

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Credits

- Some slides comes directly from these sources:
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Noah Snavely (Cornell)
 - Marco Zuliani

Short Review from last class

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} igg]$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

Robot Vision

10. Image warping II

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Suppose we have two triangles: ABC and DEF.

• What type of transformation will map A to D, B to E, and C to F?

Simple case: translations

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

 $[\mathbf{x}_t,\mathbf{y}]$

Displacement of match *i* =
$$(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i)$$

 $(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n}\sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n}\sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$

$$\mathbf{x}_i + \mathbf{x}_t = \mathbf{x}'_i$$

 $\mathbf{y}_i + \mathbf{y}_t = \mathbf{y}'_i$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many equations (per match)?

$$\mathbf{x}_i + \mathbf{x}_t = \mathbf{x}'_i$$

 $\mathbf{y}_i + \mathbf{y}_t = \mathbf{y}'_i$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

- For each point $(\mathbf{x}_i, \mathbf{y}_i)$ $\mathbf{x}_i + \mathbf{x}_t = \mathbf{x}'_i$ $\mathbf{y}_i + \mathbf{y}_t = \mathbf{y}'_i$
- we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i$$
$$r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i$$

Least squares formulation

• Goal: minimize sum of squared residuals

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

• Can also write as a matrix equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$
$$\begin{bmatrix} x_t \\ y'_n - y_n \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{A} \\ \mathbf{A$$

Least squares

At = b

• Find **t** that minimizes

$$||\mathbf{At} - \mathbf{b}||^2$$

• To solve, form the *normal equations*

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \| \boldsymbol{b} \|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})m{x} = \mathbf{A}^{ op}m{b}$$

Solve for x
$$\boldsymbol{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\boldsymbol{b} \longleftarrow$$
 Note: You almost never want to compute the inverse of a matrix.

In Phyton:
1 import numpy as np
2 x,resid,rank,s = np.linalg.lstsq(A,b)
3 x

Least Squares Error

$$E_{\rm LS} = \sum_i \|\boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}'_i\|^2$$

Least Squares Error

Least Squares Error

$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{p}) - \boldsymbol{x}'_{i} \|^{2}$$

What is the free variable?
What do we want to optimize?

Find parameters that minimize squared error

$$\hat{oldsymbol{p}} = rgmin_{oldsymbol{p}} \sum_i \|oldsymbol{f}(oldsymbol{x}_i;oldsymbol{p}) - oldsymbol{x}_i'\|^2$$

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$egin{aligned} E_{ ext{LLS}} &= \sum_i |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ &= \|oldsymbol{A} oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{(matrix form)} \end{aligned}$$

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?

Affine transformations

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

$$r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function:

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

• Matrix form

 $\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3\\p_4 & p_5 & p_6\end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$ Why can we drop the last line?

 $\begin{bmatrix} x' \\ y' \\ x' \\ u' \end{bmatrix} = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \\ x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$ p_5 $\begin{array}{c} \vdots \\ x' \\ y' \end{array} \left[\begin{array}{cccc} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{array} \right]$ b \boldsymbol{x}

Affine transformation:

Vectorize transformation parameters:

Stack equations from point correspondences:

Notation in system form:

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$E_{ ext{LLS}} = \sum_i |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ = \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{(matrix form)}$$

This function is quadratic. How do you find the root of a quadratic?

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \| \boldsymbol{b} \|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})m{x} = \mathbf{A}^{ op}m{b}$$

Solve for x
$$\boldsymbol{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\boldsymbol{b} \longleftarrow$$
 Note: You almost never want to compute the inverse of a matrix.

In Phyton:
 import numpy as np
 x,resid,rank,s = np.linalg.lstsq(A,b)
 x

Linear least squares estimation only works when the transform function is ?

Linear least squares estimation only works when the transform function is linear! (duh)

Also doesn't deal well with outliers (next class !!!)

Homographies

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?

Create point correspondences

Given a set of matched feature points $\{p_i, p_i'\}$ find the best estimate of H such that

 $P' = H \cdot P$

original image

target image

How many correspondences do we need?

Write out linear equation for each correspondence:

$$P' = H \cdot P \quad \text{or} \quad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Write out linear equation for each correspondence:

$$P' = H \cdot P \quad \text{or} \quad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Expand matrix multiplication:

$$x' = \alpha(h_1x + h_2y + h_3)$$
$$y' = \alpha(h_4x + h_5y + h_6)$$
$$1 = \alpha(h_7x + h_8y + h_9)$$

Write out linear equation for each correspondence:

$$P' = H \cdot P \quad \text{or} \quad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Expand matrix multiplication:

$$x' = \alpha(h_1x + h_2y + h_3)$$
$$y' = \alpha(h_4x + h_5y + h_6)$$
$$1 = \alpha(h_7x + h_8y + h_9)$$

Divide out unknown scale factor:

$$x'(h_7x + h_8y + h_9) = (h_1x + h_2y + h_3)$$
$$y'(h_7x + h_8y + h_9) = (h_4x + h_5y + h_6)$$

How do you rearrange terms to make it a linear system?

$$x'(h_{7}x + h_{8}y + h_{9}) = (h_{1}x + h_{2}y + h_{3})$$

$$y'(h_{7}x + h_{8}y + h_{9}) = (h_{4}x + h_{5}y + h_{6})$$
Just rearrange the terms
$$h_{7}xx' + h_{8}yx' + h_{9}x' - h_{1}x - h_{2}y - h_{3} = 0$$

$$h_{7}xy' + h_{8}yy' + h_{9}y' - h_{4}x - h_{5}y - h_{6} = 0$$

Solving for homographies $x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$ $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

Re-arrange terms:

$$h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$$

$$h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$$

Re-write in matrix form:

$$\mathbf{A}_i \boldsymbol{h} = \mathbf{0}$$

How many equations from one point correspondence?

$$\mathbf{A}_{i} = \begin{bmatrix} -x & -y & -1 & 0 & 0 & 0 & xx' & yx' & x' \\ 0 & 0 & 0 & -x & -y & -1 & xy' & yy' & y' \end{bmatrix}$$

Solving for homographies

Defines a least squares problem: minimize $||Ah - 0||^2$

- Since $\, h \,$ is only defined up to scale, solve for unit vector $\, \hat{h} \,$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Stack together constraints from multiple point correspondences:

 $\mathbf{A}m{h}=\mathbf{0}$

Homogeneous linear least squares problem

Notation in system form:

Reminder: Determining affine transformations

CENTRAL FOR

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \| \boldsymbol{b} \|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})m{x} = \mathbf{A}^{ op}m{b}$$

Solve for x $\boldsymbol{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\boldsymbol{b} \leftarrow$ Note: You almost <u>never</u> want to compute the inverse of a matrix.

In Python:
 import numpy as np
 x,resid,rank,s = np.linalg.lstsq(A,b)

Stack together constraints from multiple point correspondences:

$\mathbf{A}\mathbf{h} = \mathbf{0}$

Homogeneous linear least squares problem

• How do we solve this?

Stack together constraints from multiple point correspondences:

$\mathbf{A}\mathbf{h} = \mathbf{0}$

Homogeneous linear least squares problem

• Solve with SVD

Singular Value Decomposition

Singular Value Decomposition

U, V = orthogonal matrix

$$\sigma_i = \sqrt{\lambda_i}$$
 $\sigma = singular value \lambda = eigenvalue of At A$

General form of total least squares

(Warning: change of notation. x is a vector of parameters!)

Solution is the eigenvector corresponding to smallest eigenvalue of (equivalent) Solution is the column of **V** corresponding to smallest singular value

Homogeneous Linear Least Squares problem

$A\mathbf{x} = \mathbf{0}$

$$A = U\Sigma V^{\top} = \sum_{i=1}^{9} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

- If the homography is *exactly determined*, then $\sigma_9 = 0$, and there exists a homography that fits the points exactly.
- If the homography is *overdetermined*, then $\sigma_9 \ge 0$. Here σ_9 represents a "residual" or goodness of fit.
- We will not handle the case of the homography being underdetermined.

Solving for H using DLT

Recap: Two Common Optimization Problems

Derivation using Least squares

Ah = 0

The sum squared error can be written as:

$$f(\mathbf{h}) = \frac{1}{2} (A\mathbf{h} - \mathbf{0})^T (A\mathbf{h} - \mathbf{0})$$

$$f(\mathbf{h}) = \frac{1}{2} (A\mathbf{h})^T (A\mathbf{h})$$

$$f(\mathbf{h}) = \frac{1}{2} \mathbf{h}^T A^T A\mathbf{h}.$$

Taking the derivative of f with respect to \mathbf{h} and setting the result to zero,

$$\begin{aligned} \frac{d}{d\mathbf{h}}f &= 0 &= & \frac{1}{2}\left(A^TA + (A^TA)^T\right)\mathbf{h} \\ 0 &= & A^TA\mathbf{h}. \end{aligned}$$

h should equal the eigenvector of $B = A^T A$ that has an eigenvalue of zero

 $B\vec{h} = \lambda\vec{h}$

(or, in the presence of noise the eigenvalue closest to zero)

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Determining unknown image warps

Suppose we have two images.

later lecture

Suppose we have two images.

- 2. Solve for linear transform parameters as before
- 3. Send intensities f(x,y) in first image to their corresponding location in the second image

with this?

Suppose we have two images.

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before
- 3. Send intensities f(x,y) in first image to their corresponding location in the second image

Pixels may end up between two points

• How do we determine the intensity of each point?

Pixels may end up between two points

- How do we determine the intensity of each point?
- ✓ We distribute color among neighboring pixels (x',y') ("splatting")

• What if a pixel (x',y') receives intensity from more than one pixels (x,y)?

Pixels may end up between two points

- How do we determine the intensity of each point?
- We distribute color among neighboring pixels (x',y') ("splatting")

- What if a pixel (x',y') receives intensity from more than one pixels (x,y)?
- \checkmark We average their intensity contributions.

Forward mapping example

• Rotation Scale and Translation Mapping

The mapped points do not have integer coordinates!

with this?

Suppose we have two images.

- 1. Form enough pixel-to-pixel correspondences between two images
- 2. Solve for linear transform parameters as before, then compute its inverse
- 3. Get intensities g(x',y') in in the second image from point $(x,y) = T^{-1}(x',y')$ in first image

Pixel may come from between two points

• How do we determine its intensity?

Pixel may come from between two points

- How do we determine its intensity?
- \checkmark Use interpolation

Pixel may come from between two points

- How do we determine its intensity?
- \checkmark Use interpolation

Nearest Neighbor Interpolation

Problem with NN interpolation

Point Sampled: Aliasing!

Correctly Bandlimited

Bilinear Interpolation

Bilinear Interpolation

The question Let x and y be the integer coordinates of the lattice. What is the value of f at $\begin{bmatrix} p & q \end{bmatrix}^T$?

Linear interpolation in the x direction:

$$f_{y}(\Delta x) = (1 - \Delta x)F_{0,0} + \Delta xF_{1,0}$$

$$f_{y+1}(\Delta x) = (1 - \Delta x)F_{0,1} + \Delta xF_{1,1}$$

• Linear interpolation in the y direction:

$$\hat{f}(p,q) = (1-\Delta y)f_y + \Delta y f_{y+1}$$

Bilinear Interpolation

The question

Let x and y be the integer coordinates of the lattice. What is the value of f at $\begin{bmatrix} p & q \end{bmatrix}^T$?

Bilinear Interpolation Answer

Note that $\hat{f}(p, q)$ "passes through" the samples.

$$\begin{split} \hat{f}(p,q) &= (1-\Delta y)(1-\Delta x)F_{0,0} + \\ & (1-\Delta y)\Delta xF_{1,0} + \\ & \Delta y(1-\Delta x)F_{0,1} + \\ & \Delta y\Delta xF_{1,1} \end{split}$$

Forward vs inverse warping

TOF CENTRAL FILO

Suppose we have two images.

• How do we compute the transform that takes one to the other?

Pros and cons of each?

Forward vs inverse warping

TOF CENTRAL HIGH

Suppose we have two images.

• How do we compute the transform that takes one to the other?

- Inverse warping eliminates holes in target image
- Forward warping does not require existence of inverse transform

Warping with different transformations

translation

pProjective (homography)

View warping

original view

synthetic top view

synthetic side view

What are these black areas near the boundaries?

Virtual camera rotations

synthetic

rotations

original view

Image rectification

two original images

rectified and stitched

Street art

and mather

Understanding geometric patterns

What is the pattern on the floor?

magnified view of floor

Understanding geometric patterns

What is the pattern on the floor?

magnified view of floor

rectified view

reconstruction from rectified view

Understanding geometric patterns

Very popular in renaissance drawings (when perspective was discovered)

Holbein, "The Ambassadors"

Holbein, "The Ambassadors"

What's this???

Holbein, "The Ambassadors"

rectified view

skull under anamorphic perspective

Holbein, "The Ambassadors"

DIY: use a polished spoon to see the skull

Panoramas from image stitching

1. Capture multiple images from different viewpoints.

2. Stitch them together into a virtual wide-angle image.

References

Basic reading:

• Szeliski textbook, Section 3.6.

Additional reading:

- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.

 a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).

Questions?