

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Administrative details

- Homework due Friday 11:59pm via webcourses
- Point 5 refers to filter center in second row
- Any other question?

Robot Vision

6. Edge detection II

Credits

- Some slides comes directly from:
 - Yogesh S Rawat (UCF)
 - Noah Snavely (Cornell)
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Mubarak Shah (UCF)
 - S. Seitz
 - James Tompkin
 - Ulas Bagci
 - L. Lazebnik

Short Review from last class

Edge detectors

- Gradient operators
 - Prewit
 - Sobel
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)

Gradient operators edge detector algorithm

- 1. Compute derivatives
 - In x and y directions
 - Use Sobel or Prewitt filters
- 2. Find gradient magnitude
- 3. Threshold gradient magnitude

Sobel

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Marr-Hildreth edge detector algorithm

- 1. Smooth image by Gaussian filtering
- 2. Apply Laplacian to smoothed image
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics

3. Find Zero crossings

- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

Laplacian of Gaussian vs Derivative of Gaussia

Zero crossings are more accurate at localizing edges.

45 years of boundary detection

[Pre deep learning]

Precision Recall

Precision Recall

Precision Recall

Edge Detection with Deep Learning

Canny edge detector

Design Criteria for Edge Detection

- Good detection: find all real edges, ignoring noise or other artifacts
- Good localization
 - as close as possible to the true edges
 - one point only for each true edge point

Problems

- We get thick edges
- Redundant, especially if we going to be searching in places where edges are found

Solution

- Identify the local maximums
- Called "non-maximal suppression"

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

Smooth image with Gaussian filter

$$S = I * g(x, y) = g(x, y) * I$$

$$g(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Compute derivative of filtered

$$\nabla S = \nabla (g * I) = (\nabla g) * I$$

$$\nabla S = \nabla (g * I) = (\nabla g) * I \qquad \nabla g = \begin{vmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{vmatrix} = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$

$$\nabla S = \begin{bmatrix} g_x \\ g_y \end{bmatrix} * I = \begin{bmatrix} g_x * I \\ g_y * I \end{bmatrix}$$

20

1. Smooth image with Gaussian filter

$$S = I * g(x, y) = g(x, y) * I$$

$$g(x,y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

2. Compute derivative of filtered image

$$\nabla S = \begin{bmatrix} g_x \\ g_y \end{bmatrix} * I = \begin{bmatrix} g_x * I \\ g_y * I \end{bmatrix}$$

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

3. Find magnitude and orientation of gradient

3. Find magnitude and orientation of gradient

3. Find magnitude and orientation of gradient

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

4. Apply "Non-maximum Suppression"

Goal: keep pixels along the curve where magnitude is largest

How to: looking for a maximum along a slice normal to the curve

4. Apply "Non-maximum Suppression"

Goal: keep pixels along the curve where magnitude is largest

That is the direction of the gradient!

How to: looking for a maximum along a slice <u>normal to the curve</u>

4. Apply "Non-maximum Suppression"

• Suppress the pixels in $|\nabla S|$ which are not local maximum

$$(x', y')$$

$$(x, y) = \begin{cases} |\nabla S|(x, y)| & \text{if } |\nabla S|(x, y) > |\Delta S|(x', y')| \\ & \& |\Delta S|(x, y) > |\Delta S|(x'', y'')| \\ & \text{otherwise} \end{cases}$$

$$(x'', y'')$$

$$x' \text{ and } x'' \text{ are the neighbors of } x \text{ along}$$

x' and x" are the neighbors of x along normal direction to an edge

4. Apply "Non-maximum Suppression"

We need to examine triples
along the directions shown
to see if the center pixel is a
peak (in magnitude) compared
to its two neighbors.

4. Apply "Non-maximum Suppression"

4. Apply "Non-maximum Suppression"

For each direction, we will ask whether the center mag value exceeds the mag value of neighbor on one side, and neighbor on other side; if yes, mark as peak.

4. Apply "Non-maximum Suppression"

4. Apply "Non-maximum Suppression"

We always want to
max-test in the direction
perpendicular to the
edge, i.e., across the edge.
This means in the direction
of the gradient vector.

4. Apply "Non-maximum Suppression"

CAF4433

4. Apply "Non-maximum Suppression"

4. Apply "Non-maximum Suppression"

We know the angles of each direction.

CAF44JO

4. Apply "Non-maximum Suppression"

4. Apply "Non-maximum Suppression"

4. Apply "Non-maximum Suppression"

So, put = sign in

For each pixel (i.e., double-for loop) Get pixel's gradient direction, Dir

If - 22.5 < Dir <=22.5

Employ Horizontal Max-Test

else if +22.5 < Dir < +67.5

And, remove Vertical

cone test, use "otherwise"

Employ Test involving SW and NE pixels

else if -67.5 < Dir <=-22.5

Employ Test involving SE and NW pixels

Employ Vertical test

41

4. Apply "Non-maximum Suppression"

• Suppress the pixels in $|\nabla S|$ which are not local maximum

$$(x', y')$$

$$(x, y) = \begin{cases} |\nabla S|(x, y)| & \text{if } |\nabla S|(x, y) > |\Delta S|(x', y')| \\ & \& |\Delta S|(x, y) > |\Delta S|(x'', y'')| \\ & \text{otherwise} \end{cases}$$

$$(x'', y'')$$

$$x' \text{ and } x'' \text{ are the neighbors of } x \text{ along}$$

x' and x" are the neighbors of x along normal direction to an edge

> 42 CAP4453

4. Apply "Non-maximum Suppression"

 $\left|\Delta S\right| = \sqrt{S_x^2 + S_y^2}$

For visualization $M \ge Threshold = 25$

Comparison

Gradient Thresholding

With non-maximal suppression

- 1. Smooth image with Gaussian filter
- 2. Compute derivative of filtered image
- 3. Find magnitude and orientation of gradient
- 4. Apply "Non-maximum Suppression"
- 5. Apply "Hysteresis Threshold"

- Edges tend to be continuous
- Still threshold the gradient
- Use a lower threshold if a neighboring point is an edge
- The "Canny Edge Detector" uses all of these heuristics

5. Apply "Hysteresis Threshold"

- If the gradient at a pixel is
 - above "High", declare it as an 'edge pixel'
 - below "Low", declare it as a "non-edge-pixel"
 - between "low" and "high"
 - Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'edge pixel' directly or via pixels between "low" and "high".

Connectedness

5. Apply "Hysteresis Threshold"

4 connected

- above "High", declare it as an 'edge pixel'

- below "Low", declare it as a "non-edge-pixel"
- between "low" and "high"

If the gradient at a pixel is

 Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'edge pixel' directly or via pixels between "low" and "high".

5. Apply "Hysteresis Threshold"

- Scan the image from left to right, top-bottom.
 - The gradient magnitude at a pixel is above a high threshold declare that as an edge point
 - Then recursively consider the *neighbors* of this pixel.
 - If the gradient magnitude is above the low threshold declare that as an edge pixel.

5. Apply "Hysteresis Threshold"

regular $M \ge 25$

Hysteresis

$$High = 35$$

$$Low = 15$$

CAP4453

Before non-max suppression

After non-max suppression

Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels

Final Canny Edge

Final Canny Edge

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Questions?