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Administrative details

• Issues submitting homework

CAP4453 2



Short Review 
from last class
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Outline

• Linear algebra

• Image transformations

• 2D transformations.

• Projective geometry 101.

• Transformations in projective geometry.

• Classification of 2D transformations.

• Determining unknown 2D transformations.

• Determining unknown image warps.
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2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member



Least squares

• Find t that minimizes 

• To solve, form the normal equations



Translation transformation

• Can also write as a matrix equation

2n x 2 2 x 1 2n x 1



Affine transformations

• Matrix form

2n x 6 6 x 1 2n x 1



Determining the homography matrix

Stack together constraints from multiple point correspondences:

Homogeneous linear least squares problem
• Solve with SVD



Robot Vision
10b. Linear Algebra SVD
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Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition

• Intuition

• Direct Solving Ax=0
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Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

Example
𝐴 =

3 1
0 2

𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣 𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=1 , y=0
𝑇

1
0

=
3 1
0 2

1
0

=
3
0



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=2 , y=0
𝑇

2
0

=
3 1
0 2

2
0

=
6
0



Matrix as Linear Transformation

CAP4453 15

𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=-2,-1,0,1,2 , y=0
𝑇

𝑥
0

=
3 1
0 2

𝑥
0

=
3
0
𝑥

X direction



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=0 , y=1
𝑇

0
1

=
3 1
0 2

0
1

=
1
2



Matrix as Linear Transformation

CAP4453 17

𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=0 , y=2
𝑇

0
2

=
3 1
0 2

0
2

=
2
4



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

Case x=0 , y=-2,-1,0,1,2
𝑇

1
2

=
3 1
0 2

0
𝑦

=
1
2
𝑦

Y direction



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

X=1 y=1

1 1

(4,2)



Matrix as Linear Transformation
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𝑇 Ԧ𝑣 = 𝐴 Ԧ𝑣

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

X=1 y=2

1 2

(5,4)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

(-2,2)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

2*(-1,1)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

2*(-1,1)Before Transformation

After Transformation



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

x=-1 y=1

-1

1

2*(-1,1)Before Transformation

After Transformation



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝑇
−1
1

=
3 1
0 2

−1
1

= 2
−1
1

Eigenvector



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝑇
−1
1

=
3 1
0 2

−1
1

= 2
−1
1

EigenvectorEigenvalue



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it.  

CAP4453 29

𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝑇
−1
1

=
3 1
0 2

−1
1

= 2
−1
1

Eigenvector

Eigenvalue

𝐴𝑣 = 𝜆 Ԧ𝑣Mathematical definition



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector?

• Try with 
−1
0
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector?
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝑇
−1
0

=
3 1
0 2

−1
0

= 3
−1
0

Eigenvector
(direction)Eigenvalue 

(stretching)



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 

• NO. 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 

• NO.

• An 𝐴𝑚,𝑚 matrix has at most m eigenvectors 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Is there any other eigenvector? 

• NO.

• An 𝐴𝑚,𝑚 matrix has at most m eigenvectors 
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𝑇( Ԧ𝑣) =
3 1
0 2

𝑥
𝑦

-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

In this example m=2  → maximum 2 eigenvectors 



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

Identity

1 0 0
0 1 0
0 0 1



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If A =
3 1
0 2



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝜆 0 0
0 𝜆 0
0 0 𝜆

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If A =
3 1
0 2

3 − 𝜆 1
0 2 − 𝜆



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null



Computing Eigenvalues & Eigenvectors

CAP4453 43

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null

Must be not invertible



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣

𝐴 Ԧ𝑣 = 𝜆𝐼 Ԧ𝑣

𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null

Must be not invertible

Determinant =zero



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 − 𝜆𝐼 Ԧ𝑣 = 0

(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

If Ԧ𝑣 is not null

Must be not invertible

Determinant =zero
𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝐴 − 𝜆𝐼 =
3 − 𝜆 1
0 2 − 𝜆



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 𝑑𝑒𝑡
3 − 𝜆 1
0 2 − 𝜆

= 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 𝑑𝑒𝑡
3 − 𝜆 1
0 2 − 𝜆

= 0

3 − 𝜆 2 − 𝜆 − 0 ∗ 1 = 0



Computing Eigenvalues & Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦

A =
3 1
0 2

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 𝑑𝑒𝑡
3 − 𝜆 1
0 2 − 𝜆

= 0

3 − 𝜆 2 − 𝜆 = 0

𝜆 = 2𝜆 = 3



Computing Eigenvector for 𝜆=2
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =2

𝑥
𝑦

3𝑥 + 2𝑦 = 2𝑥

0𝑥 + 2𝑦 = 2𝑦
Matrix multiplication



Computing Eigenvector for 𝜆=2
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =2

𝑥
𝑦

3𝑥 + 𝑦 = 2𝑥

0𝑥 + 2𝑦 = 2𝑦
Matrix multiplication

3𝑥 + 𝑦 = 2𝑥

3𝑥 − 2𝑥 = −𝑦

𝑥 = −𝑦



Computing Eigenvector for 𝜆=2
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =2

𝑥
𝑦

3𝑥 + 𝑦 = 2𝑥

0𝑥 + 2𝑦 = 2𝑦
Matrix multiplication

3𝑥 + 𝑦 = 2𝑥

3𝑥 − 2𝑥 = −𝑦

𝑥 = −𝑦

If x=-1  then y=1 

for 𝜆=2, Ԧ𝑣 =
−1
1



Computing Eigenvector for 𝜆=3
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =3

𝑥
𝑦

3𝑥 + 𝑦 = 3𝑥

0𝑥 + 2𝑦 = 3𝑦
Matrix multiplication

3𝑥 + 𝑦 = 3𝑥

3𝑥 − 3𝑥 = −𝑦

0 = 𝑦

y=0 

for 𝜆=3, Ԧ𝑣 =
1
0



Computing Eigenvectors
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣
(𝐴 − 𝜆𝐼) Ԧ𝑣 = 0

𝑑𝑒𝑡 𝐴 − 𝜆𝐼 = 0
𝑇( Ԧ𝑣) =

3 1
0 2

𝑥
𝑦 =3

𝑥
𝑦

𝜆=3

𝜆=2



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Does the definition make sense for a 
non-square matrix 𝐴𝑚,𝑛? 
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-1

1

𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Eigenvalues and eigenvector

• An eigenvector is a vector whose direction remains unchanged when 
a linear transformation is applied to it. 

• Does the definition make sense for a 
non-square matrix 𝐴𝑚,𝑛? 
• NO

• Transformation changes dimension of vector Ԧ𝑣.   
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𝐴 Ԧ𝑣 = 𝜆 Ԧ𝑣



Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition, derivation

• Intuition

• Direct Solving Ax=0

CAP4453 57



Singular Value Decomposition

diagonal ortho-normal

unit norm constraint

ortho-normal

n x m n x n n x m m x m



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑛

.

.

.

𝑣𝑖 is ortho-normal



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑛

.

.

.

𝑣𝑖 is ortho-normal

𝑣𝑖 ∙ 𝑣𝑖 = 1

𝑣𝑖 ∙ 𝑣𝑗 = 0



Singular Value Decomposition

CAP4453 61

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑛

.

.

.

𝑣𝑖 is ortho-normal

𝑣𝑖 ∙ 𝑣𝑖 = 1

𝑣𝑖 ∙ 𝑣𝑗 = 0

dimension of 𝑣𝑖 is mx1



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

𝑣𝑖 is ortho-normal

𝑢𝑖 is a unit vector

dimension of 𝑣𝑖 is mx1

𝜎𝑖 is magnitude of vector

dimension of 𝑢𝑖 is nx1



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚



Singular Value Decomposition
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1𝑣1
𝑇
Ԧ𝑥 + 𝑢2𝜎2𝑣2

𝑇
Ԧ𝑥 + ⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
Ԧ𝑥 Ԧ𝑥 ∙ 𝑣𝑖 = 𝑣𝑖

𝑇
Ԧ𝑥
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1𝑣1
𝑇
Ԧ𝑥 + 𝑢2𝜎2𝑣2

𝑇
Ԧ𝑥 + ⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
Ԧ𝑥 Ԧ𝑥 ∙ 𝑣𝑖 = 𝑣𝑖

𝑇
Ԧ𝑥

𝐴 Ԧ𝑥 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
) Ԧ𝑥
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diagonal ortho-normalortho-normal

n x m n x n n x m m x m

𝐴𝑣1 = 𝜎1𝑢1

𝐴𝑣2 = 𝜎2𝑢2

𝐴𝑣𝑚 = 𝜎𝑚𝑢𝑚

.

.

.

Any vector Ԧ𝑥 ∈ 𝑅𝑚

Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝑣2 +⋯+ ( Ԧ𝑥 ∙ 𝑣𝑚)𝑣𝑚

A transformation A Ԧ𝑥 from 𝑅𝑚 to 𝑅𝑛 is:

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝐴𝑣1 + Ԧ𝑥 ∙ 𝑣2 𝐴𝑣2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝐴𝑣𝑚

𝐴 Ԧ𝑥 = Ԧ𝑥 ∙ 𝑣1 𝜎1𝑢1 + Ԧ𝑥 ∙ 𝑣2 𝜎2𝑢2 +⋯+ Ԧ𝑥 ∙ 𝑣𝑚 𝜎𝑚𝑢𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1 Ԧ𝑥 ∙ 𝑣1 + 𝑢2𝜎2 Ԧ𝑥 ∙ 𝑣2 +⋯+ 𝑢𝑚𝜎𝑚 Ԧ𝑥 ∙ 𝑣𝑚

𝐴 Ԧ𝑥 = 𝑢1𝜎1𝑣1
𝑇
Ԧ𝑥 + 𝑢2𝜎2𝑣2

𝑇
Ԧ𝑥 + ⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
Ԧ𝑥 Ԧ𝑥 ∙ 𝑣𝑖 = 𝑣𝑖

𝑇
Ԧ𝑥

𝐴 Ԧ𝑥 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
) Ԧ𝑥 𝐴 = (𝑢1𝜎1𝑣1

𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)
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𝐴 = 𝑈Σ𝑉𝑇

𝐴 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

Σ =

𝜎1 0
0
0
0
0
0

𝜎2
0
0
0
0

⋱

0
0
0
𝜎𝑚
0
0

𝑛×𝑚

U
= 𝑢1 𝑢2 … 𝑢𝑚 … 𝑛×𝑛

dimension of 𝑣𝑖 is mx1dimension of 𝑢𝑖 is nx1

V = 𝑣1 𝑣2 … |𝑣𝑚 𝑚×𝑚

V𝑇 =

𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑚
𝑇

𝑚×𝑚

n>m
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𝐴 = 𝑈Σ𝑉𝑇

𝐴 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

Σ =

𝜎1 0
0
0
0
0
0

𝜎2
0
0
0
0

⋱

0
0
0
𝜎𝑚
0
0

𝑛×𝑚

U = 𝑢1 𝑢2 … |𝑢𝑚… 𝑛×𝑛 V𝑇 =

𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑚
𝑇

𝑚×𝑚

A

Padding

n>m
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𝐴 = 𝑈Σ𝑉𝑇

𝐴 = (𝑢1𝜎1𝑣1
𝑇
+ 𝑢2𝜎2𝑣2

𝑇
+⋯+ 𝑢𝑚𝜎𝑚𝑣𝑚

𝑇
)

diagonal ortho-normalortho-normal

n x m n x n n x m m x m

Σ =

𝜎1 0
0
0
0

𝜎2
0
0
⋱

0
0
0
𝜎𝑚

𝑚×𝑚

U = 𝑢1 𝑢2 … |𝑢𝑚 𝑛×𝑚 V𝑇 =

𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑚
𝑇

𝑚×𝑚

dimension of 𝑢𝑖 is nx1

dimension of 𝑣𝑖 is mx1

=

𝐴𝑛𝑚
𝑈𝑛𝑚

Σ𝑚𝑚
𝑉𝑇

𝑚𝑚

n>m



Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition, derivation

• Intuition

• Direct Solving Ax=0

CAP4453 73



Pseudo inverse intuition

• Since the SVD is a decomposition of a given matrix into 2 Unitary 
matrices and a diagonal matrix, all matrices could be described as a 
rotation, scaling and another rotation.
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(A) An oriented circle; if it helps, imagine that circle inscribed in our original square. (B) Our circle transformed into an
ellipse. The length of the major and minor axes of the ellipse have values σ1 and σ2 respectively, called the singular values.



Interesting properties of SVD

• The diagonal values of Σ are the square root of eigenvalues of 𝐴𝑇𝐴
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Interesting properties of SVD

• The diagonal values of Σ are the square root of eigenvalues of 𝐴𝑇𝐴

• Eigenvectors of 𝐴𝑇𝐴 corresponds to V

• SVD consists of  matrices U,Σ,V which are always real
• this is unlike eigenvectors and eigenvalues of A which may be complex even if 

A is real

• The singular values are always non-negative, even though the eigenvalues 
may be negative

• While writing the SVD, the following convention is assumed, and the 
left and right singular vectors are also arranged accordingly:
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Interesting properties of SVD

• The rank of a rectangular matrix A is equal to the number of non-zero 
singular values. Note that rank(A) = rank(Σ).

• SVD always exist

• It is used to compute pseudoinverse
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Computing SVD

• Compute SVD for

• Calculate the eigenvalues of 𝐴𝐴𝑇

• det 𝐴𝐴𝑇 − 𝜆𝐼 = 0
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17 − 𝜆 17 − 𝜆 + 64 = 0

Σ =
5 0 0
0 3 0

𝐴𝐴𝑇 =
3 2 2
2 3 −2

3 2
2 3
2 −2

=
17 8
8 17



Compute SVD

• Eigenvector of 𝐴𝑇𝐴
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−12𝑥 + 12𝑦 + 2𝑧 = 0

2𝑥 − 2𝑦 − 17𝑧 = 0
𝜆 = 25 12𝑥 − 12𝑦 − 2𝑧 = 0

−12𝑥 + 12𝑦 + 2𝑧 = 0

6(2𝑥 − 2𝑦 − 17𝑧) = 0 12𝑥 − 12𝑦 − 102𝑧 = 0

−12𝑥 + 12𝑦 + 2𝑧 = 0

−100𝑧 = 0 𝒛 = 𝟎

2𝑥 − 2𝑦 − 17𝑧 = 0 2𝑥 − 2𝑦 = 0 𝒙 = 𝒚

𝐴𝑇𝐴 =
13 12 2
12 13 −2
2 −2 8



Compute SVD

• Eigenvector of 𝐴𝑇𝐴
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4𝑥 + 12𝑦 + 2𝑧 = 0

2𝑥 − 2𝑦 − 1𝑧 = 0
𝜆 = 9 12𝑥 + 4𝑦 − 2𝑧 = 0

16𝑥 + 16𝑦 = 0

4𝒚 = −𝒛

𝒙 = −𝒚

𝐴𝑇𝐴 =
13 12 2
12 13 −2
2 −2 8

𝐴𝑇𝐴 − 9𝐼 =
4 12 2
12 4 −2
2 −2 −1

4𝑥 + 12𝑦 + 2𝑧 = 0

12𝑥 + 9𝑦 − 2𝑧 = 0

4𝑥 + 12𝑦 + 2𝑧 = 0

-2(2𝑥 − 2𝑦 − 1𝑧) = 0

16𝑦 = −4𝑧

𝑣2 =

−𝑦
𝑦

−4𝑦
=

−1
1
−4

𝑦 =



Compute SVD

• Eigenvector of 𝐴𝑇𝐴

CAP4453 81

13𝑥 + 12𝑦 + 2𝑧 = 0

2𝑥 − 2𝑦 + 8𝑧 = 0
𝜆 = 0 12𝑥 + 13𝑦 − 2𝑧 = 0

25𝑥 + 25𝑦 = 0

𝒚 = 𝟐𝒛

𝒙 = −𝒚

𝐴𝑇𝐴 =
13 12 2
12 13 −2
2 −2 8

𝐴𝑇𝐴 − 0𝐼 =
13 12 2
12 13 −2
2 −2 8

25𝑦 = 50𝑧

𝑣3 =

−𝑦
𝑦
𝑦/2

=
−1
1
0.5

𝑦 =

13𝑥 + 12𝑦 + 2𝑧 = 0

12𝑥 + 13𝑦 − 2𝑧 = 0

−6(2𝑥 − 2𝑦 + 8𝑧) = 0
12𝑥 + 13𝑦 − 2𝑧 = 0



Compute SVD

• So far:

• Using
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𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖
𝐴𝑣𝑖
𝜎𝑖

= 𝑢𝑖

𝐴𝑣1
𝜎1

=

3 2 2
2 3 −2

1

2
1

2
0

5
=

1/√2

1/√2 𝐴𝑣2
𝜎2

=

3 2 2
2 3 −2

1

3 2
−1

3 2
4

3 2
3

=
1/√2

−1/√2



Compute SVD

• In total
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Linear Algebra

• Matrix as a Linear Transformation

• Eigenvalues and eigenvector
• Intuition

• How to compute it

• Singular Value Descomposition (SVD)
• Definition, derivation

• Intuition

• Direct Solving Ax=0
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Derivation using Least squares
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h should equal the eigenvector of 𝐵 = 𝐴𝑇𝐴 that
has an eigenvalue of zero

𝐵ℎ = 𝜆ℎ

(or, in the presence of noise the eigenvalue
closest to zero)

𝐴ℎ = 0

The sum squared error can be written as:



General form of total least squares

(matrix form)

(Warning: change of notation. x is a vector of parameters!)

constraint

minimize

subject to

minimize

Solution is the eigenvector 
corresponding to smallest 
eigenvalue of

(Rayleigh quotient)

Solution is the column of V
corresponding to smallest singular 
value(equivalent)



Homogeneous Linear Least Squares problem
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Solving for H using DLT

Given solve for H such that

1. For each correspondence, create 2x9 matrix

2. Concatenate into single 2n x 9 matrix

3. Compute SVD of 

4. Store singular vector of the smallest singular value

5. Reshape to get



Recap: Two Common Optimization Problems

Problem statement Solution

    1  s.t.      minimize =xxAxAx
TTT

0 osolution tlsq  trivial-non =Ax

1..21 :

)eig(],[

vx

AAv

=

=

n

T





Problem statement Solution

bAx = osolution t squaresleast bAx \=

2
  minimize bAx − ( ) bAAAx

TT 1−
=

(matlab)
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Questions?


