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Administrative details

• Issues submitting homework
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Short Review 
from last class
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Outline

• Linear algebra

• Image transformations

• 2D transformations.

• Projective geometry 101.

• Transformations in projective geometry.

• Classification of 2D transformations.

• Determining unknown 2D transformations.

• Determining unknown image warps.
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2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member



Least squares

• Find t that minimizes 

• To solve, form the normal equations



Translation transformation

• Can also write as a matrix equation

2n x 2 2 x 1 2n x 1



Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1



Determining the homography matrix

Stack together constraints from multiple point correspondences:

Homogeneous linear least squares problem
• Solve with SVD



Robot Vision
10b. Linear Algebra SVD
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Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition

• Intuition

• Direct Solving Ax=0
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Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

Example
𝐴 =

3 1
0 2

𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣 𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=1 , y=0
𝑇

1
0

=
3 1
0 2

1
0

=
3
0



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=2 , y=0
𝑇

2
0

=
3 1
0 2

2
0

=
6
0



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=-2,-1,0,1,2 , y=0
𝑇

𝑥
0

=
3 1
0 2

𝑥
0

=
3
0
𝑥

X direction



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=0 , y=1
𝑇

0
1

=
3 1
0 2

0
1

=
1
2



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=0 , y=2
𝑇

0
2

=
3 1
0 2

0
2

=
2
4



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=0 , y=-2,-1,0,1,2
𝑇

1
2

=
3 1
0 2

0
𝑦

=
1
2
𝑦

Y direction



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

X=1 y=1

1 1

(4,2)



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

X=1 y=2

1 2

(5,4)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

(-2,2)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

2*(-1,1)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

2*(-1,1)Before Transformation

After Transformation



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

2*(-1,1)Before Transformation

After Transformation



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝑇
−1
1

=
3 1
0 2

−1
1

= 2
−1
1

Eigenvector



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝑇
−1
1

=
3 1
0 2

−1
1

= 2
−1
1

EigenvectorEigenvalue



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝑇
−1
1

=
3 1
0 2

−1
1

= 2
−1
1

Eigenvector

Eigenvalue

𝐴𝑣 = 𝜆 Ԧ𝑣Mathematical definition



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector?

• Try with 
−1
0
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector?
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝑇
−1
0

=
3 1
0 2

−1
0

= 3
−1
0

Eigenvector
(direction)Eigenvalue 

(stretching)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 

• NO. 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 

• NO.

• An 𝐴𝑚,𝑚 matrix has at most m eigenvectors 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 

• NO.

• An 𝐴𝑚,𝑚 matrix has at most m eigenvectors 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

In this example m=2  → maximum 2 eigenvectors 



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

Identity

1 0 0
0 1 0
0 0 1



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0



Computing Eigenvalues & Eigenvectors

CAP4453 39

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If A =
3 1
0 2



Computing Eigenvalues & Eigenvectors

CAP4453 41

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If A =
3 1
0 2

3 − 𝜆 1
0 2 − 𝜆



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null

Must be not invertible



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null

Must be not invertible

Determinant =zero



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null

Must be not invertible

Determinant =zero
𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0



Determinant

• The determinant between two vectors on a 2d plane gives us the area 
enclosed between them. 

• in 3D the determinant will give us the volume enclosed between the 
three vectors.
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Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝐴 − 𝜆𝐼 =
3 − 𝜆 1
0 2 − 𝜆



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 𝑑𝑒𝑡
3 − 𝜆 1
0 2 − 𝜆

= 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 𝑑𝑒𝑡
3 − 𝜆 1
0 2 − 𝜆

= 0

3 − 𝜆 2 − 𝜆 − 0 ∗ 1 = 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 𝑑𝑒𝑡
3 − 𝜆 1
0 2 − 𝜆

= 0

3 − 𝜆 2 − 𝜆 = 0

𝜆 = 2𝜆 = 3



Computing Eigenvector for 𝜆=2
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =2

𝑥
𝑦

3𝑥 + 2𝑦 = 2𝑥

0𝑥 + 2𝑦 = 2𝑦
Matrix multiplication



Computing Eigenvector for 𝜆=2
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =2

𝑥
𝑦

3𝑥 + 𝑦 = 2𝑥

0𝑥 + 2𝑦 = 2𝑦
Matrix multiplication

3𝑥 + 𝑦 = 2𝑥

3𝑥 − 2𝑥 = −𝑦

𝑥 = −𝑦



Computing Eigenvector for 𝜆=2
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =2

𝑥
𝑦

3𝑥 + 𝑦 = 2𝑥

0𝑥 + 2𝑦 = 2𝑦
Matrix multiplication

3𝑥 + 𝑦 = 2𝑥

3𝑥 − 2𝑥 = −𝑦

𝑥 = −𝑦

If x=-1  then y=1 

for 𝜆=2, Ԧ𝑣 =
−1
1



Computing Eigenvector for 𝜆=3
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =3

𝑥
𝑦

3𝑥 + 𝑦 = 3𝑥

0𝑥 + 2𝑦 = 3𝑦
Matrix multiplication

3𝑥 + 𝑦 = 3𝑥

3𝑥 − 3𝑥 = −𝑦

0 = 𝑦

y=0 

for 𝜆=3, Ԧ𝑣 =
1
0



Computing Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =3

𝑥
𝑦

𝜆=3

𝜆=2



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Does the definition make sense for a 
non-square matrix 𝐴𝑚,𝑛? 
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-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Does the definition make sense for a 
non-square matrix 𝐴𝑚,𝑛? 
• NO

• Transformation changes dimension of vector Ԧ𝑣.   
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition, derivation

• Intuition

• Direct Solving Ax=0
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Singular Value Decomposition

diagonal ortho-normal

unit norm constraint

ortho-normal

n x m n x n n x m m x m



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑛

.

.

.

𝑣𝑖 is ortho-normal



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑛

.

.

.

𝑣𝑖 is ortho-normal

𝑣𝑖 ∙ 𝑣𝑖 = 1

𝑣𝑖 ∙ 𝑣𝑗 = 0



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑛

.

.

.

𝑣𝑖 is ortho-normal

𝑣𝑖 ∙ 𝑣𝑖 = 1

𝑣𝑖 ∙ 𝑣𝑗 = 0

dimension of 𝑣𝑖 is mx1



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

𝑣𝑖 is ortho-normal

𝑢𝑖 is a unit vector

dimension of 𝑣𝑖 is mx1

𝜎𝑖 is magnitude of vector

dimension of 𝑢𝑖 is nx1



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1𝑣1
𝑇
Ԧ𝑥 + 𝑢2𝜎2𝑣2

𝑇
Ԧ𝑥 + ⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
Ԧ𝑥 Ԧ𝑥 ∙ 𝑣𝑖 = 𝑣𝑖

𝑇
Ԧ𝑥
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1𝑣1
𝑇
Ԧ𝑥 + 𝑢2𝜎2𝑣2

𝑇
Ԧ𝑥 + ⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
Ԧ𝑥 Ԧ𝑥 ∙ 𝑣𝑖 = 𝑣𝑖

𝑇
Ԧ𝑥

𝐴 Ԧ𝑥 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
) Ԧ𝑥
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1𝑣1
𝑇
Ԧ𝑥 + 𝑢2𝜎2𝑣2

𝑇
Ԧ𝑥 + ⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
Ԧ𝑥 Ԧ𝑥 ∙ 𝑣𝑖 = 𝑣𝑖

𝑇
Ԧ𝑥

𝐴 Ԧ𝑥 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
) Ԧ𝑥 𝐴 = (𝑢1𝜎1𝑣1

𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)
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𝐴 = 𝑈Σ𝑉𝑇

𝐴 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

Σ =

𝜎1 0
0
0
0
0
0

𝜎2
0
0
0
0

⋱

0
0
0
𝜎𝑚
0
0

𝑛×𝑚

U
= 𝑢1 𝑢2 … 𝑢𝑚 … 𝑛×𝑛

dimension of 𝑣𝑖 is mx1dimension of 𝑢𝑖 is nx1

V = 𝑣1 𝑣2 … |𝑣𝑚 𝑚×𝑚

V𝑇 =

𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑚
𝑇

𝑚×𝑚

n>m
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𝐴 = 𝑈Σ𝑉𝑇

𝐴 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

Σ =

𝜎1 0
0
0
0
0
0

𝜎2
0
0
0
0

⋱

0
0
0
𝜎𝑚
0
0

𝑛×𝑚

U = 𝑢1 𝑢2 … |𝑢𝑚… 𝑛×𝑛 V𝑇 =

𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑚
𝑇

𝑚×𝑚

A

Padding

n>m
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𝐴 = 𝑈Σ𝑉𝑇

𝐴 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

Σ =

𝜎1 0
0
0
0

𝜎2
0
0
⋱

0
0
0
𝜎𝑚

𝑚×𝑚

U = 𝑢1 𝑢2 … |𝑢𝑚 𝑛×𝑚 V𝑇 =

𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑚
𝑇

𝑚×𝑚

dimension of 𝑢𝑖 is nx1

dimension of 𝑣𝑖 is mx1

=

𝐴𝑛𝑚
𝑈𝑛𝑚

Σ𝑚𝑚
𝑉𝑇

𝑚𝑚

n>m



Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition, derivation

• Intuition

• Direct Solving Ax=0
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Pseudo inverse intuition

• Since the SVD is a decomposition of a given matrix into 2 Unitary 
matrices and a diagonal matrix, all matrices could be described as a 
rotation, scaling and another rotation.

CAP4453 75

(A) An oriented circle; if it helps, imagine that circle inscribed in our original square. (B) Our circle transformed into an
ellipse. The length of the major and minor axes of the ellipse have values σ1​ and σ2​ respectively, called the singular values.



Interesting properties of SVD

• The diagonal values of Σ are the square root of eigenvalues of 𝐴𝑇𝐴
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Interesting properties of SVD

• The diagonal values of Σ are the square root of eigenvalues of 𝐴𝑇𝐴

• Eigenvectors of 𝐴𝑇𝐴 corresponds to V

• SVD consists of  matrices U,Σ,V which are always real
• this is unlike eigenvectors and eigenvalues of A which may be complex even if 

A is real

• The singular values are always non-negative, even though the eigenvalues 
may be negative

• While writing the SVD, the following convention is assumed, and the 
left and right singular vectors are also arranged accordingly:
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Interesting properties of SVD

• The rank of a rectangular matrix A is equal to the number of non-zero 
singular values. Note that rank(A) = rank(Σ).

• SVD always exist

• It is used to compute pseudoinverse
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Computing SVD

• Compute SVD for

• Calculate the eigenvalues of 𝐴𝐴𝑇

• det 𝐴𝐴𝑇 − 𝜆𝐼 = 0

CAP4453 79

17 − 𝜆 17 − 𝜆 + 64 = 0

Σ =
5 0 0
0 3 0

𝐴𝐴𝑇 =
3 2 2
2 3 −2

3 2
2 3
2 −2

=
17 8
8 17



Compute SVD

• Eigenvector of 𝐴𝑇𝐴
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−12𝑥 + 12𝑦 + 2𝑧 = 0

2𝑥 − 2𝑦 − 17𝑧 = 0
𝜆 = 25 12𝑥 − 12𝑦 − 2𝑧 = 0

−12𝑥 + 12𝑦 + 2𝑧 = 0

6(2𝑥 − 2𝑦 − 17𝑧) = 0 12𝑥 − 12𝑦 − 102𝑧 = 0

−12𝑥 + 12𝑦 + 2𝑧 = 0

−100𝑧 = 0 𝒛 = 𝟎

2𝑥 − 2𝑦 − 17𝑧 = 0 2𝑥 − 2𝑦 = 0 𝒙 = 𝒚

𝐴𝑇𝐴 =
13 12 2
12 13 −2
2 −2 8



Compute SVD

• Eigenvector of 𝐴𝑇𝐴
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4𝑥 + 12𝑦 + 2𝑧 = 0

2𝑥 − 2𝑦 − 1𝑧 = 0
𝜆 = 9 12𝑥 + 4𝑦 − 2𝑧 = 0

16𝑥 + 16𝑦 = 0

4𝒚 = −𝒛

𝒙 = −𝒚

𝐴𝑇𝐴 =
13 12 2
12 13 −2
2 −2 8

𝐴𝑇𝐴 − 9𝐼 =
4 12 2
12 4 −2
2 −2 −1

4𝑥 + 12𝑦 + 2𝑧 = 0

12𝑥 + 9𝑦 − 2𝑧 = 0

4𝑥 + 12𝑦 + 2𝑧 = 0

-2(2𝑥 − 2𝑦 − 1𝑧) = 0

16𝑦 = −4𝑧

𝑣2 =

−𝑦
𝑦

−4𝑦
=

−1
1
−4

𝑦 =



Compute SVD

• Eigenvector of 𝐴𝑇𝐴
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13𝑥 + 12𝑦 + 2𝑧 = 0

2𝑥 − 2𝑦 + 8𝑧 = 0
𝜆 = 0 12𝑥 + 13𝑦 − 2𝑧 = 0

25𝑥 + 25𝑦 = 0

𝒚 = 𝟐𝒛

𝒙 = −𝒚

𝐴𝑇𝐴 =
13 12 2
12 13 −2
2 −2 8

𝐴𝑇𝐴 − 0𝐼 =
13 12 2
12 13 −2
2 −2 8

25𝑦 = 50𝑧

𝑣3 =

−𝑦
𝑦
𝑦/2

=
−1
1
0.5

𝑦 =

13𝑥 + 12𝑦 + 2𝑧 = 0

12𝑥 + 13𝑦 − 2𝑧 = 0

−6(2𝑥 − 2𝑦 + 8𝑧) = 0
12𝑥 + 13𝑦 − 2𝑧 = 0



Compute SVD

• So far:

• Using
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𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖
𝐴𝑣𝑖
𝜎𝑖

= 𝑢𝑖

𝐴𝑣1
𝜎1

=

3 2 2
2 3 −2

1

2
1

2
0

5
=

1/√2

1/√2 𝐴𝑣2
𝜎2

=

3 2 2
2 3 −2

1

3 2
−1

3 2
4

3 2
3

=
1/√2

−1/√2



Compute SVD

• In total
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Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition, derivation

• Intuition

• Direct Solving Ax=0

CAP4453 85



Derivation using Least squares
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h should equal the eigenvector of 𝐵 = 𝐴𝑇𝐴 that
has an eigenvalue of zero

𝐵ℎ = 𝜆ℎ

(or, in the presence of noise the eigenvalue
closest to zero)

𝐴ℎ = 0

The sum squared error can be written as:



General form of total least squares

(matrix form)

(Warning: change of notation. x is a vector of parameters!)

constraint

minimize

subject to

minimize

Solution is the eigenvector 
corresponding to smallest 
eigenvalue of

(Rayleigh quotient)

Solution is the column of V
corresponding to smallest singular 
value(equivalent)



Homogeneous Linear Least Squares problem

88



Solving for H using DLT

Given solve for H such that

1. For each correspondence, create 2x9 matrix

2. Concatenate into single 2n x 9 matrix

3. Compute SVD of 

4. Store singular vector of the smallest singular value

5. Reshape to get



Recap: Two Common Optimization Problems

Problem statement Solution

    1  s.t.      minimize =xxAxAx
TTT

0 osolution tlsq  trivial-non =Ax

1..21 :

)eig(],[

vx

AAv

=

=

n

T





Problem statement Solution

bAx = osolution t squaresleast bAx \=

2
  minimize bAx − ( ) bAAAx

TT 1−
=

(matlab)



References

Basic reading:
• Szeliski textbook, Section 3.6.

Additional reading:
• Hartley and Zisserman, “Multiple View Geometry in Computer Vision,” Cambridge University Press 2004.

a comprehensive treatment of all aspects of projective geometry relating to computer vision, and also
a very useful reference for the second part of the class.

• Richter-Gebert, “Perspectives on projective geometry,” Springer 2011.
a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available 
online for free from CMU’s library).
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Questions?
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