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Administrative details

• Issues submitting homework
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Bilinear interpolation
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Bilinear interpolation

• We first do linear interpolation in the x-direction.

• We proceed by interpolating in the y-direction to obtain the desired estimate

CAP4453 4Bilinear interpolation - Wikipedia

https://en.wikipedia.org/wiki/Bilinear_interpolation
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• Slides comes directly from:
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• Kris Kitani.
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• Noah  Snavely (Cornell)
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Short Review 
from last class
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Warping with different transformations

translation affine pProjective (homography)



View warping

original view synthetic top view synthetic side view

What are these black areas near the boundaries?



Virtual camera rotations

original view

synthetic 
rotations



Image rectification

two 
original 
images

rectified and stitched



Image warping



Recap: Two Common Optimization Problems

Problem statement Solution
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2
  minimize bAx − ( ) bAAAx

TT 1−
=

(matlab)



Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1



Solving for homographies

Defines a least squares problem:

• Since        is only defined up to scale, solve for unit vector

• Solution:        = eigenvector of with smallest eigenvalue

• Works with 4 or more points

2n × 9 9 2n



Recap: Two Common Optimization Problems

Problem statement Solution
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bAx = osolution t squaresleast bAx \=
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TT 1−
=
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Image warping

How do we find point correspondences automatically?



Robot Vision
11. Feature points detection
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Outline

• Motivation

• Detecting key points
• Harris corner detector

• Blob detection
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Location Recognition



Robot Localization



Image matching
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Structure from motion
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3D photosynth
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Image matching



Matching
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NASA Mars Rover images

Where are the corresponding points?





Application: KeyPoint Matching
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Finding interest points
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The aperture problem

• Individual pixels are ambiguous

• Idea: Look at whole patches!



Pick a point in the image.

Find it again in the next image.

What type of feature would you select?



Pick a point in the image.

Find it again in the next image.

What type of feature would you select?



Pick a point in the image.

Find it again in the next image.

What type of feature would you select?

a corner



What is an interest point?

34



Properties of interest points algorithm

• Detect all (or most) true interest points

• No false interest points 

• Well localized

• Robust with respect to noise

• Efficient detection

• Detect points that are repeatable and distinctive
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Outline

• Motivation

• Detecting key points
• Harris corner detector

• Blob detection
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Corner detection: Possible approaches

• Based on brightness of images
• Usually image derivatives 

• Based on boundary extraction
• First step edge detection

• Curvature analysis of edges
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Corner Detection: Basic Idea

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Source: A. Efros



Harris corner detector
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1. Compute x and y derivatives of image

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of derivatives at 

each pixel

Harris Detector
C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.



Harris Detector
C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

4. Define the matrix at each pixel 

5. Compute the response of the detector at each pixel

6. Threshold on value of R; compute non-max suppression.



Corner Detection: Basic Idea

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Source: A. Efros



Corner detection the math

• Consider shifting the window 𝑊𝑛𝑛
by (u,v)
• how do the pixels in W change?

• Write pixels in window as a vector: 
W



Consider shifting the window W by (u,v)

• how do the pixels in W change?

• compare each pixel before and after by
summing up the squared differences (SSD)

• this defines an SSD “error” E(u,v):
𝐸 𝑢, 𝑣

= 

𝑥,𝑦 ∈𝑊

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 − 𝐼 𝑥, 𝑦 2

• We want E(u,v) to be as high as possible 
for all u, v!

Corner detection:  the math

W



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approximation is good

Plugging this into the formula on the previous slide…

Small motion assumption



Corner detection:  the math

Consider shifting the window W by (u,v)

• define an SSD “error” E(u,v):
W



Corner detection:  the math

Consider shifting the window W by (u,v)

• define an “error” E(u,v):
W

• Thus, E(u,v) is locally approximated as a quadratic error function



A more general formulation

• Maybe all pixels in the patch are not equally important

• Consider a “window function” 𝑤(𝑥, 𝑦) that acts as weights

• 𝐸 𝑢, 𝑣 = σ 𝑥,𝑦 ∈𝑊𝑤(𝑥, 𝑦) 𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 − 𝐼 𝑥, 𝑦 2

• Case till now:
• w(x,y) = 1 inside the window, 0 otherwise



Using a window function

• Change in appearance of window w(x,y)  for the shift [u,v]:

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski



Redoing the derivation using a window 
function
𝐸 𝑢, 𝑣 = 

𝑥,𝑦∈𝑊

𝑤( 𝑥, 𝑦) 𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 − 𝐼 𝑥, 𝑦 2

≈ 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 𝐼 𝑥, 𝑦 + 𝑢𝐼𝑥 𝑥, 𝑦 + 𝑣𝐼𝑦 𝑥, 𝑦 − 𝐼 𝑥, 𝑦
2

= 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 𝑢𝐼𝑥 𝑥, 𝑦 + 𝑣𝐼𝑦 𝑥, 𝑦
2

= 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 [𝑢2𝐼𝑥 𝑥, 𝑦
2 + 𝑣2𝐼𝑦 𝑥, 𝑦 2 + 2𝑢𝑣𝐼𝑥 𝑥, 𝑦 𝐼𝑦 𝑥, 𝑦 ]



Redoing the derivation using a window 
function
•

𝐸 𝑢, 𝑣 ≈ 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 [𝑢2𝐼𝑥 𝑥, 𝑦
2 + 𝑣2𝐼𝑦 𝑥, 𝑦 2 + 2𝑢𝑣𝐼𝑥 𝑥, 𝑦 𝐼𝑦 𝑥, 𝑦 ]

= 𝐴𝑢2 + 2𝐵𝑢𝑣 + 𝐶𝑣2

𝐴 = 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 𝐼𝑥 𝑥, 𝑦
2

𝐵 = 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 𝐼𝑥 𝑥, 𝑦 𝐼𝑦(𝑥, 𝑦)

𝐶 = 

𝑥,𝑦∈𝑊

𝑤 𝑥, 𝑦 𝐼𝑦 𝑥, 𝑦 2



The second moment matrix

Second moment matrix

M



The second moment matrix

Second moment matrix

M

Recall that we want E(u,v) to be as large as possible 

for all u,v

What does this mean in terms of M?



Flat patch: 

M



Vertical edge: 

M

M



Horizontal edge: 

MM

M



What about edges in arbitrary orientation?



Solutions to Mx = 0 are directions for which E 
is 0: window can slide in this direction 
without changing appearance



Solutions to Mx = 0 are directions for which E 
is 0: window can slide in this direction 
without changing appearance

For corners, we want no such directions to 
exist



u v

E(u,v)
E(u,v)

E(u,v) E(u,v)

v v vu u u



1. Compute x and y derivatives of image

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of derivatives 

at each pixel

Harris Detector

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

4. Define the matrix at each pixel 

5. Compute the response of the detector at each 

pixel

6. Threshold on value of R; compute non-max 

suppression.



u v

E(u,v)
E(u,v)

E(u,v) E(u,v)

v v vu u u

=  Constant



Visualization as an ellipse
Since M is symmetric, we have

We can visualize M as an ellipse with axis lengths determined by the 

eigenvalues and orientation determined by R

direction of the 

slowest change

direction of the fastest 

change

(max)
-1/2

(min)
-1/2

Ellipse equation:



SVD
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𝑈−1 = 𝑈𝑇

For a square symmetric matrix

• U,V becomes Rotation Matrix R

• Diagonal matrix has eigenvalues of A



Compute eigenvalues and eigenvectors

eigenvector

eigenvalue



1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

Compute eigenvalues and eigenvectors



1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

Compute eigenvalues and eigenvectors



1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

3. For each eigenvalue, solve
(returns eigenvectors)

Compute eigenvalues and eigenvectors



Eigenvalues & Eigenvector computation 
example
• Compute eigenvalues, eigenvectors of

• determinant of the matrix (A − λI) equals zero are the eigenvalues

• Setting the characteristic polynomial equal to zero, it has roots at λ=1 
and λ=3, which are the two eigenvalues of A.

69



Eigenvalues & Eigenvector computation 
example
• Compute eigenvalues, eigenvectors of

• For λ=1, 

• Any nonzero vector with v1 = −v2 solves this equation. 

70

For =3,

Any nonzero vector with v1 = v2 solves this 
equation. Therefore,



Eigenvalues and eigenvectors of M

Eigenvalues and eigenvectors of M

• Define shift directions with the smallest and largest change in error

• xmax = direction of largest increase in E

• max = amount of increase in direction xmax

• xmin = direction of smallest increase in E

• min = amount of increase in direction xmin

xmin

xmax

M

M



𝜆𝑚𝑎𝑥 ≈ 𝜆𝑚𝑖𝑛 ≫ 0

E very high in all directions

Corner

𝜆𝑚𝑎𝑥 ≫ 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑖𝑛 ≈ 0
E remains close to 0 
along 𝑥𝑚𝑖𝑛

Edge𝜆𝑚𝑎𝑥, 𝜆𝑚𝑖𝑛 are small;

E is almost 0 in all 

directions Flat patch

𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥

Interpreting the eigenvalues



flat

1

2

Use threshold on eigenvalues to detect corners

Think of a function to 

score ‘cornerness’



flat

1

2

Use threshold on eigenvalues to detect corners

Think of a function to 

score ‘cornerness’

strong corner



flat

corner

1

2

Use threshold on eigenvalues to detect corners

(a function of )
^

Use the smallest eigenvalue as 

the response function



Corner

Edge

𝑅 ≈ 0
Flat patch

𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥

Corner response function



flat

corner

1

2

Use threshold on eigenvalues to detect corners

(a function of )
^

Eigenvalues need to be 

bigger than one.

Can compute this more efficiently…



𝑅 > 0

Corner

𝑅 < 0

Edge

𝑅 ≈ 0
Flat patch

𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥

Corner response function
2

2121

2 )()(trace)det(  +−=−= MMR



flat

corner

1

2

R < 0 R > 0

R < 0

Use threshold on eigenvalues to detect corners

(a function of )
^



Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)



1. Compute x and y derivatives of image

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of derivatives 

at each pixel

Harris Detector

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

4. Define the matrix at each pixel 

5. Compute the response of the detector at each 

pixel

6. Threshold on value of R; compute non-max 

suppression.



Final step: Non-maxima suppression

• Pick a pixel as corner if cornerness at patch centered on it > 
cornerness of neighboring pixels

• And if cornerness exceeds a threshold 



1. Compute x and y derivatives of image

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of derivatives 

at each pixel

Harris Detector

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

4. Define the matrix at each pixel 

5. Compute the response of the detector at each 

pixel

6. Threshold on value of R; compute non-max 

suppression.



Harris detector example



f value (red high, blue low)



Threshold (f > value) 



Find local maxima of f



Harris features (in red)



Harris corner response is 
invariant to rotation

Ellipse rotates but its shape 

(eigenvalues) remains the same

Corner response R is invariant to image rotation



Partial invariance to affine intensity change

Only derivatives are used => invariance to intensity 

shift I → I + b

Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Harris corner response is 
invariant to intensity changes



The Harris detector is not invariant to changes in …



The Harris corner detector is not invariant to 
scale

edge!
corner!



Multi-scale detection



How can we make a feature detector scale-invariant?



How can we automatically select the scale?



Scale invariant detection
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of 
cornerness
• in both position and scale
• One definition of cornerness: the Harris operator



Find local maxima in both position and scale

f

region size

Image 1
f

region size

Image 2

s1 s2

Intuitively…



Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996



Increased



Increased



Increased



Increased





Implementation

• Instead of computing f for larger and larger windows, we can 
implement using a fixed window size with a Gaussian pyramid



Gaussian pyramid implementation
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How would you implement scale selection?



implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature



Blob detection
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Scale-space blob detector: Example



Feature extraction: Corners and blobs



Highest response when the signal has the 

same characteristic scale as the filter

Laplacian filter

Formally…



Another common definition of f

• The Laplacian of Gaussian (LoG) 

2

2

2

2
2

y

g

x

g
g




+




=

(very similar to a Difference of Gaussians (DoG) –
i.e. a Gaussian minus a slightly smaller Gaussian)



Laplacian of Gaussian
• “Blob” detector

• Find maxima and minima of LoG operator in space 
and scale

* =

maximum

minima



Scale-space blob detector: Example



Scale-space blob detector: Example



Scale selection

• At what scale does the Laplacian achieve a maximum response for a 
binary circle of radius r?

r

image Laplacian



Characteristic scale

• We define the characteristic scale as the scale that produces peak of 
Laplacian response

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html




Full size 3/4 size

What happens if you apply different Laplacian filters?



jet color scale

blue: low, red: high













Full size 3/4 size

What happened when you applied different Laplacian filters?







peak!



peak!







Full size 3/4 size

What happened when you applied different Laplacian filters?



2.1 4.2 6.0

9.8 15.5 17.0

peak!



2.1 4.2 6.0

9.8 15.5 17.0

maximum response



optimal scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



optimal scale

2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum 

response

maximum 

response



cross-scale maximum

local maximum

local maximum

local maximum

4.2

6.0

9.8



covariantNote: The LoG and DoG operators 
are both rotation equivariant







Basic reading:
• Szeliski textbook, Sections 4.1.

References



CAP4453 144

Questions?


