9 CAP 4453
Robot Vision

Administrative details

* Issues submitting homework

Credits

* Some slides comes directly from:

e Kristen Grauman
e A.Zisserman
* Ross B. Girshick

Short Review
from last class

Feature Descriptor

o

CAP4453 5

Histogram of Oriented Gradients (HOG)

* Revisiting histogram

—_— | O
—_— s (Y|

e e e B
o | o [S | —
R N = e B i (N

image histogram

CAP4453 6

Invariance to deformation

* Deformation can also move
pixels around

e Again, instead of precise
location of each pixel, only
want to record rough location

* Divide patch into a grid of cells Image gradients

Keypoint descriptor

 Record counts of each
orientation in each cell:
orientation histograms

Orientation histogram

Feature detection and description

* Harris corner detection gives:
* Location of each detected corner
* Orientation of the corner (given by x,_,)
 Scale of the corner (the image scale which gives the maximum response at
this location)
* Want feature descriptor that is
* |Invariant to photometric transformations, translation, rotation, scaling
* Discriminative

Summary of HOG computation

Step 1: Extract a square window (called “block”) of some size around the pixel
location of interest.

Step 2: Divide block into a square grid of sub-blocks (called “cells”) (2x2 grid in
our example, resulting in four cells%.

Step 3: Compute orientation histogram of each cell.
Step 4: Concatenate the four histograms.

* Step 5: normalize v using one of the three options:
e Option 1: Divide v by its Euclidean norm.
e Option 2: Divide v by its L1 norm (the L1 norm is the sum of all absolute values of v).
* Option 3:
* Divide v by its Euclidean norm.

* In the resulting vector, clip any value over 0.2
* Then, renormalize the resulting vector by dividing again by its Euclidean norm

Histogram of Oriented Gradients (HOG)

e Parameters and design options:

* Angles range from O to 180 or from 0 to 360 degrees?
* In the Dalal & Triggs paper, a range of 0 to 180 degrees is used

* Number of orientation bins.
* Usually 9 bins, each bin covering 20 degrees.

 Cell size.
* Cells of size 8x8 pixels are often used.

 Block size.
* Blocks of size 2x2 cells (16x16 pixels) are often used.

e Usually a HOG feature has 36 dimensions.
e 4 cells * 9 orientation bins.

Histogram of Oriented Gradients (HOG)

Input image

CAP4453 11

SIFT descriptor

 Compute on local 16 x 16 window around detection.

* Rotate and scale window according to discovered orientation © and
scale o (gain invariance).

* Compute gradients weighted by a Gaussian of variance half the
window (for smooth falloff).

Actually 16x16, only showing 8x8

Image gradients 12

SIFT descriptor

* 4x4 array of gradient orientation histograms weighted by gradient
magnitude.

* Bin into 8 orientations x 4x4 array = 128 dimensions.

Showing only 2x2 here but is 4x4

Image gradients Keypoint descriptor

SIFT Descriptor Extraction

16x16 window

128 dimensional vector
.
v " ' wé
LA <4 X-»
174 o« e+ »
aX_a ,_A 4 X
- v v v
-
vA, "t < ,A'
94— “< i K> P
. »
! rFvd o LR v
I - -
- phw e . "
> RS . D R
b s » N
- v v
-
v o x 8 7 vhv
P < "> “ 0.. < ..0
5 e LA [§1 »

@ Keypoint

Gradient - .
magnitude ¥

and / S AN
orientation v

8 bin ‘histogram’
- add magnitude
amounts!

Utkarsh Sinha

CAP4453 14

Reduce effect of illumination

 128-dim vector normalized to 1

* Threshold gradient magnitudes to avoid excessive
influence of high gradients

» After normalization, clamp gradients > 0.2
* Renormalize

% | ¥
k x

Image gradients Keypoint descriptor

CAP4453 15

import numpy as np
import cv2
from matplotlib import pyplot as plt

from google.colab.patches import cv2 imshow

Create SIFT object
O e sift = cv2.xfeatures2d.SIFT create ()

Create flann matcher
FLANN INDEX KDTREE = 1 # bug: flann enums are missing
flann params = dict(algorithm = FLANN_ INDEX KDTREE, trees = 5)

matcher = cv2.FlannBasedMatcher (flann params, {})

Detect and compute

imgl = cv2.imread('androis.png’)

grayl = cv2.cvtColor (imgl, cv2.COLOR BGR2GRAY)
kptsl, descsl = sift.detectAndCompute (grayl,None)
As up

img2 = cv2.imread('android small.png’)

gray2 = cv2.cvtColor (img2, cv2.COLOR BGR2GRAY)
kpts2, descs2 = sift.detectAndCompute (gray2,None)

Ratio test

matches = matcher.knnMatch (descsl, descs2, 2)

matchesMask = [[0,0] for i in range(len(matches))]
for i, (ml,m2) in enumerate (matches) :
if ml.distance < 0.7 * m2.distance:
matchesMask([i] = [1,0]

Notice: How to get the index
ptl = kptsl[ml.queryIdx].pt

pt2 = kpts2[ml.trainlIdx].pt
print(i, ptl,pt2)

if 1 % 10 ==0:

Draw pairs in purple, to make sure the result is ok

cv2.circle(imgl, (int(ptl[0]),int(ptl([1])), 5, (255,0,255), -1)

cv2.circle(img2, (int(pt2[0]),int(pt2([1])), 5, (255,0,255), -1)
Draw match in blue, error in red
draw_params = dict (matchColor = (255, 0,0), singlePointGeder, 7-60,0,255), matchesMask = matchesMask, flags = 0)
res = cv2.drawMatchesKnn (imgl, kptsl,img2, kpts2,matches, None, **draw_params)

cv2_imshow (res)

Robot Vision

13. Object detection |

CAP4453 17

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maxima Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 18

What is object detection

Classification Instance
+ Localization

Object Detection

Classification Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

P J
NV N

Single object Multiple objects

Object detection

% N

v s g person : 0.992
Ve Pec i * Multiple outputs
L Ry * Bounding box
* Label
* Score

—
-

person : 0.979%

CAP4453 20

Detection Competitions

Pascal VOC

COCO
ImageNet ILSVRC

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#introduction

Valid detection

* Groundtruth: score;,, = ”l‘]tz:;z‘gzdafzza
* Bounding box Possible detection
* Label

Different criteria to declare detections:

Pascal criteria
sCore;y, > 0.5

e Possible detection

* Bounding box
* Label

¢* ScCore groundtruth All of these:

scorejy, > 0.5
score;,, > 0.55
scorejy, > 0.6
score;y, > 0.65
scorejyy, > 0.7
score;y, > 0.75
scorejy, > 0.8
scorejy, > 0.9
scorejy, > 0.95

relevant elements

Possible detection

Te r S false negatives true negatives Bounding box
II I O

® ® 0o Label
score
Recall
P rec | S I O n true positives false positives
MAP
loU ! —_—
; Algorithm 1
§ Algorithm 2 -
0.8 1
'] “
selected elements = 0.6 i
e \
0 2
How many selected How many relevant 8 0.4 T
items are relevant? items are selected? o -
0.2 1
Precision =——— Recall = ——
. [0 A A A A
0 02 0.4 0.6 0.8 1

Recall

relevant elements

Possible detection

—|—e r S false negatives true negatives Bounding box
I I I O

® o ® o) Label
score
Recall
P rec I S I O n true positives false positives
MAP
loU 1 —
Algorithm 1
Algorithm 2 -
0.8 e
o b
selected elements > 0.6 1
e
0
How many selected How many relevant 8 0.4 T
items are relevant? items are selected? o -
0.2 } .
Precision =——— Recall = ——
' [0 A A A A
0 052 0.4 0.6 0.8 1

Recall

Average precision (AP): Area under curve

Possible detection

Te r m S Bounding box

Label
score
Recall
Precision
mAP
loU) N—
Algorithm 1
Algorithm 2 -
0.8
B g
mAP is simply all the AP values averaged over different classes/categories Ej 0.4
Box Average Precision (AP@[0.5:0.95]): sums I0Us o
between 0.5 and 0.95 and divides the sum by the number of the I0U values .

0 0.2 0.4 0.6 0.8 1
Recall

Average precision (AP): Area under curve

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maxima Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 26

Popular algorithms for object detection

* Pre-Deeplearning
 HOG + SVM (Dalal, Triggs)
* Deformable Part-based Model (DPM)

* Deep learning
* Fast R-CNN
Faster R-CNN
* Region-based Convolutional Neural Networks (R-CNN)
Region-based Fully Convolutional Network
Single Shot Detector (SSD)
YOLO (You Only Look Once)

PASCAL VOC 2005-2012

20 object classes 22,591 images

Classification: person, motorcycle

-

Segmentation

Everingham, Van Gool, Williams, Winn and Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010.

mean Average Precision (mAP)

ODbject detection progress

PASCAL VOC
80%
Fa
T0% A
60% Before CNNs A
1 A
50%
[l J
40% & s]
& Using CNNs

30% A
20%
10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

vear _)
Source: K. Girshick
— 29

IM A GE N E | Large Scale Visual

Recognition Challenge (ILSVRC) 2010-2014

20 obi | 22 591]
200 object classes 517,840 images DET
1000 object classes 1,431,167 images CLS-LOC

http://image-net.org/challenges/LSVRC/

ILSVRC detection in 2014 (Deep learning)

0.5 | 44% j
c
2 047
8 ~18% due to better methods
L 03y |
= 1~3% due to more data
@
o 0.271]
©
)
Q0.1
<

0
2013 2014
ILSVRC year

1.9x increase in object detection average
precision in one year

Russakovsky* and Deng* et al., ImageNet Large Scale Visual Recognition Challenge, http://arxiv.org/abs/1409.0575

Microsoft
COCO: Common
Objects in
Context

COCO - Common Objects in Context (cocodataset.org)

Instances per category mCOCD
1,000,000
100,000

B PASCAL VDL
10,000
100

g $§§_§§§ SEERIEH ;.5‘3#'5"%‘4? £ ?igé’féﬁé?Fé'”ﬁé‘?g{g%ﬁ?{fgﬁﬁﬁ; *&“

B

£ é‘ é@*jﬁ‘ ,“e?f

. , d B
Categories per image ") Instances per image
B0 [
i | =—m=coco (3.5 S0% —=—{0C0 7.7}
E % FASLAL".I'DE(]A] E e PRSI AL WO |'J'.Z‘.|
= = A% == Imagehet [3.0
E 50% | ——lmagenet (1.7] E petet 500
= B i SN (17,00
@ Ak —a—SLIN 9.8 g 3%
2 &2
E i E 200
& &
10%
1%
0% 0%
1 2 3 4 &% & 7 B 8 10 11 12 13 14 15 1 3 4 5 6 7 & % 10 11 12 13 14 15
Number of categaries Nurnber of instances
(b) (c)
. . Instance size
Number of categories vs. number of instances
4%
1000000
LY | =l=CD{0D
1 Cakach Fad
E 00000 .m.—.;. g 0% | = PASCAL VOC
& 10000 5 1my | =——hnagehe
2] PRRCAL Y Imaguhi iragehist =
B Daticson Hamibcation = 0% i SLIN
2 100 = |
H] Caltwch 144 =
£ 100 @ [) .ﬂm §]55ﬁ
E Caltech 101 & 0%
= 10
5%
! %
1 1 T ple] 10HE] 10000

4% N 10 16% 15K A, 63K 10

Number of categories
R Parcant of image size

(d) (e)

Fig. 5: (a) Number of annotated instances per category for MS COCO and PASCAL VOC. (b,c) Number of annotated
categories and annotated instances, respectively, per image for M5 COCO, ImageNet Detection, PASCAL VOC and
SUN (average number of categories and instances are shown in parentheses). (d) Number of categories vs. the
number of instances per category for a number of popular object recognition datasets. (e) The distribution of
instance sizes for the MS COCO, ImageNet Detection, PASCAL VOC and SUN datasets.

https://cocodataset.org/#detection-2020

Metwork models evaluated on COCOtest-dev object detection database (2013-)

Metwork model name box AP APTS
S5D512 [33] 2B 8% 30.3%
RefineDet512{VGG-16) [62] 33.0% 35.5%
YOLO-v4-608 [63] 43.5% 47.0%
State Of th e a rt Faster R-CNN{LIP-ResNet-101-MD w FPN) [64] 43.9% 48.1%
PP-YOLO [65] 452% 49 9%
Cascade Mask R-CNN({ResMeXt152, multi-scale) |66] 53.3% 58.5%
SpineNet-190 [57] 543
I I l et O S DetectoRS(ResMNeXt-101-32x4d, multi-scale) [68] 54.7% 60.1%
EfficientDet-D7x{ multi-scale) [69) 55.1% 59.9%
CSP-p6 + Mish{multi-scale) [70] 55.2% 60.7%
DetectoRS{ ResMNeXt-101-64x4d, multi-scale) [68] 55.7% 61.1%
60.00
DetectoRS
NAS—FRR———9""
50.00 PANet
D-RFCN + SNIP
RetinaNet
o 40.00 DeformCohv=R-FCN
< Faster R-CNN
x
= SSD512
30.00 3
20.00
33
10.00
2016 2017 2018 2019 2020

Other methods -e- State-of-the-art methods

Metwork models evaluated on COCOtest-dev object detection database (2013-)

Metwork model name box AP APT5
S5D512 [33] 2B.B% 30.3%
RefineDet512{VGG-16) [62] 33.0% 35.5%
YOLO-v4-608 [63] 43.5% 47.0%

State Of t h e a rt Faster R-CNN(LIP-ResNet-101-MD w FPN) [64] 43.9% 4B.1%
PP-YOLO [65] 45 2% 49.9%
Cascade Mask R-CNN({ResMeXt152, multi-scale) |66] 53.3% 58.5%
SpineNet-190 [57] 543

I I l e-t O S DetectoRS(ResMNeXt-101-32x4d, multi-scale) [68] 54.7% 60.1%
EfficientDet-D7x{ multi-scale) [69) 55.1% 59.9%
CSP-p6 + Mish{multi-scale) [70] 55.2% 60.7%
DetectoRS{ ResMNeXt-101-64x4d, multi-scale) [68] 55.7% 61.1%

MNetwork models evaluated on COCO real time object detection database

(2017-)
Do you still need the old methods? Network model nome mAP il

MAS-FPMLite MobileMNetV2 [71] 25. 7% 3

YOLOV3-608 [31] 33.0% 20

SSD512-HarDNet85 [72] 35.1% 39.0

Mask R-CNN X-152-32x8d [73] 403% 3

YOLOv4-608 [63] 43.5% 62.0

CenterNet HarDNet-85 | 72] 43.6% 45.0

SpineNet-49 |74] 453% 29.1

NAS-FPN AmoebaNet [71] 483% 36

EfficientDet-D7x(single-scale) [69] 55.1% 6.5 34

CAP4453

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 35

Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
Ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and back grounds.

1 Introduction

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in 4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of leamed exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola er al [22] build an efficient

 CVPR 2005

CAP4453

36

Sliding Window Technique

* Classification problem:
* Score for a category

> . 8 _’._, Car/nop-car
Classifier

CAP4453 37

Sliding Window Technique

e Score every subwindow
e extract features from the image window

* classifier decides based on the given features.

* It is a brute-force approach

d E
g — | Car/non-car
Classifier

Feature
_ extraction)

CAP4453

38

Window-based detection: strengths

Pros

* Sliding window detection and
global appearance descriptors:

e Simple detection protocol to
implement

e Good feature choices critical
e Past successes for certain classes

Cons

* High computational complexity

* For example: 250,000
locations x 30 orientations x
4 scales = 30,000,000
evaluations!

* |f training binary detectors
independently, means cost
increases linearly with
number of classes

e With so many windows, false
positive rate better be low

Slide: Kristen Grauman

Cons (continued)

* Not all objects are “box” shaped

Slide: Kristen Grauman

Limitations (continued)

* If considering windows in isolation, context is lost

Sliding window Detector’s view

Figure credit: Derek Hoiem Slide: Kristen Grauman

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 42

Let’s examine possible feature vectors

* Pixel based (as a vector) e Color based ——— z
e Sensitive to small shifts Input Image ZL g Stope Feres %
9"=_

‘/green .:-‘.- %

 color-based representations are
sensitive to color (illumination)

(1) (2) (3)

CAP4453 43

Feature Vector

X!

yehow yes]
blue no <1
duck yes | 1|
p unknown | 0

Categories tl

Gradient-based representations

e summarize the local distribution of
gradients with histograms

* invariance to small shifts and
rotations

 offers more spatial information
compared to a single global histogram

* Includes contrast normalization

* reduce the impact of variable
illumination (color)

CAP4453

44

Histograms of Oriented Gradients (HOG)

Step 1: Extract a square window (called “block”) of some size around the pixel
location of interest.

Step 2: Divide block into a square grid of sub-blocks (called “cells”) (2x2 grid in
our example, resulting in four cellsg).

Step 3: Compute orientation histogram of each cell.
Step 4: Concatenate the four histograms.

* Step 5: normalize v using one of the three options:
e Option 1 (L2): Divide v by its Euclidean norm.
e Option 2 (L1): Divide v by its L1 norm (the L1 norm is the sum of all absolute values of v).
e Option 3 (L2-Hys):
* Divide v by its Euclidean norm.

* In the resulting vector, clip any value over 0.2
* Then, renormalize the resulting vector by dividing again by its Euclidean norm

Histogram of Oriented Gradients (HOG)

* Angles range from 0 to 180 or from O to 360 degrees?
* In the Dalal & Triggs paper, a range of 0 to 180 degrees is used

* Number of orientation bins.
* Usually 9 bins, each bin covering 20 degrees.

* Cell size.
* Cells of size 8x8 pixels are often used. (64 = 9)

* Block size.
* Blocks of size 2x2 cells (16x16 pixels) are often used.

e HOG feature has 36 dimensions.
e 4 cells * 9 orientation bins.

Calculate HOG Descriptor vector

* The 16x16 window then moves by 8 pixels and a normalized 36x1 vector is
calculated over this window and the process is repeated for the image

* To calculate the final feature vector for the entire image patch, the 36x1
vectors are concatenated into one giant vector.

* Example: an input picture of size 64x64
* The 16x16 block has 7 positions horizontally and 7 position vertically.
* In one 16x16 block we have 4 histograms which after normalization concatenate to
form a 36x1 vector.

* This block moves 7 positions horizontally and vertically totalling it to 7x7 = 49
positions.

e we concatenate them all into one gaint vector we obtain a 36x49 = 1764 dimensional
vector.

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 48

Support vector machines

https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/

Support vector machines

e When the data is linearly separable, there may be
more than one separator (hyperplane)

O
O
O
O
O
O
© o e o
O © N
O .'
O

Which separator
is best?

Linear classifiers

A linear classifier has the form

X, /
f(X) — WTX _I_ b :':- : :1:5‘1
f(x) <0 f(x) >0

» in 2D the discriminant is a line
« W is the normal to the line, and b the bias

« W is known as the weight vector

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

What is the best w?

A A
A A 4

A AhA 4
A asdA

A AA

« maximum margin solution: most stable under perturbations of the inputs

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

Support vector machines

* Find hyperplane that maximizes the margin between the positive and

negative examples
; E ° X positive (y =1): X-W+b>1

Xxnegative(y=-1): X-w+b<-1

® For support vectors, X-W+b=+1

e Distance between point |X-W+Db]|
and hyperplane: |w |

Therefore, the marginis 2 / ||W|

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin hyperplane

1. Maximize margin 2/ ||w||

2. Correctly classify all training data:
X. positive (y, =1): X -W+b>1

X. negative(y, =-1): Xx.-w+b<-1

* Quadratic optimization problem:

mlbn > HWH subjectto y.(w-x. +b)>1

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Linear separability again: What is the best w?

» the points can be linearly separated but
there is a very narrow margin

o '.- A A
1I'. . :“:: s * but possibly the large margin s_olu_tion_ S
°° AadA better, even though one constraint is violated
® . A A A
A

In general there is a trade off between the margin and the number of
mistakes on the training data

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

Introduce “slack’ variables

®
g-’f. 2 0 £ > 2 Margin = 2
Misclassified @ [[wl]
point
e for 0 < £ < ﬁ point is between <
margin and correct side of hyper- * ®
plane. This is a margin violation \ ®
e fOr £ > 'l?l‘fl- point is misclassified
Support Vector/@;
@ @ Support Vector ¢
o
@
+‘.' .
wix+b=1"
wix+b=0

wfx—bZ-l‘
@

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

SVM training in general

.1 .
+ Separable data: Tv'pEHWHZ subjectto vy, (w-x; +b)>1

\ } \ }
| |

Classify training data correctly

Maximize margin

* Non-separable data:

min %HWHZ +C émax(o,l— Y, (Wxx; +b))
’ i=1

\ } \ }
| |

Maximize margin Minimize classification mistakes

SVM training in general

mln —HWH +C amax(Ol Y, (Wxx; +b))

1=1

Hinge Loss

Margin

* Demo: http://cs.stanford.edu/people/karpathy/svmijs/demo

http://cs.stanford.edu/people/karpathy/svmjs/demo

Linear separability

. L a ® L
linearly o ®o AL .
L
separable ¢ o A AkA 4 ¢ A
o ® . A ‘11
¢ A AA ®
A
L]
A
°* o AA A A Al
not |. ... A A 4 e® A
ry A g B
linearly o Ce o ML S
® e ® A A ‘.‘
separable A 4
A Ada A

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman

Nonlinear SVMs

e General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable

Input Space Feature Space

Image source

http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and

Nonlinear SVMs

e Linearly separable dataset in 1D:

@ @ |©—. :X

e Non-separable dataset in 1D:

@ @ *—0— *0—@ *—o O=>

0 X

e \We can map the data to a higher-dimensional space:

Slide credit: Andrew Moore

The kernel trick

e Linear SVM decision function:

W-X+b=> ayx-x +b

7/

learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick

e Linear SVM decision function:

W-X+b=> ayx-x +b

e Kernel SVM decision function:
Zai Yio(X;) - o(X) +b = Zai y;K(X;,X) +b

e This gives a nonlinear decision boundary in the
original feature space

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick

e |Instead of explicitly computing the lifting
transformation ¢(X), define a kernel function K such
that

KX,y) = o(X) - o(y)

. (to be valid, the kernel function must satisfy
Mercer’s condition)

d

K(X,y)=(C+X-y)

Polynomial kernel:

2 . : : . . : 2

1.5 1.5

it it

0.5} 0.5

of ol

-0.5} -05

15 -1 -05 0 05 15 2 B R 15 2
linear 2" order polynomial

2 - 2

1.5F ¥ ' 1

1 1k

0.5 0.5

of ol

0.5} . -0.5

dAs = o5 o0 o5 1 15 2 dAs = 5 o0 05 1 15 2

4" order polynomial 8'" order polynomial

Gaussian kernel

 Also known as the radial basis function (RBF)

kernel: 1 ,
K(X,y) = exp(— — x-y| j

O

K(x, y)

[Ix=yl|

Gaussian kerne

5 l

SV’s

. 3 | | | | | | l
=3 -2 =1 0 1 2 3 4 3

* Demo: http://cs.stanford.edu/people/karpathy/svmijs/demo

http://cs.stanford.edu/people/karpathy/svmjs/demo

SVMs: Pros and cons

® Pros
* Kernel-based framework is very powerful, flexible

* Training is convex optimization, globally optimal
solution can be found

 Amenable to theoretical analysis

* SVMs work very well in practice, even with very small
training sample sizes

e Cons

* No “direct” multi-class SVM, must combine two-class
SVMs (e.g., with one-vs-others)

 Computation, memory (esp. for nonlinear SVMs)

Person detection
with HoG’s & linear SVM's (so far)

 Histogram of oriented
gradients (HoG): Map each
grid cell in the input window to
a histogram counting the
gradients per orientation.

TEEEANM

* Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

Dalal & Triggs, CVPR 2005

The Dalal & Triggs detector

Image pyramid CAPass3 70

1. Compute HOG of the whole image at
multiple resolutions!

Image pyramid HOG:.feature pyramid -

The Dalal & Triggs detector

1. Compute HOG of the whole image
¥ at multiple resolutions!

2. Score every window of the feature
P—_ pyramid

> score(l,p) =w-¢d(,p)

FROM ,
TRAINING

Image pyramid HOG:.feature pyramid 2

1. Compute HOG of the whole image
¥ at multiple resolutions!

2. Score every window of the feature
P—_ pyramid

> score(l,p) =w-¢d(,p)

FROM ,
TRAINING

> W

3. Apply non-maximal
suppression (NMS)

Image pyramid HOG:.feature pyramid -

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

 Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 74

Non-Maximum Suppression

Before non-max suppression After non-max suppression

Non-Max
Suppression

N
st

CAP4453 75

Non-Maximum Suppression

Algorithm 1 Non-Max Suppression

I: procedure NMS(B,c)

i -

2l

10:
3

Initialize empty set
Bnms = 0 i

for bl e B do “ lterate over all the boxes

Take boolean variable and set it as false. This variable indicates whether b(i)

discard < False stoudvekept or discarded
for b] 6 B do Start another loop to compare with b(i)
if same(b;, b;) > Apms then "hetteetrissmeiot
if score(c, bj) > score(c, b;) then

Compare the scores, If score of b(i) s less than that

discard <+ True of b(j), b(i) should be discarded, so set the flag to

True.

if I'lOt (1l SCca 7'(1 then Once b(i) is compared with all other boxes and still the

discarded flag is False, then b(i) should be considered. So
Bnq'n. S : B‘N ms U T add it to the final list.

Do the same procedure for remaining boxes and return the final list
return B,,,,,

CAP4453

76

Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
* HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
 Deformable Part-based Model (DPM)

CAP4453 77

Implementation example (car detector)
Get the data. UIUC Car Database

* 550 positive images * 500 negatives

@ pos-6 @ pos-7 @ pos-8 @ neg-0 ® neg-1 @ neg-2 © neg-3 @ neg-4

I a3 KT7 T
@ g E W m m E m h © neg-16 @ neg-17 @ neg-18 @ neg-19 © neg-20 |

@ pos-16 @ pos-17 @ pos-18 © pos-19 © pos-20 @ pos-21 @ pos-22 @ pos-23 © pos-24
ESCT PTG EREERE 3 “ B © neg-32 @ neg-33 © neg-34 @ neg-35 © neg-36

&= [~ -
@ pos-32 © pos-33 @ pos-34 @ pos-35 @ pos-36 @ pos- 37 @ pos-38 @ pos-39 @ pos-40 m E g ﬂ “

@ pos-0 @ pos-1 © pos-2 @ pos-3

@ neg-48 @ neg 51 @ neg-52

5 - - gene 3 p — L — 48, g v
@ pos-48 @ pos-49 @ pos-50 @ pos-51 @ pos-52 @ pos-53 @ pos-54 @ pos-55 @ pos-56 : o) B i " & y 2
© neg-64 © neg-65 © neg-66 © neg-67 © neg-68
DI LSS P v SEN PSS AN TET o e =N TRY:
© pos-64 @ pos-65 @ pos-66 @ pos-67 © pos-68 @ pos-69 @ pos-70 @ pos-71 @ pos-72 . - .
© neg-80 ® neg-81 © neg-82 © neg-83 @ neg-84

P e i T i = e AR TN i

@ pos-80 @ pos-81 © pos-82 © pos-83 @ pos-84 © pos-85 @ pos-86 @ pos-87 © pos-88 4453 @ neg-95 @ neg‘97 () nEQ'QB @ n59‘99 ®@ n69'100

Implementation example (car detector

e Extract features

[hog]
pr 1n+:

0 in .glob{os. YETY) step size:

» wisualize=visualize, block_norm=

wisualize:

5 p.:th :plltt,lm_pdthil[] normalize:

fd:path = os.path.join(pos feat ph,
jnblib.'dump{fd, fd_path)
print(“Pos

?[]
fd_namej
Positive “.format(pos

Lot e i S I
l:L-ltLh"':b Saved 1 '|=

_feat ph))
"_I lH*E ||'.4Ll LlLLl 1FILJ +Il-ll' I'.'Jll-
for im_path in lllh glob(os.

im 1mrPadQ1m pdthl

T des_type == "HOG":
fd hog(im, orientations, pixe

fd name = os.path.s litﬁim_pathj[l].:plitﬁ’

fd path = os.path.join(neg feat ph, fd name)

joblib. dumpffd fd_path)

"_I lH*E '1|II=LTL4+'I.|.I: II:L4 ures

[paths]

model path:

block, visualize=visualize, block norm=

'W[]

'Fur‘rn.:tt neg_ f

;o r
saved 1a g ‘.

AP4453

VladKha/object detector: Object detector from HOG + Llnear SVI\/I framework (github.com)

min wdw_sSz:

pos_feat ph:
neg feat ph:

[100, 40]
[10, 10]

orientations: 9
Pixels per
cells per bklock:

cell: [8, B8]
[3,
True

True

.fdata/features/pos
Sdata/features/neg
SSdata/models/ svm.model

79

https://github.com/VladKha/object_detector/

from skimage.feature import local binary pattern

from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
. import joblib
import argparse as ap
mpiementation
import os

from config import *

example (car detector) [EEEEECE—.

drg
parser = ap. ArgumentPa ser()
parser.add_argument({'-p’ ’--sss‘éau', help="Path to the positive features dir:chsfy’j required=True)
parser.add_argument('-ﬁ', '--negfeat”, help="Path to the negative features |directory"”, required=True)
parser.add_argument(‘-c’, "--classifier”, help="Classifier to be used”, default="LIN SWM")
args = vars(parser.parse_args())
#print(str(args
pos_feat_path = args["posfeat™]
neg feat path = args["negfeat”]

clf type = args[CLa551fiEP']

labels

far feat_path in glaob.
print(feat_path)

e Train SVM with HOG features Fas.sppand(re)

labels.append(1)

fds = []

gluh(us.path.juin(pus_feat_path,”*.f'at”j):

gluh(us path.join(neg_feat path,"*.feat")):
jubllh load(feat_path)
fds.append(fd)

labels.append(@)

if clf type is "LIN SUM™:
clf = LinearsvC()
print(“Training a Linear WM Classifier™)
print(fds)
print(labels)

clf flt(fds, labels)

f feature directories don't exist == = =

hy[e]):
)

if not os.path.isdir(os.path. spllt(model pat
os.makedirs(os.path.split(model path)[
joblib.dump(clf, model path)

-

print(“Classifier saved to {}".format({model path}))

at
]

from skimage.transform import pyramid gaussian

from skimage.io import imread
from skimage.feature import hog
import joblib

ort cw?

Implementation per rgrse = o
example (car detector)

from config import *
ort numpy as np

Test
* Load image e

for (%, ¥, im window)} in sliding window(im_scaled, min_wdw_sz, step size):

1 print(‘x,y: + str(x) + ' ' +str(y))
* Loop Over dlffe re nt if im window.shape[8] != min_wdw_sz[1] or im_window.shape[1] != min_wdw_sz[8]:
pyramid images e s esrures

(fd,imgVis)= hog(im window, orientations, pixels per cell, cells per block, visualize=True, block norm="L2-Hy:
cv2.imshow("HOGinput® , imgWis)

* IOOp the WindOW _ _cuz.waitl{eyﬁaj
position

« Compute HOG for fd - fdlnp.newais, :]
each window

fd= hog(im window, orientations, pixels per cell, cells per block, visualize=False, block norm="L2-Hys")

pred = clf.predict(fd)
if pred == 1:

print(“Detection:: Leocation -> {* + str{x}+ “," + str(y) +")")
i CompUte Score #print(“scale -» ['+ str(scale) + Confidence Score ™ + clf.decision_function(fd) +"\n™)
print({“Scale -> {} | Confidence Score {} \n".format(scale,clf.decision_function{fd)}})

detections.append(({x, y, clf.decision_function(fd)},
int(min_wdw_sz[@]*(downscale**scale)),
int(min_wdw_sz[1]*({downscale**scale))})

cd.append(detections[-1])

CAP4453

from skimage.transform import pyramid gaussian

from skimage.io import imread
from skimage.feature import hog
import joblib

Implementation o s o
example (car detector)

from config import *
ort numpy as np

Test
* Load image e

for (%, ¥, im window)} in sliding window(im_scaled, min_wdw_sz, step size):

1 print(‘x,y: + str(x) + ' ' +str(y))
* Loop Over dlffe re nt if im window.shape[8] != min_wdw_sz[1] or im_window.shape[1] != min_wdw_sz[8]:
pyramid images e s esrures

(fd,imgVis)= hog(im window, orientations, pixels per cell, cells per block, visualize=True, block norm="L2-Hy:
cv2.imshow("HOGinput® , imgWis)

* IOOp the WindOW _ _cuz.waitl{eyﬁaj
position

« Compute HOG for fd - fdlnp.newais, :]
each window

fd= hog(im window, orientations, pixels per cell, cells per block, visualize=False, block norm="L2-Hys")

pred = clf.predict(fd)
if pred == 1:

print(“Detection:: Location -> (" + str(x))
i CompUte Score #print(“Scale -» ['+ str(scale) + | Confidence Score + clf.decision_function(fd) +"\n™)
print({“Scale -> {} | Confidence Score {} \n".format(scale,clf.decision_function{fd)}})

detections.append(({x, y, clf.decision_function(fd)},
int(min_wdw_sz[@]*(downscale**scale)),
int(min_wdw_sz[1]*({downscale**scale))})

cd.append(detections[-1])

e Perform NMS

T EreEeee— Mem [(Eree S eEE=ae T

detections = nms(detections, threshold)

Testing (different pyramid levels)

CAP4453 83

Before NMS

CAP4453

After NMS

84

Questions?

