

CAP 4453
 Robot Vision

Dr. Gonzalo Vaca-Castaño
gonzalo.vacacastano@ucf.edu

Administrative details

- Issues submitting homework

Short Review from last class

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Least squares

$$
\mathbf{A t}=\mathbf{b}
$$

- Find \mathbf{t} that minimizes

$$
\|\mathbf{A t}-\mathbf{b}\|^{2}
$$

- To solve, form the normal equations

$$
\begin{gathered}
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{t}=\mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\mathbf{t}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{gathered}
$$

Translation transformation

- Can also write as a matrix equation

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime}-x_{1} \\
y_{1}^{\prime}-y_{1} \\
x_{2}^{\prime}-x_{2} \\
y_{2}^{\prime}-y_{2} \\
\vdots \\
x_{n}^{\prime}-x_{n} \\
y_{n}^{\prime}-y_{n}
\end{array}\right]} \\
\underset{2 n \times 2}{\mathbf{A}} \\
\underset{2 \times 1}{\mathbf{L}}=\underset{2 n \times 1}{\mathbf{D}}=\left[\begin{array}{c}
0
\end{array}\right]
\end{gathered}
$$

Affine transformations

- Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & & & & \\
& & & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]} \\
& \text { A } \\
& \mathbf{t}_{1}=\mathbf{b}
\end{aligned}
$$

Determining the homography matrix

Stack together constraints from multiple point correspondences:

$$
\mathbf{A} \boldsymbol{h}=\mathbf{0}
$$

$$
\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Homogeneous linear least squares problem

- Solve with SVD

Robot Vision

10b. Linear Algebra SVD

Linear Algebra

- Matrix as a Linear Transformation
- Eigenvalues and eigenvector
- Intuition
- How to compute it
- Singular Value Descomposition (SVD)
- Definition
- Intuition
- Direct Solving $A x=0$

Matrix as Linear Transformation

$$
T(\vec{v})=A \vec{v}
$$

Example

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

$$
T(\vec{v})=A \vec{v}
$$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Matrix as Linear Transformation $T(\vec{v})=A \vec{v}$

$$
\begin{aligned}
& T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \text { Case } \mathrm{x}=1, \mathrm{y}=0 \quad T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
\end{aligned}
$$

Matrix as Linear Transformation $T(\vec{v})=A \vec{v}$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\text { Case } x=2, y=0
$$

$$
T\left(\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

Case $x=-2,-1,0,1,2, y=0$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad x \text { direction }
$$

$$
T\left(\left[\begin{array}{l}
x \\
0
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right] x
$$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

$$
\begin{aligned}
& T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\operatorname{casex} e=0, y=2 \quad T\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
{\left[\begin{array}{l}
4 \\
4
\end{array}\right]}
\end{array}\right]
$$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & \boxed{1} \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \mathrm{Y} \text { direction }
$$

$$
\text { Case } \mathrm{x}=0, \mathrm{y}=-2,-1,0,1,2 \quad T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] y
$$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$x=1 y=1$

Matrix as Linear Transformation $\quad T(\vec{v})=A \vec{v}$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$x=1 y=2$

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
x=-1 y=1
$$

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
x=-1 y=1
$$

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Before Transformation

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Before Transformation

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=2\left[\begin{array}{cc}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
\begin{array}{r}
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=2\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{array}
$$

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?
- Try with $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?

$$
T\left(\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=3\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?
- NO.

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?
- NO.
- An $A_{m, m}$ matrix has at most m eigenvectors

Eigenvalues and eigenvector $\quad A \vec{v}=\lambda \vec{v}$

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is there any other eigenvector?
- NO.
- An $A_{m, m}$ matrix has at most m eigenvectors In this example $\mathrm{m}=2 \rightarrow$ maximum 2 eigenvectors

Computing Eigenvalues \& Eigenvectors

$$
\begin{aligned}
& A \vec{v}=\lambda \vec{v} \\
& \\
& A \vec{v}=\lambda I \text { Identity }
\end{aligned} \begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$

Computing Eigenvalues \& Eigenvectors

$$
\begin{gathered}
A \vec{v}=\lambda \vec{v} \\
A \vec{v}=\lambda I \vec{v} \\
A \vec{v}-\lambda I \vec{v}=0
\end{gathered}
$$

Computing Eigenvalues \& Eigenvectors

$$
\left.\begin{array}{c}
A \vec{v}=\lambda \vec{v} \\
A \vec{v}=\lambda I \vec{v} \\
A \vec{v}-\lambda I \vec{v}=0 \\
\\
\\
\\
0
\end{array} \begin{array}{lll}
& 0 & 0
\end{array}\right)
$$

Computing Eigenvalues \& Eigenvectors

$$
\left.\begin{array}{cl}
A \vec{v}=\lambda \vec{v} & \begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & & 0
\end{array} \\
A \vec{v}=\lambda I \vec{v} & \\
0 &
\end{array}\right]
$$

Computing Eigenvalues \& Eigenvectors

$$
\begin{aligned}
& A \vec{v}=\lambda \vec{v} \quad \begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array} \\
& A \vec{v}=\lambda I \vec{v} \\
& A \vec{v}-\lambda I \vec{v}=0 \quad \text { If } A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
& (A-\lambda I) \vec{v}=0 \quad\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]
\end{aligned}
$$

Computing Eigenvalues \& Eigenvectors

$$
\begin{gathered}
A \vec{v}=\lambda \vec{v} \\
A \vec{v}=\lambda I \vec{v} \\
A \vec{v}-\lambda I \vec{v}=0 \\
(A-\lambda I) \vec{v}=0 \\
\text { If is not null }
\end{gathered}
$$

Computing Eigenvalues \& Eigenvectors

$$
A \vec{v}=\lambda \vec{v}
$$
$$
A \vec{v}=\lambda I \vec{v}
$$
$$
A \vec{v}-\lambda I \vec{v}=0
$$
$$
(A-\lambda I) \vec{v}=0
$$
If \vec{v} is not null
Must be not invertible

Computing Eigenvalues \& Eigenvectors

$$
A \vec{v}=\lambda \vec{v}
$$
$$
A \vec{v}=\lambda I \vec{v}
$$
$$
A \vec{v}-\lambda I \vec{v}=0
$$
$$
(A-\lambda I) \vec{v}=0
$$
If \vec{v} is not null
Must be not invertible
Determinant =zero

Computing Eigenvalues \& Eigenvectors

$$
A \vec{v}-\lambda I \vec{v}=0
$$

Must be not invertible
$\operatorname{det}(A-\lambda I)=0$

Computing Eigenvalues \& Eigenvectors

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{gathered}
A \vec{v}=\lambda \vec{v} \\
(A-\lambda I) \vec{v}=0 \\
\operatorname{det}(A-\lambda I)=0
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{A}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
(A-\lambda I)=\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]
\end{gathered}
$$

Computing Eigenvalues \& Eigenvectors

$$
A \vec{v}=\lambda \vec{v}
$$

$$
\begin{aligned}
& T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \mathrm{A}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]=0
\end{aligned}
$$

Computing Eigenvalues \& Eigenvectors

$$
\begin{gathered}
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\mathrm{A}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]=0 \\
(3-\lambda)(2-\lambda)-0 * 1=0
\end{gathered}
$$

Computing Eigenvalues \& Eigenvectors

$$
\begin{gathered}
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\mathrm{A}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]=0 \\
(3-\lambda)(2-\lambda)=0 \\
\lambda=3
\end{gathered}
$$

Computing Eigenvector for $\lambda=2$

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \begin{array}{r}
(A-\lambda I) \vec{v}=0 \\
\operatorname{det}(A-\lambda I)=0
\end{array}
$$

Computing Eigenvector for $\lambda=2$

$$
\begin{aligned}
& T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& 3 x+y=2 x \\
& \text { Matrix multiplication } \\
& 0 x+2 y=2 y
\end{aligned}
$$

$$
\begin{gathered}
3 x+y=2 x \\
3 x-2 x=-y \\
x=-y
\end{gathered}
$$

$$
\begin{gathered}
A \vec{v}=\lambda \vec{v} \\
(A-\lambda I) \vec{v}=0 \\
\operatorname{det}(A-\lambda I)=0
\end{gathered}
$$

Computing Eigenvector for $\lambda=2$

$$
\left.\begin{array}{l}
\left.\begin{array}{rl}
T(\vec{v})= & {\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\\
3 x+y=2 x \\
\text { Matrix multiplication } \\
0 x+2 y=2 y \\
3 x+y=2 x \\
3 x-2 x=-y \\
x=-y
\end{array}\right] . \begin{gathered}
\text { If } \mathrm{x}=-1 \text { then } \mathrm{y}=1 \\
\text { for } \lambda=2, \vec{v}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{gathered}
$$

Computing Eigenvector for $\lambda=3$

$$
y=0
$$

$$
\begin{gathered}
3 x+y=3 x \\
3 x-3 x=-y \\
0=y
\end{gathered}
$$

for $\lambda=3, \vec{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

$$
\begin{aligned}
& T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=3\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& 3 x+y=3 x \\
& \text { Matrix multiplication } \\
& 0 x+2 y=3 y
\end{aligned}
$$

Computing Eigenvectors

$$
T(\vec{v})=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=3\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{gathered}
A \vec{v}=\lambda \vec{v} \\
(A-\lambda I) \vec{v}=0 \\
\operatorname{det}(A-\lambda I)=0
\end{gathered}
$$

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
A \vec{v}=\lambda \vec{v}
$$

- Does the definition make sense for a non-square matrix $A_{m, n}$?

Eigenvalues and eigenvector

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.

$$
A \vec{v}=\lambda \vec{v}
$$

- Does the definition make sense for a non-square matrix $A_{m, n}$?
- NO
- Transformation changes dimension of vector \vec{v}.

Linear Algebra

- Matrix as a Linear Transformation
- Eigenvalues and eigenvector
- Intuition
- How to compute it
- Singular Value Descomposition (SVD)
- Definition, derivation
- Intuition
- Direct Solving $A x=0$

Singular Value Decomposition

$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Singular Value Decomposition

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{n}}
$$

$$
\begin{aligned}
& \mathbf{A}=\mathbf{U} \bar{\Sigma} \mathbf{V}^{\boldsymbol{\top}} \\
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \quad \overrightarrow{v_{i}} \text { is ortho-normal } \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

Singular Value Decomposition

$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

$$
\begin{array}{cr}
A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} & \overrightarrow{v_{i}} \text { is ortho-normal } \\
A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}} & \overrightarrow{v_{i}} \cdot \overrightarrow{v_{i}}=1 \\
. & \overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}=0
\end{array}
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{n}}
$$

Singular Value Decomposition

$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

$\overrightarrow{v_{i}}$ is ortho-normal

$$
\overrightarrow{v_{i}} \cdot \overrightarrow{v_{i}}=1
$$

$$
\overrightarrow{v_{i}} \cdot \vec{v}_{j}=0
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{n}} \quad \text { dimension of } \overrightarrow{v_{i}} \text { is } m_{\times} 1
$$

Singular Value Decomposition

$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$
 $$
\begin{aligned} & A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\ & A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}} \end{aligned}
$$

$\overrightarrow{v_{i}}$ is ortho-normal dimension of $\overrightarrow{v_{i}}$ is $m_{\times 1}$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}}
$$

$\overrightarrow{u_{i}}$ is a unit vector dimension of $\overrightarrow{u_{i}}$ is $\mathrm{n}_{\times 1}$
σ_{i} is magnitude of vector

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}}
$$

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

A transformation $\mathrm{A} \vec{x}$ from R^{m} to R^{n} is:

$$
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) A \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) A \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) A \overrightarrow{v_{m}}
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}}
$$

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

A transformation $\mathrm{A} \vec{x}$ from R^{m} to R^{n} is:

$$
\begin{gathered}
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) A \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) A \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) A \overrightarrow{v_{m}} \\
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \sigma_{1} \overrightarrow{u_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \sigma_{2} \overrightarrow{u_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \sigma_{m} \overrightarrow{u_{m}}
\end{gathered}
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}}
$$

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

A transformation $\mathrm{A} \vec{x}$ from R^{m} to R^{n} is:

$$
\begin{gathered}
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) A \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) A \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) A \overrightarrow{v_{m}} \\
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \sigma_{1} \overrightarrow{u_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \sigma_{2} \overrightarrow{u_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \sigma_{m} \overrightarrow{u_{m}} \\
A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}\left(\vec{x} \cdot \overrightarrow{v_{1}}\right)+\overrightarrow{u_{2}} \sigma_{2}\left(\vec{x} \cdot \overrightarrow{v_{2}}\right)+\cdots+\overrightarrow{u_{m}} \sigma_{m}\left(\vec{x} \cdot \overrightarrow{v_{m}}\right)
\end{gathered}
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}}
$$

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

A transformation $\mathrm{A} \vec{x}$ from R^{m} to R^{n} is:

$$
\begin{aligned}
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) A \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) A \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) A \overrightarrow{v_{m}} & \\
A \vec{x} & =\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \sigma_{1} \overrightarrow{u_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \sigma_{2} \overrightarrow{u_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \sigma_{m} \overrightarrow{u_{m}} \\
A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}\left(\vec{x} \cdot \overrightarrow{v_{1}}\right)+\overrightarrow{u_{2}} \sigma_{2}\left(\vec{x} \cdot \overrightarrow{v_{2}}\right)+\cdots+\overrightarrow{u_{m}} \sigma_{m}\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) & A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}} \\
A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T} \vec{x}+\overrightarrow{u_{2}} \sigma_{2}{\overrightarrow{v_{2}}}^{T} \vec{x}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T} \vec{x} & \vec{x} \cdot \overrightarrow{v_{i}}={\overrightarrow{v_{i}}}^{T} \vec{x}
\end{aligned}
$$

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

A transformation $\mathrm{A} \vec{x}$ from R^{m} to R^{n} is:

$$
\begin{aligned}
A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) A \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) A \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) A \overrightarrow{v_{m}} & \\
A \vec{x} & =\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \sigma_{1} \overrightarrow{u_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \sigma_{2} \overrightarrow{u_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \sigma_{m} \overrightarrow{u_{m}} \\
A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}\left(\vec{x} \cdot \overrightarrow{v_{1}}\right)+\overrightarrow{u_{2}} \sigma_{2}\left(\vec{x} \cdot \overrightarrow{v_{2}}\right)+\cdots+\overrightarrow{u_{m}} \sigma_{m}\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) & A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}} \\
A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T} \vec{x}+\overrightarrow{u_{2}} \sigma_{2}{\overrightarrow{v_{2}}}^{T} \vec{x}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T} \vec{x} & \vec{x} \cdot{\overrightarrow{v_{i}}}={\overrightarrow{v_{i}}}^{T} \vec{x}
\end{aligned}
$$

$$
A \vec{x}=\left(\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T}+{\overrightarrow{u_{2}} \sigma_{2}}_{\left.{\overrightarrow{v_{2}}}^{T}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T}\right) \vec{x} . \quad . \quad .}\right.
$$

Singular Value Decomposition

Any vector $\vec{x} \in R^{m}$

$$
\vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \overrightarrow{v_{m}}
$$

A transformation $\mathrm{A} \vec{x}$ from R^{m} to R^{n} is:

$$
\begin{aligned}
& A \overrightarrow{v_{1}}=\sigma_{1} \overrightarrow{u_{1}} \\
& A \overrightarrow{v_{2}}=\sigma_{2} \overrightarrow{u_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) A \overrightarrow{v_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) A \overrightarrow{v_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) A \overrightarrow{v_{m}} \\
& A \vec{x}=\left(\vec{x} \cdot \overrightarrow{v_{1}}\right) \sigma_{1} \overrightarrow{u_{1}}+\left(\vec{x} \cdot \overrightarrow{v_{2}}\right) \sigma_{2} \overrightarrow{u_{2}}+\cdots+\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \sigma_{m} \overrightarrow{u_{m}} \\
& A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}\left(\vec{x} \cdot \overrightarrow{v_{1}}\right)+\overrightarrow{u_{2}} \sigma_{2}\left(\vec{x} \cdot \overrightarrow{v_{2}}\right)+\cdots+\overrightarrow{u_{m}} \sigma_{m}\left(\vec{x} \cdot \overrightarrow{v_{m}}\right) \\
& A \vec{x}=\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T} \vec{x}+\overrightarrow{u_{2}} \sigma_{2} \vec{v}^{T} \vec{x}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T} \vec{x}
\end{aligned}
$$

$$
A \overrightarrow{v_{m}}=\sigma_{m} \overrightarrow{u_{m}}
$$

$$
\vec{x} \cdot \overrightarrow{v_{i}}={\overrightarrow{v_{i}}}^{T} \vec{x}
$$

Singular Value Decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

$$
\begin{aligned}
A & =\left(\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T}+\overrightarrow{u_{2}} \sigma_{2}{\overrightarrow{v_{2}}}^{T}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T}\right) \\
A & =U \Sigma V^{T}
\end{aligned}
$$

U
$=\left[\overrightarrow{u_{1}}\left|\overrightarrow{u_{2}}\right| \ldots\left|\overrightarrow{u_{m}}\right| \ldots\right]_{n \times n}$ dimension of $\overrightarrow{u_{i}}$ is $n \times 1$

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & \ddots \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{n \times m}
$$

$$
\mathrm{V}=\left[\overrightarrow{v_{1}}\left|\overrightarrow{v_{2}}\right| \ldots \mid \overrightarrow{v_{m}}\right]_{m \times m}
$$

$$
\text { dimension of } \overrightarrow{v_{i}} \text { is } m \times 1
$$

$$
\mathrm{V}^{T}=\left[\begin{array}{c}
{\overrightarrow{v_{1}}}^{T} \\
{\overrightarrow{v_{2}}}^{T} \\
\vdots \\
\overrightarrow{v_{m}}
\end{array}\right]_{m \times m}
$$

Singular Value Decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

$$
\begin{aligned}
A & =\left(\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T}+\overrightarrow{u_{2}} \sigma_{2}{\overrightarrow{v_{2}}}^{T}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T}\right) \\
A & =U \Sigma V^{T}
\end{aligned}
$$

$$
\mathrm{U}=\left[\overrightarrow{u_{1}}\left|\overrightarrow{u_{2}}\right| \ldots \mid \overrightarrow{u_{m}} \cdots\right]_{n \times n} \quad \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \ddots \\
0 & 0 & \sigma_{m} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{n \times m} \quad \mathrm{~V}^{T}=\left[\begin{array}{c}
{\overrightarrow{v_{1}}}^{T} \\
{\overrightarrow{v_{2}}}^{T} \\
\vdots \\
{\overrightarrow{v_{m}}}^{T}
\end{array}\right]_{m \times m}
$$

A

${ }^{c}{ }^{33}$
Σ
V^{*}

Singular Value Decomposition $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

$$
\begin{aligned}
A & =\left(\overrightarrow{u_{1}} \sigma_{1}{\overrightarrow{v_{1}}}^{T}+\overrightarrow{u_{2}} \sigma_{2}{\overrightarrow{v_{2}}}^{T}+\cdots+\overrightarrow{u_{m}} \sigma_{m}{\overrightarrow{v_{m}}}^{T}\right) \\
A & =U \Sigma V^{T}
\end{aligned}
$$

dimension of $\overrightarrow{v_{i}}$ is $m_{\times 1}$

$$
\underset{\text { dimension of } \overrightarrow{u_{i}} \text { is } \mathrm{n}_{\times 1} 1}{\mathrm{U}=\left[\overrightarrow{u_{1}}\left|\overrightarrow{u_{2}}\right| \ldots \mid \overrightarrow{u_{m}}\right]_{n \times m} \quad \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \ddots \\
0 & 0 & \sigma m
\end{array}\right]_{m \times m} \quad \mathrm{~V}^{T}=\left[\begin{array}{c}
\overrightarrow{v_{1}} \\
\overrightarrow{\vec{v}_{2}} \\
\vdots \\
\frac{v_{m}}{} T
\end{array}\right]_{m \times m} \text { }}
$$

Linear Algebra

- Matrix as a Linear Transformation
- Eigenvalues and eigenvector
- Intuition
- How to compute it
- Singular Value Descomposition (SVD)
- Definition, derivation
- Intuition
- Direct Solving $A x=0$

Pseudo inverse intuition

- Since the SVD is a decomposition of a given matrix into 2 Unitary matrices and a diagonal matrix, all matrices could be described as a rotation, scaling and another rotation.

(A) An oriented circle; if it helps, imagine that circle inscribed in our original square. (B) Our circle transformed into an ellipse. The length of the major and minor axes of the ellipse have values $\sigma 1$ and $\sigma 2$ respectively, called the singular values.

Interesting properties of SVD

- The diagonal values of Σ are the square root of eigenvalues of $A^{T} A$

$$
\begin{aligned}
& A=U \Sigma V^{-1} \quad \Sigma=\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & . & \\
& & & \sigma_{N}
\end{array}\right] \\
& \mathrm{U}, \mathrm{~V}=\text { orthogonal matrix } \\
& \sigma_{i}=\sqrt{\lambda_{i}} \quad \begin{array}{l}
\sigma=\text { singular value } \\
\lambda=\text { eigenvalue of } \mathrm{A}^{\mathrm{t}} \mathrm{~A}
\end{array}
\end{aligned}
$$

Interesting properties of SVD

- The diagonal values of Σ are the square root of eigenvalues of $A^{T} A$
- Eigenvectors of $A^{T} A$ corresponds to V
- SVD consists of matrices U, Σ, V which are always real
- this is unlike eigenvectors and eigenvalues of A which may be complex even if A is real
- The singular values are always non-negative, even though the eigenvalues may be negative
- While writing the SVD, the following convention is assumed, and the left and right singular vectors are also arranged accordingly:

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m-1} \geq \sigma_{m}
$$

Interesting properties of SVD

- The rank of a rectangular matrix A is equal to the number of non-zero singular values. Note that $\operatorname{rank}(A)=\operatorname{rank}(\Sigma)$.
- SVD always exist
- It is used to compute pseudoinverse

The Pseudo Inverse of a matrix $A=U \Sigma V^{H}$, denoted A^{+}is given by

$$
A^{\dagger}=V \Sigma^{\dagger} U^{H}
$$

Where Σ^{\dagger} is obtained by transposing Σ and inverting all non zero entries.

Computing SVD

- Compute SVD for $\quad A=\left(\begin{array}{ccc}3 & 2 & 2 \\ 2 & 3 & -2\end{array}\right)$
- Calculate the eigenvalues of $A A^{T}$

$$
A A^{T}=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right]=\left[\begin{array}{cc}
17 & 8 \\
8 & 17
\end{array}\right]
$$

- $\operatorname{det}\left(A A^{T}-\lambda I\right)=0 \quad(17-\lambda)(17-\lambda)+64=0$

$$
\begin{gathered}
\lambda^{2}-34 \lambda+225=0 \\
=(\lambda-25)(\lambda-9)
\end{gathered}
$$

$$
\sigma_{i}=\sqrt{\lambda_{i}} \quad \sigma_{1}=5 ; \sigma_{2}=3 \quad \Sigma=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]
$$

Compute SVD

- Eigenvector of $A^{T} A$

$$
A^{T} A=\left[\begin{array}{ccc}
13 & 12 & 2 \\
12 & 13 & -2 \\
2 & -2 & 8
\end{array}\right]
$$

$$
\lambda=25
$$

$$
A A^{T}-25 \cdot I=\left[\begin{array}{ccc}
-12 & 12 & 2 \\
12 & -12 & -2 \\
2 & -2 & -17
\end{array}\right]
$$

$$
\begin{aligned}
-12 x+12 y+2 z & =0 \\
12 x-12 y-2 z & =0 \\
2 x-2 y-17 z & =0
\end{aligned}
$$

$$
\begin{array}{ll}
-12 x+12 y+2 z=0 & -12 x+12 y+2 z=0 \\
6(2 x-2 y-17 z)=0 & \frac{12 x-12 y-102 z=0}{-100 z=0}
\end{array} \quad \mathbf{z = 0} \mathbf{0}
$$

$$
2 x-\quad 2 y-17 z=0
$$

$$
2 x-\quad 2 y=0
$$

$$
x=y
$$

$$
v_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right)
$$

Compute SVD

- Eigenvector of $A^{T} A$

$$
A^{T} A=\left[\begin{array}{ccc}
13 & 12 & 2 \\
12 & 13 & -2 \\
2 & -2 & 8
\end{array}\right]
$$

$$
\lambda=9
$$

$$
A^{T} A-9 I=\left[\begin{array}{ccc}
4 & 12 & 2 \\
12 & 4 & -2 \\
2 & -2 & -1
\end{array}\right] \quad \begin{gathered}
4 x+12 y+2 z=0 \\
12 x+4 y-2 z=0 \\
2 x-2 y-1 z=0
\end{gathered}
$$

$$
\begin{aligned}
& 4 x+12 y+2 z=0 \\
& \frac{12 x+9 y-2 z=0}{16 x+16 y=0} \\
& 4 x+12 y+2 z=0
\end{aligned} \quad \boldsymbol{x}=-\boldsymbol{y}
$$

$$
-2(2 x-2 y-1 z)=0
$$

$$
16 y=-4 z
$$

$$
4 y=-z
$$

Compute SVD

- Eigenvector of $A^{T} A$

$$
A^{T} A=\left[\begin{array}{ccc}
13 & 12 & 2 \\
12 & 13 & -2 \\
2 & -2 & 8
\end{array}\right]
$$

$$
\lambda=0
$$

$$
A^{T} A-0 I=\left[\begin{array}{ccc}
13 & 12 & 2 \\
12 & 13 & -2 \\
2 & -2 & 8
\end{array}\right] \quad \begin{gathered}
13 x+12 y+2 z=0 \\
12 x+13 y-2 z=0 \\
2 x-2 y+8 z=0
\end{gathered}
$$

$$
\begin{array}{rl}
13 x+12 y+2 z=0 \\
12 x+13 y-2 z=0 & \\
25 x+25 y=0 & \boldsymbol{x}=-\boldsymbol{y} \\
12 x+13 y-2 z=0 & \\
-6(2 x-2 y+8 z)=0 & \boldsymbol{y}=\mathbf{2 z}
\end{array}
$$

Compute SVD

- So far:

$$
\begin{gathered}
\sigma_{1}=5 ; \sigma_{2}=3 \quad v_{1}=\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
1 / \sqrt{18} \\
-1 / \sqrt{18} \\
4 / \sqrt{18}
\end{array}\right) . \quad v_{3}=\left(\begin{array}{c}
2 / 3 \\
-2 / 3 \\
-1 / 3
\end{array}\right) . \\
A=U \Sigma V^{T}=U\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{18} & -1 / \sqrt{18} & 4 / \sqrt{18} \\
2 / 3 & -2 / 3 & -1 / 3
\end{array}\right) .
\end{gathered}
$$

- Using

$$
\frac{A \overrightarrow{v_{i}}}{\sigma_{i}}=\overrightarrow{u_{i}}
$$

$$
U=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)
$$

$$
\frac{A \overrightarrow{v_{1}}}{\sigma_{1}}=\frac{\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]}{5}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

$$
\frac{A \vec{v}_{2}}{\sigma_{2}} \xlongequal{\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{3 \sqrt{2}} \\
\frac{-1}{3 \sqrt{2}} \\
\frac{4}{3 \sqrt{2}}
\end{array}\right]} \begin{aligned}
& 3
\end{aligned}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]
$$

Compute SVD

- In total

$$
A=U \Sigma V^{T}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{18} & -1 / \sqrt{18} & 4 / \sqrt{18} \\
2 / 3 & -2 / 3 & -1 / 3
\end{array}\right)
$$

import numpy as $n p$

$\mathrm{A}=\mathrm{np}$.array $\left.\left(\left[\begin{array}{l}\text {, } 2,2]\end{array}\right],[2,3,-2]\right]\right)$
u, s, vh = np.linalg.svd(A, full_matrices=True)

Linear Algebra

- Matrix as a Linear Transformation
- Eigenvalues and eigenvector
- Intuition
- How to compute it
- Singular Value Descomposition (SVD)
- Definition, derivation
- Intuition
- Direct Solving $A x=0$

Derivation using Least squares

$$
A h=0
$$

The sum squared error can be written as:

$$
\begin{aligned}
f(\mathbf{h}) & =\frac{1}{2}(A \mathbf{h}-\mathbf{0})^{T}(A \mathbf{h}-\mathbf{0}) \\
f(\mathbf{h}) & =\frac{1}{2}(A \mathbf{h})^{T}(A \mathbf{h}) \\
f(\mathbf{h}) & =\frac{1}{2} \mathbf{h}^{T} A^{T} A \mathbf{h} .
\end{aligned}
$$

Taking the derivative of f with respect to \mathbf{h} and setting the resul to zero,

$$
\begin{aligned}
\frac{d}{d \mathbf{h}} f=0 & =\frac{1}{2}\left(A^{T} A+\left(A^{T} A\right)^{T}\right) \mathbf{h} \\
0 & =A^{T} A \mathbf{h} .
\end{aligned}
$$

h should equal the eigenvector of $B=A^{T} A$ that has an eigenvalue of zero

$$
B \vec{h}=\lambda \vec{h}
$$

(or, in the presence of noise the eigenvalue closest to zero)

(Warning: change of notation. x is a vector of parameters!)

$$
\begin{aligned}
E_{\mathrm{TLS}} & =\sum_{i}\left(\boldsymbol{a}_{i} \boldsymbol{x}\right)^{2} \\
& =\|\mathbf{A} \boldsymbol{x}\|^{2} \quad \text { (matrix form) } \\
& \|\boldsymbol{x}\|^{2}=1 \quad \text { constraint }
\end{aligned}
$$

minimize

$$
\|\boldsymbol{A} \boldsymbol{x}\|^{2} \quad \frac{\text { (Rayleigh quotient) }}{\left\|\boldsymbol{A} \boldsymbol{A}^{2}\right\|^{2}}
$$

Solution is the eigenvector corresponding to smallest eigenvalue of

$\mathbf{A}^{\top} \mathbf{A}$

Solution is the column of \mathbf{V} corresponding to smallest singular value
$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Homogeneous Linear Least Squares problem

$$
\begin{gathered}
A \mathbf{x}=\mathbf{0} \\
A=U \Sigma V^{\top}=\sum_{i=1}^{9} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
\end{gathered}
$$

- If the homography is exactly determined, then $\sigma_{9}=0$, and there exists a homography that fits the points exactly.
- If the homography is overdetermined, then $\sigma_{9} \geq 0$. Here σ_{9} represents a "residual" or goodness of fit.
- We will not handle the case of the homography being underdetermined.

Solving for H using DLT

given $\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}$ ouve tor tasen tatat $\boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}$

2. conatenate into stingle en $\mathrm{n} \times$ g matrix \mathbf{A}
3. comptes sio of $\mathbf{A}=\mathbf{U S V}^{\top}$

5. Besenper to get \mathbf{H}

Recap: Two Common Optimization Problems

Problem statement

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

Solution

$$
\mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

import numpy as $n p$
$\mathrm{x}, \mathrm{resid}, \mathrm{rank}, \mathrm{s}=\mathrm{np} . \operatorname{linalg} . \operatorname{lstsq}(\mathrm{A}, \mathrm{b})$

Problem statement

Solution
$\operatorname{minimize} \quad \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^{T} \mathbf{x}=1$

$$
\begin{aligned}
& {[\mathbf{v}, \lambda]=\operatorname{eig}\left(\mathbf{A}^{T} \mathbf{A}\right)} \\
& \lambda_{1}<\lambda_{2 . n}: \mathbf{x}=\mathbf{v}_{1}
\end{aligned}
$$

non - trivial lsq solution to $\mathbf{A x}=0$

References

Basic reading:

- Szeliski textbook, Section 3.6.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004. a comprehensive treatment of all aspects of projective geometry relating to computer vision, and also a very useful reference for the second part of the class.
- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.
a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).

Questions?

