image Kernels:
$\nabla^{2} g=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}$
(Laplacian)
$D o G=G(x, y, k \sigma)-G(x, y, \sigma)$ (Difference of Gaussians)
where Gaussian

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

> Note: The LoG and DoG operators are both rotation equivariant

References

Basic reading:

- Szeliski textbook, Sections 4.1.

Questions?

