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Short Review 
from last class
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Outline

• Image segmentation basics

• Thresholding based
• Binarization

• Otsu

• Region based
• Merging

• Splitting

• Clustering based
• K-means (SLIC)
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Image segmentation

• Image segmentation partitions an image into regions called segments.

• Image segmentation creates segments of connected pixels by analyzing some 
similarity criteria:
• intensity, color, texture, histogram, features
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Otsu thresholding

• Definition: The method uses grey-value histogram of the given image I 
as input and aims at providing the best threshold (foreground/background)

• Otsu’s algorithm selects a threshold that maximizes the between-
class variance or      or minimize within-class variance 
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Otsu thresholding

• Definition: The method uses grey-value histogram of the given image I 
as input and aims at providing the best threshold (foreground/background)

• Otsu’s algorithm selects a threshold that maximizes the between-
class variance 
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Robot Vision
8. Segmentation II
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Energy-Based methods
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Outline

• Image segmentation basics

• Thresholding based
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• Region based
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• Clustering based
• K-means (SLIC)
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Region based segmentation
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Region growing

• For segment generation in grey-level or color images, we may start at 
one seed pixel (x,y,I(x,y)) and add recursively adjacent pixels that 
satisfy a “similarity criterion” with pixels contained in the so-far 
grown region around the seed pixel.

• Defining similarity criteria alone is not an effective basis for 
segmentation

• It is necessary to consider the adjacency spatial relationship between 
pixels
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Region growing

• Algorithm

1. The absolute intensity difference between candidate pixel and the  
seed pixel must lie within a specified range

2. The absolute intensity difference between a candidate pixel and the 
running average intensity of the growing region must lie within a 
specified range;

3. The difference between the standard deviation in intensity over a 
specified local neighborhood of the candidate pixel and that over a 
local neighborhood of the candidate pixel must (or must not) exceed a 
certain threshold
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Seeded segmentation. Region growing

1. Chose the seed pixel
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Seeded segmentation. Region growing

1. Chose the seed pixel

2. Check the neighboring pixels and add them to the region if they are 
similar to the seed
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Seeded segmentation. Region growing

1. Chose the seed pixel
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similar to the seed
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Seeded segmentation. Region growing

1. Chose the seed pixel

2. Check the neighboring pixels and add them to the region if they are 
similar to the seed

3. Repeat step 2 for each of the newly added pixels; stop if no more 
pixels can be added
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Ex: Muscle/Bone Segmentation in CT Scans
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Ex: Muscle/Bone Segmentation in CT Scans
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Ex: Muscle/Bone Segmentation in CT Scans
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Region Growing Implementation
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Region splitting and Merging Segmentation

• Region splitting:
• Unlike region growing, which starts from a set of seed points, region splitting 

starts with the whole image as a single region and subdivides it into 
subsidiary regions recursively while a condition of homogeneity is not 
satisfied.

• Region merging:
• Region merging is the opposite of splitting, and works as a way of avoiding 

over-segmentation

• Start with small regions (2x2 or 4x4 regions) and merge the regions that have 
similar characteristics (such as gray level, variance).
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Region splitting and Merging Segmentation
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Region splitting and Merging Segmentation
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Region splitting and Merging Segmentation
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Region splitting and Merging Segmentation

• Region splitting:
• Unlike region growing, which starts from a set of seed points, region splitting 

starts with the whole image as a single region and subdivides it into 
subsidiary regions recursively while a condition of homogeneity is not 
satisfied.

• Region merging:
• Region merging is the opposite of splitting, and works as a way of avoiding 

over-segmentation

• Start with small regions (2x2 or 4x4 regions) and merge the regions that 
have similar characteristics (such as gray level, variance).

CAP4453 32



CAP4453 33



CAP4453 34



Outline

• Image segmentation basics

• Thresholding based
• Binarization
• Otsu

• Region based
• Merging
• Splitting

• Clustering based
• K-means 
• Superpixels (SLIC)
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What is Clustering?

• Organizing data into classes such that:
• High intra-class similarity

• Low inter-class similarity

• Finding the class labels and the number of classes directly from the 
data (as opposed to classification tasks)
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What is a natural grouping ?
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What is a natural grouping ?
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Outline

• Image segmentation basics

• Thresholding based
• Binarization
• Otsu

• Region based
• Merging
• Splitting

• Clustering based
• K-means 
• Superpixels (SLIC)
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K-means

• Most well-known and popular clustering algorithm:

• Start with some initial cluster centers

• Iterate:
• Assign/cluster each example to closest center

• Recalculate centers as the mean of the points in a cluster
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K-means
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K-means
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Step 0: 
- Pick number of classes
- Pick seeds for those classes



K-means
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Iterate:
Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster



K-means
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K-means
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K-means
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K-means
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Iterate:
Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster
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K-means
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Distance measures
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K-means
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K-means
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K-means loss function
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K-means tries to minimize what is called the “k-means” loss function:

that is, the sum of the squared distances from each point to the
associated cluster center

𝑙𝑜𝑠𝑠 = 

𝑖=1

𝑛

𝑑2(𝑥𝑖 , 𝜇𝑘), 𝑤ℎ𝑒𝑟𝑒 𝜇𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 𝑓𝑜𝑟 𝑥𝑖



K-means: initialization
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Choosing the Appropriate Number of 
Clusters

CAP4453 63

1.The elbow method
2.The silhouette coefficient

K-Means Clustering in Python: A Practical Guide – Real Python

https://realpython.com/k-means-clustering-python/


Choosing the Appropriate Number of 
Clusters
• run several k-means, 

• increment k with each iteration

• record the sum of the squared error (SSE)
• The SSE is defined as the sum of the squared Euclidean distances of each 

point to its closest centroid
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1.The elbow method

Elbow point

https://en.wikipedia.org/wiki/Residual_sum_of_squares


Choosing the Appropriate Number of 
Clusters

• run several k-means, 

• increment k with each iteration

• Pick max silhouette coefficient
1. How close the data point is to other points in the cluster

2. How far away the data point is from points in other clusters

• (b - a) / max(a, b).      Where,

a: intra-cluster distance

b: distance between a sample and 
the nearest cluster that the sample is not a part of.

CAP4453 652. The silhouette coefficient

Maximum at 3

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html


Segmenting an image with K-means

• Example:

• Vector:  (coordinates i, coordinate j , Color L, Color a, Color b ) : 5 dims  

• Distance: Euclidean distance

• Number of clusters: 10

• Seeds selected randomly
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Kmeans function from scratch
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Calling Kmeans
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Results
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Outline
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Superpixels

• They carry more information than 
pixels.

• Superpixels have a perceptual 
meaning since pixels belonging to a 
given superpixel share similar visual 
properties.

• They provide a convenient and 
compact representation of images that 
can be very useful for computationally 
demanding problems.
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Superpixels and SLIC. What is a Superpixel? | by Darshita Jain | 
Medium

https://darshita1405.medium.com/superpixels-and-slic-6b2d8a6e4f08#:~:text=SLIC%20%28Simple%20Linear%20Iterative%20Clustering%29%20Algorithm%20for%20Superpixel,color%20space%20and%20xy%20is%20the%20pixel%20position.


SLIC (Anchanta et. al. TPAMI 2012)
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Input:
• a desired number of approximately 

equally-sized superpixels K

SLIC (Simple Linear Iterative Clustering)

Features:

Distances:

five-dimensional [labxy] space, 
• [lab] is the pixel color vector 

in CIELAB color space
• xy is the pixel position.

https://en.wikipedia.org/wiki/CIELAB_color_space


SLIC (Anchanta et. al. TPAMI 2012)
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1. Get Features: Lab color, x-y position
2. Initialize cluster centers on pixel grid in 
steps S
3. Move centers to position in 3x3  window
with smallest gradient
4. Compare each pixel to cluster center within
2S pixel distance and assign to nearest
5. Recompute cluster centers as mean 
color/position of pixels belonging to each
cluster
6. Stop when residual error is small

SLIC (Simple Linear Iterative Clustering)



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

This is done to avoid placing them at 
an edge and to reduce the chances of 
choosing a noisy pixel



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

G(x,y) = ‖I(x+ 1,y)−I(x−1,y)‖²+‖I(x,y+ 1)−I(x,y−1)‖²
• I(x,y) is the lab vector corresponding to the 

pixel at position (x,y), 
• ‖.‖ is the L2 norm.



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf



SLIC Example
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SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf
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More examples
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Questions?


