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Outline

 What is Machine Learning ?
* Main basic problems: regression, classification
* Supervised vs unsupervised
* generalization, overfitting
* What is Deep learning?
*  What is Neural network
* Activation functions
* Define error
* What are you optimizing?
* Chainrule
* Back-propagation
* Why deep? How deep?
* Hyper-parameters
* Problems with NN. What happened in the 80’s?
* Vanishing gradient problem
*  Number of parameters
* What kind of problems DN can solve?
* Regression, classification
* Computer vision: object detection, semantic segmentation, super-resolution,
* Time series: NLP, visual questioning/answering
* Generative models: impersonators ()



Introduction



What is object detection

Classification Instance
+ Localization

Object Detection

Classification Segmentation
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Object Detection

e Score subwindow
» extract features from the image window

* classifier decides based on the given features.
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Some feature representations
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Coming up with features is often difficult, time-
consuming, and requires expert knowledge.
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What is Machine Learning ?

* machine learning is using data to detect patterns. It is the same thing as Al. *

* What is new?
* faster
e cheaper
* Bigger
* Feature engineering is generally replaced by Feature learning

* What is the goal of the algorithms?
* make predictions about future observations of data in the same format (generalization)
* input data + weights 2 f (weights)

* https://towardsdatascience.com/machine-learning-for-people-who-dont-care-about-machine-learning-4cf0495dee2c



https://towardsdatascience.com/machine-learning-for-people-who-dont-care-about-machine-learning-4cf0495dee2c
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Learning phases { . ]
e I

Images

Training

Trained
classifier

TeSting Lrg?ie n - [Image FEEtUI‘ES} -{ Apply classifier }{ Prediction }

training set

- Image
Features
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The machine learning framework

* Apply a prediction function to a feature representation of the
image to get the desired output:

— HappleH
= “tomato”
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The machine learning framework

f(x) =y
o\

Prediction function Image Output (label)
or classifier feature

Training: Given a training set of labeled examples:

{(xpyl): o0y (foyN)}

Estimate the prediction function f by minimizing the
prediction error on the training set.

Testing: Apply f to an unseen test example x, and output the
predicted value y = f(x,) to classify x,.
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What is machine learning?

* If let’s say f is a linear function in N dimensions ,X = [x4, X5, ..., Xy |, what
do you learn?
* flwy, Wy, o, Why1) = Wixy + WoXxy + - WyXy + Wiy
* You learn the weights w that match better that function

15[

e Simplest case N=1,
* Input Data is number (X axis)
* output value is the Y axis

* flwy,wy) = W}<1 %Wz

Finding these values is

called training
28 10 10 20 30 40 50 60




Basic problems in machine learning

* You can break most of the machine learning problems in 2 categories:
* Regression: predicting a value (such as price or time to failure)
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* classification — predicting the category of something (dog/cat, good/bad, wolf/cow)
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Basic problems in machine learning
FROM SCIKIT-LEARN LIBRARY

scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

regression

- Supervised
- Unsupervised
- Semi-supervised

NOT do you have
WORKING labeled few features o
should be WORKING
important

number of
categories
known

clustering
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o dimensionality

reduction

predicting
structure




Generalization AND overfitting
WITH TRAINING DATA

Overfitting in regression
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Generalization AND overfitting
WITH NEW TESTING DATA

Overfitting in regression
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Generalization AND overfitting
WITH NEW TESTING DATA

Overfitting in regression
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So far ...

* Machine learning = Al
* Goal: general function for input data

* Training process: Find parameters for the
model Scale drives deep learning progress

e Supervised: you have labeled data

* Unsupervised: you do not have labeled
data

e Semi-supervised: some of your data is
labeled

* Overfitting: training adjust very well to ? omtotdan (W) LA
« e . /A
your training data, but do not generalize L Andrew Ng

Performance




What is deep learning?



What is deep learning?

* A machine learning technique that solves problems with enormous
amount of data.
* Huge number of tunable parameters
* Highly non-linear
* Based on neural networks
* A stack of neural networks layers
It is data driven (not hand-crafted features)



Neurons in the Brain

ng / i ,.’;)
Ry [ ' SSES  + Aneuron receives input from
oA other neurons (generally

thousands) from its dendrites

* Brain is composed of neurons

* Inputs are approximately
summed

* When the input exceeds a
threshold, the neuron sends
an electrical spike that travels
from the body, down the
axon, to the next neuron(s)
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What is a heuron?

Call body

'

Outputs

Myelin sheat

Myelinated axon

Inputs  Weights Net input Activation
function function

@ » output

-0.099

1 @ A=tanh(Z)

z=wlx a=o0(z)

a=y
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What is a neural network?
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Composition

Hidden layer 1 Hidden layer 2

Multiple | inputs output

Matrix! Matrix! Matrix!

It’s all just matrix multiplication!
GPUs -> special hardware for fast/large matrix multiplication.
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Composition: activation function

e Activation function must be A non-linear function.

e Other case the output will be a linear function
* Image you have 2 layers

Z[11 =WI1 x + pll]
2121= W21 Z[1] + p[2]
X1
%,  zl21= WRIZll] + pl2]
Y = W21 [Wllx + bl!]+ bl2]
X3 = WEI Wl x + W21 plll+ pl2]
=Wx+b

y=zP=Wx +b

The output is always a linear function of the input!
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Problem 1 with all linear functions

* We have formed chains of linear functions.

* We know that linear functions can be reduced
* g =f(h(x))

Our composition of functions is really
just a single function : (

31



Problem 2 with all linear functions

Linear classifiers:

small change in input can cause large change in binary output.

small change in any weight (or bias)

causes a small change in the ontput

We want: w+ Aw

output4 .-'lmu‘imt
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Activation function

Pros and cons of activation functions
Aa Aa
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Mark 1 Perceptron

c.1960
camera feed

20x20 pixel
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3 What the computer sees

* Example: Image
1F1 1 i 82% cat
C I ass Ifl Cat 1on image classification ;os/:/"hgfg
* Loss: sum errors in the 1% mug
t r a i n i n g dlat a S et fnput layer | Midden laver 1 hidden layer 2 1ﬁc1<1en 1y<_-r 3
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Expected Outpu
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train 0
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J2=— E (¥i —yi) 0
train
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What are you optimizing?

e Goal: Minimize the loss

What we learn: The parameters of the function !

network

v The network is a function ()
T Y = FOGw) with parameters W which must
’ be set to the appropriate values
to get the desired behavior from
the net

------

* Given: the architecture of the network
* The parameters of the network: The weights and biases
— The weights associated with the blue arrows in the picture

* Learning the network : Determining the values of these parameters
such that the network computes the desired function

36



J(w)

IN OUR CASE THE LOSS FUNCTION

How to minimize a function ?

Repeat until there is almost not change

dj
Initial ) : Wnew = Wprev = @ 7y
i/ __— Gradient
'I
HOW TO COMPUTE
Global cost minimum THIS GRADIENT?
// Jmm(w)
>
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Back-propagation

* It is a technique to compute the gradient
* Gradients are necessary to get closer to the solution

* FORWARD PASS: You take the inputs, compute the outputs and
loss(saving intermedia results)

* From the loss, you s computing backwards to estimate the values

of the gradients } e parameters w
1 A
} y




Back-propagation

* It is a technique to compute the gradient
* Gradients are necessary to get closer to the solution

* FORWARD PASS: You take the inputs, compute the outputs and
loss(saving intermedia results)

* From the loss, you s omputing backwards to estimate the values
of the gradients fo o parameters w Goal: find
xl V From Layerz:djv]ﬁ],dzfzz]’, djv]i]’diji]
~
xZ y From Layer 1: djv][”’d\:i;{l] '""%’ﬁ]ﬁ

11 12 33




What is a deep network?

* A neural network with many

Deep neural network layers
input layer hidden layer 1 hidden layer 2 hidden layer 3 ° H Ig h Iy non | Inear
Y

output layer
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An example

Upper loop neuron...maybe...

Does the network
actually do this?

L8 W/ p—
( O'f course that just kic!g the problem down the rogd

But this is a hope that we might have. A sort of goal with the layered structure like this



What is a deep network?

* A neural network with many
Deep neural network Iaye Ir's

input layer hidden layer 1 hidden layer 2 hidden layer 3 ° H Igh Iy non Ilnea r

£y
output layer
Successive model layers learn deeper intermediate representations
High-level
Layer 3 linguistic representations
Parts combine
toform objects
.' ——
e Layer 2
/ -

IS NUINSST =™ peEits I
Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction
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So far ...

* A deep network is a neural network with many layers
A neuron in a linear function followed for an activation function
e Activation function must be non-linear

* A loss function measures how close is the created function (network) from
a desired output

* The “training” is the process of find parameters (‘weights’) that reduces the
loss functions

dj

as reduces the loss

* Updating the weights as wiew = Wyrew —

* An algorithm named back-propagation allows to compute d_v]v for all the
weights of the network in 2 steps: 1 forward, 1 backward



What kind of problems
deep learning can solve?



What problems you can solve?

* The fundamental ones:
* Regression: predict values
 Classification: predict labels

* Computer vision:
* object detection
* semantic segmentation
e super-resolution,

* Time series:
* NLP
* visual questioning/answering

 Generative models
e impersonators ()



OBJECT DETECTION

Computer vision

* Find region of interest (regression)
* Find a class label (classification)
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SEMANTIC SEGMENTATION

Computer vision

* Find a class for each pixel

i i i rl

input image | segmentation overlay —
python
mud

road

grass
python
mud
human

input image segmentation overlay
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Computer vision

SUPER-RESOLUTION FROM A SINGLE IMAGE

x19

P = | -

(a) VDSR
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UE{).ED)Q Branch
xBO
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x2 ) *Z times

(g) MDSR
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Embedding Inference Reconstruction

(b) DRCN

recursive block.

recur 2 times

recur 2 times

— recur 2 times i:>.:>®::>
H | H

(d) DRRN

L"'@@I‘I

(f) DenseSR

UONINLISUDIZY

(h) MemNet

Figure 5: Sketch of several deep architectures for SISR.

(b)
bicubic(21.59dB/0.6423)

(e) SRCX(20. 88dB/0 6002)

© ' @)

SRResNet(23.53dB/0.7832) SRGAN(21.15dB/0.6868)



Computer vision
OTHER PROBLEMS

* Super resolution from multiple images

* Denoising



Time series (RNN, LSTM, Attention models)

USE MEASUREMENT TO CHANGE STATE, USE STATE TO PREDICT FUTURE

* Natural language Processing

* Translation Who is wearing glasses? Where is the child sitting?
man woman

* Check Google Bert
* Visual Questioning answer

e Stocks

* Signals
* ECG

Is the umbrella upside down?
yes no

50



Generative models
GAN (GENERATIVE ADVERSARIAL NETWORKS)

* Predict the data based on some loose input.
* Looks like the network is able o create somethin i_

Discriminator Network
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IMAGE-TO-IMAGE TRANSLATION

Generative models

Labels to Street Scene Labels to Facade BW to Color

input out
Day to Night

output input output input output

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

* Image-to-Image Translation with Conditional Adversarial Networks. Phillip Isola, Jun-
Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017
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https://www.semanticscholar.org/author/Phillip-Isola/2094770
https://www.semanticscholar.org/author/Jun-Yan-Zhu/2436356
https://www.semanticscholar.org/author/Tinghui-Zhou/1822702
https://www.semanticscholar.org/author/Alexei-A.-Efros/1763086

Generative models
IMAGE CREATION FROM TEXT

* Generative Adversarial Text to
Image Synthesis. Scott Reed,
Zeynep Akata, Xinchen Yan,
Lajanugen Logeswaran, Bernt
Schiele, Honglak Lee. ICML 2016

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma

T ¢ R

round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories, unseen
text. Right: captions are from the training set.
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Generative models
CREATE FAKE MODELS

* https://youtu.be/plb5aiTrGzY
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https://youtu.be/p1b5aiTrGzY

Questions?



