

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Credits

- Slides comes directly from:
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Noah Snavely (Cornell)
 - Marco Zuliani

Short Review from last class

Last 2 classes

- Feature points
 - Correspondent points on two images

Robot Vision

9. Image warping I

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

1. Use a very wide-angle lens.

OF CENTRY FLO

Wide-angle lenses

Fish-eye lens: can produce (near) hemispherical field of view.

What are the pros and cons of this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

- 1. Use a very wide-angle lens.
- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

Any alternative to this?

How do you create a panorama?

Panorama: an image of (near) 360° field of view.

- 1. Use a very wide-angle lens.
- Pros: Everything is done optically, single capture.
- Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).
- 2. Capture multiple images and combine them.

Panoramas from image stitching

1. Capture multiple images from different viewpoints.

2. Stitch them together into a virtual wide-angle image.

How do we stitch images from different viewpoints

Will standard stitching work?

- 1. Translate one image relative to another.
- 2. (Optionally) find an optimal seam.

How do we stitch images from different viewpoints

Will standard stitching work?

- 1. Translate one image relative to another.
- 2. (Optionally) find an optimal seam.

left on top

right on top

Translation-only stitching is not enough to mosaic these images.

How do we stitch images from different viewpoin

What else can we try?

How do we stitch images from different viewpoints

Use image homographies.

Outline

- Linear algebra
 - Matrix addition, Matrix multiplication
 - Inverse, Pseudo Inverse
 - Least squares, SVD
- Image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Matrix

- Array $A \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
 - m rows and n columns

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- A row vector is a matrix with single row
- A column vector is a matric with single column

Matrix operations

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

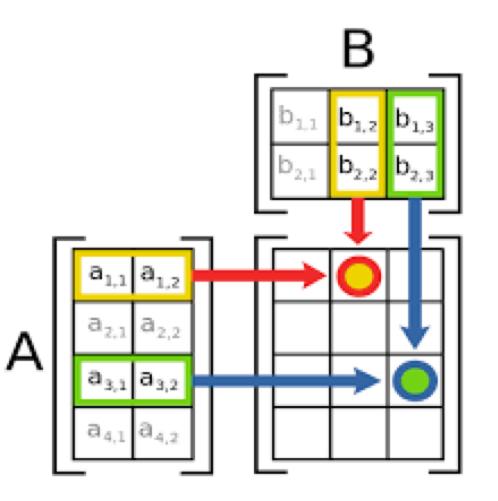
• Both matrices should have same shape, except with a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 2 = \begin{bmatrix} a+2 & b+2 \\ c+2 & d+2 \end{bmatrix}$$

Same with subtraction

Matrix operation

- Matrix Multiplication
 - Compatibility?
 - mxn and nxp
 - Results in mxp matrix



Matrix operation

• Transpose

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\boldsymbol{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Special matrices

- Diagonal matrix
 - Used for row scaling

$$A = egin{bmatrix} A_1 & 0 & \cdots & 0 \ 0 & A_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & A_n \end{bmatrix}$$

- Identity matrix
 - Special diagonal matrix
 - 1 along diagonals

I.A = A

Matrix operation

- Inverse
 - Given a matrix A, its inverse A⁻¹ is a matrix such that
 AA⁻¹ = A⁻¹A = I
- Inverse does not always exist
 - Singular vs non-singular
- Properties
 - (A⁻¹) ⁻¹ = A
 - (AB) ⁻¹ = B⁻¹A⁻¹

PseudoInverse

$$Ax = b$$
 \frown A is not squared

$$A^T A x = A^t b$$
 $A^T A$ is squared

$$(A^{T}A)^{-1}(A^{T}A)x = (A^{T}A)^{-1}A^{t}b$$

$$x = (A^T A)^{-1} A^t b$$
PseudoInverse

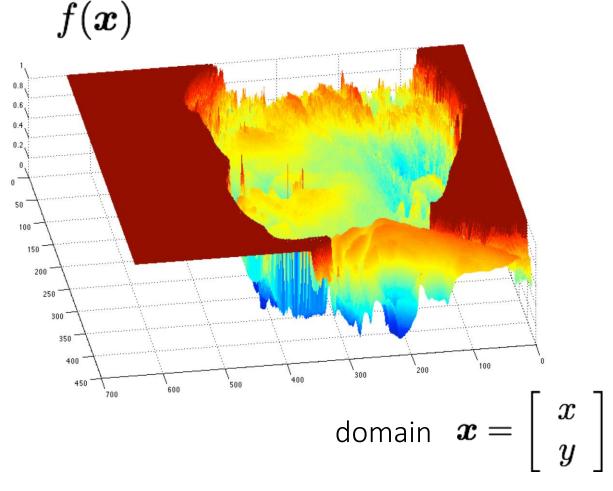
Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

What is an image?

grayscale image

What is the range of the image function f?

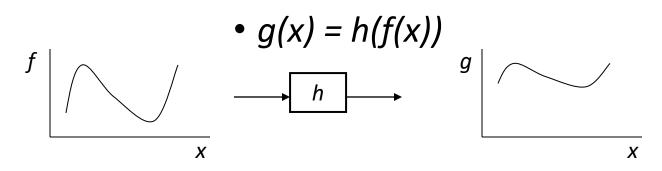


TOF CENTRAL HOUSE

A (grayscale) image is a 2D function.

Image Warping

• image filtering: change *range* of image



• image warping: change *domain* of image

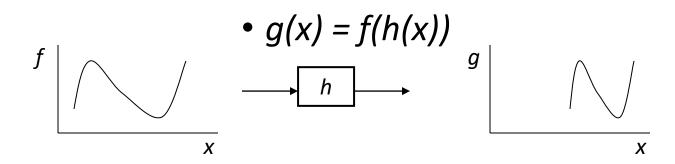
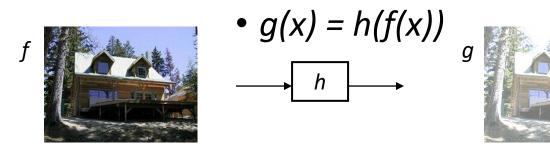


Image Warping

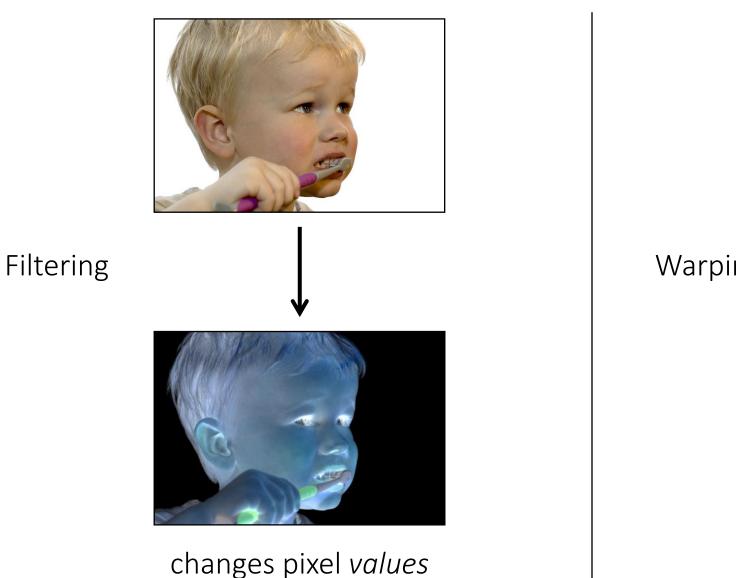
• image filtering: change *range* of image



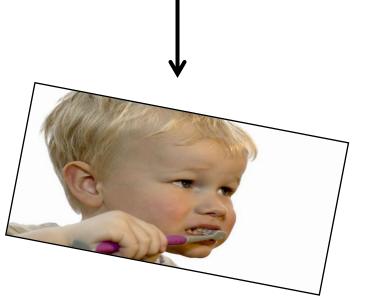
• image warping: change *domain* of image

•
$$g(x) = f(h(x))$$

What types of image transformations can we do



Warping



changes pixel *locations*

What types of image transformations can we de FF

Warping

Filtering

$$\int G(\boldsymbol{x}) = h\{F(\boldsymbol{x})\}$$

G

changes *range* of image function

g $\int G(\mathbf{x}) = F(h\{\mathbf{x}\})$ G $\int G$

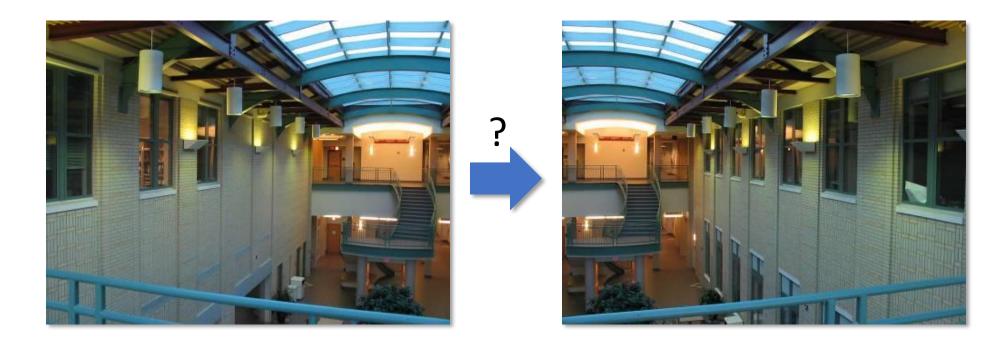
changes domain of image function

The persistence of memory by Salvador Dali

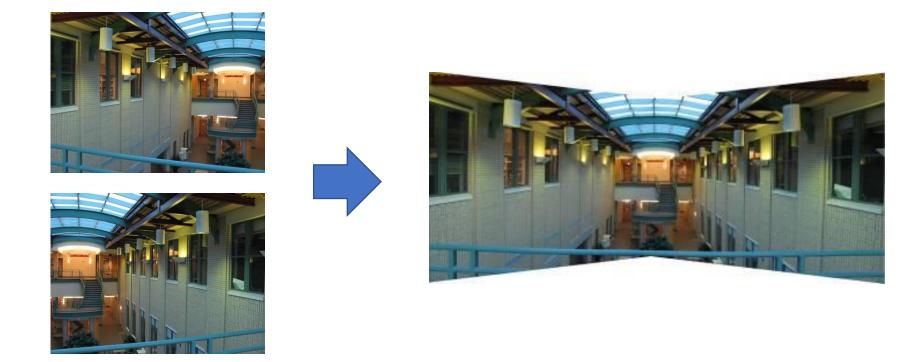
Original

Filtering operation (Blurred) Warping operation (Swirled)

What is the geometric relationship between these two images?



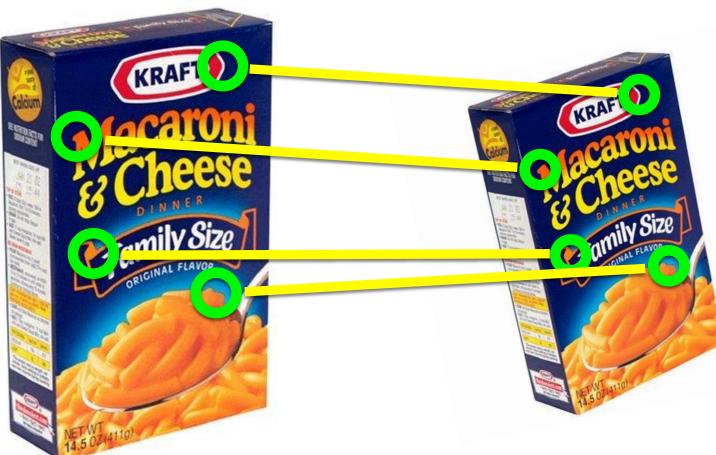
What is the geometric relationship between these two images?



Very important for creating mosaics!

First, we need to know what this transformation is.

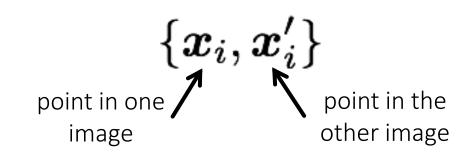
Second, we need to figure out how to compute it using feature matches.



- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

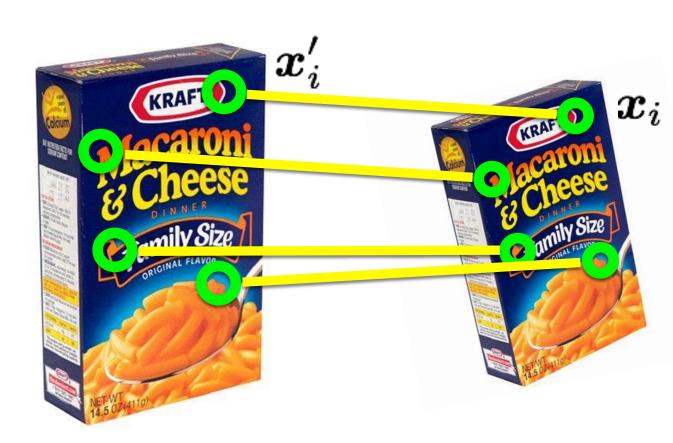
Given a set of matched feature points:



and a transformation:

$$x' = f(x; p)$$
transformation \checkmark \checkmark parameters

find the best estimate of the parameters



What kind of transformation functions f are there?

Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

2D transformations

translation

rotation

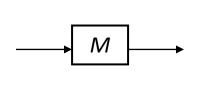
aspect

perspective

cylindrical

affine

Parametric (global) warping



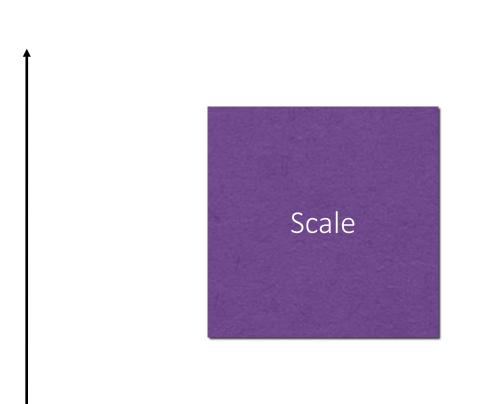
p = (x,y)

- **p'** = (x',y')
- Transformation M is a coordinate-changing machine:

p' = M(p)

- What does it mean that *M* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* forms (can be represented by a 2x2 matrix):

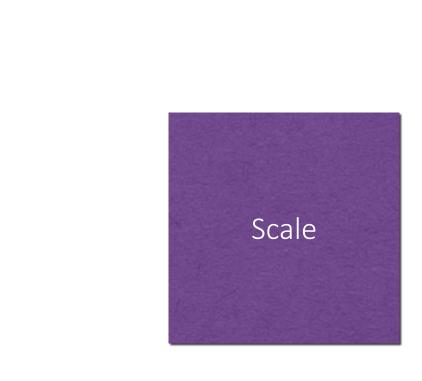
$$p' = Mp \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$



y

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

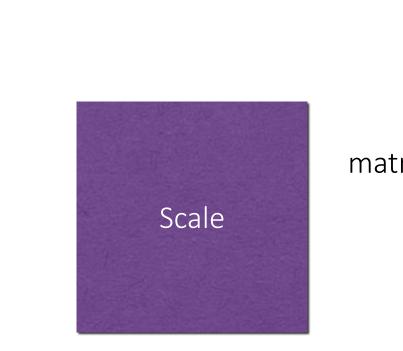


y

$$\begin{aligned} x' &= ax\\ y' &= by \end{aligned}$$

What's the effect of using different scale factors?

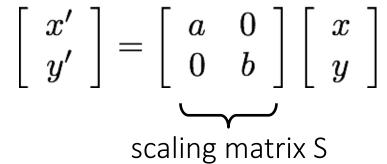
- Each component multiplied by a scalar
- Uniform scaling same scalar for each component



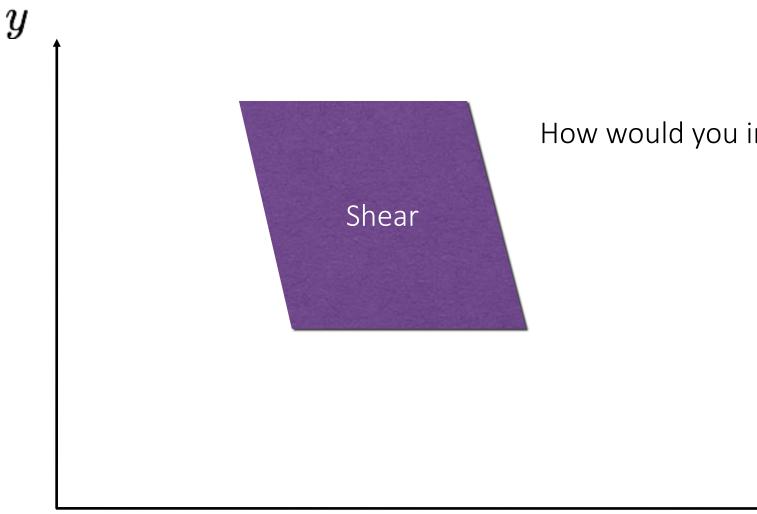
y

 $\begin{aligned} x' &= ax\\ y' &= by \end{aligned}$

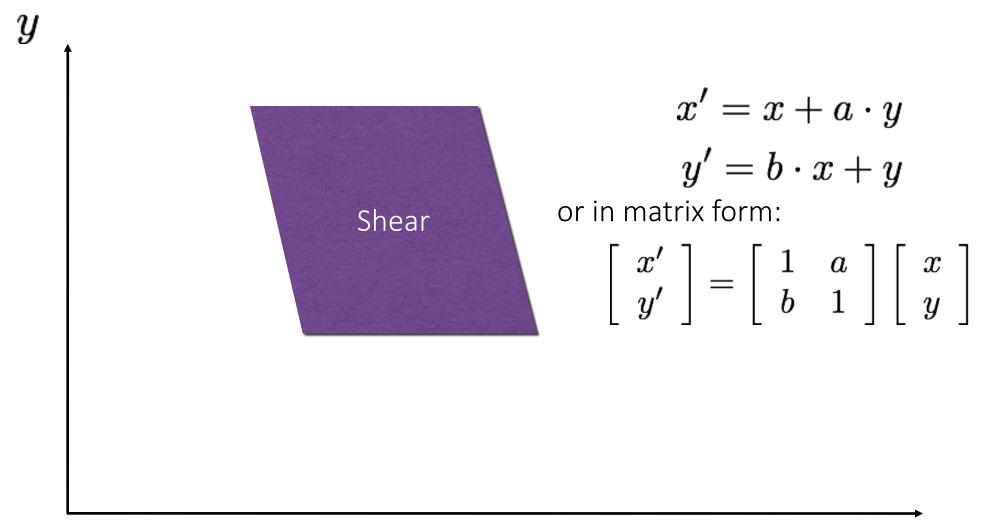
matrix representation of scaling:

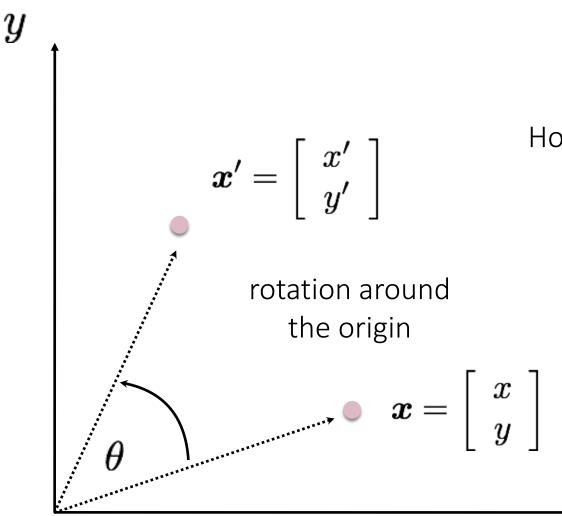


- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

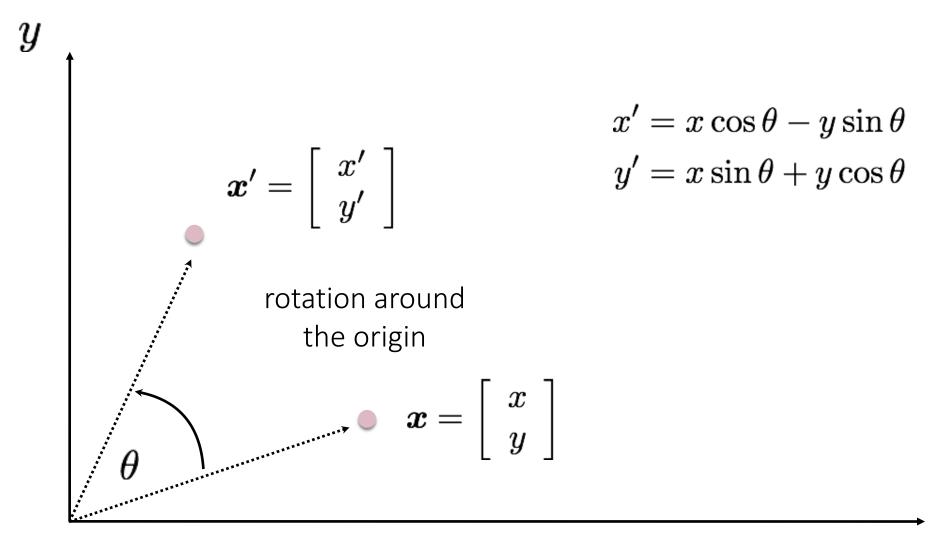


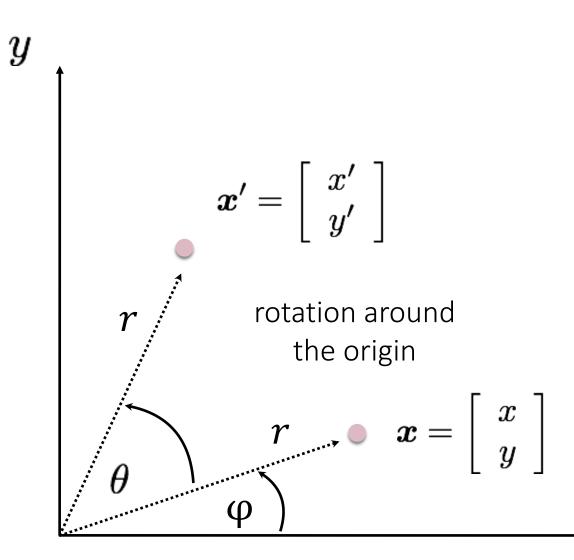
How would you implement shearing?





How would you implement rotation?



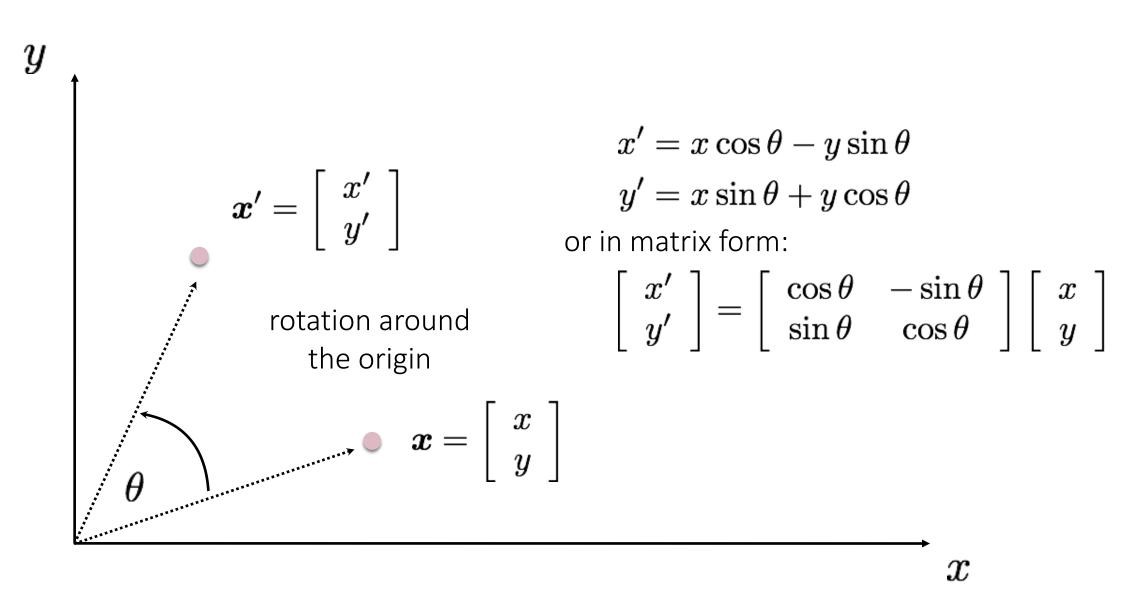


Polar coordinates... $x = r \cos (\phi)$ $y = r \sin (\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

Trigonometric Identity... $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute... $x' = x \cos(\theta) - y \sin(\theta)$ $y' = x \sin(\theta) + y \cos(\theta)$

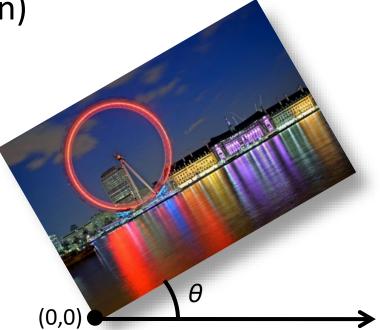
x



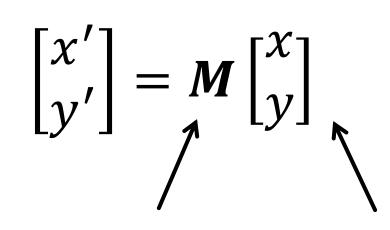
Common linear transformations

A CONTRACTOR

• Rotation by angle heta (about the origin)



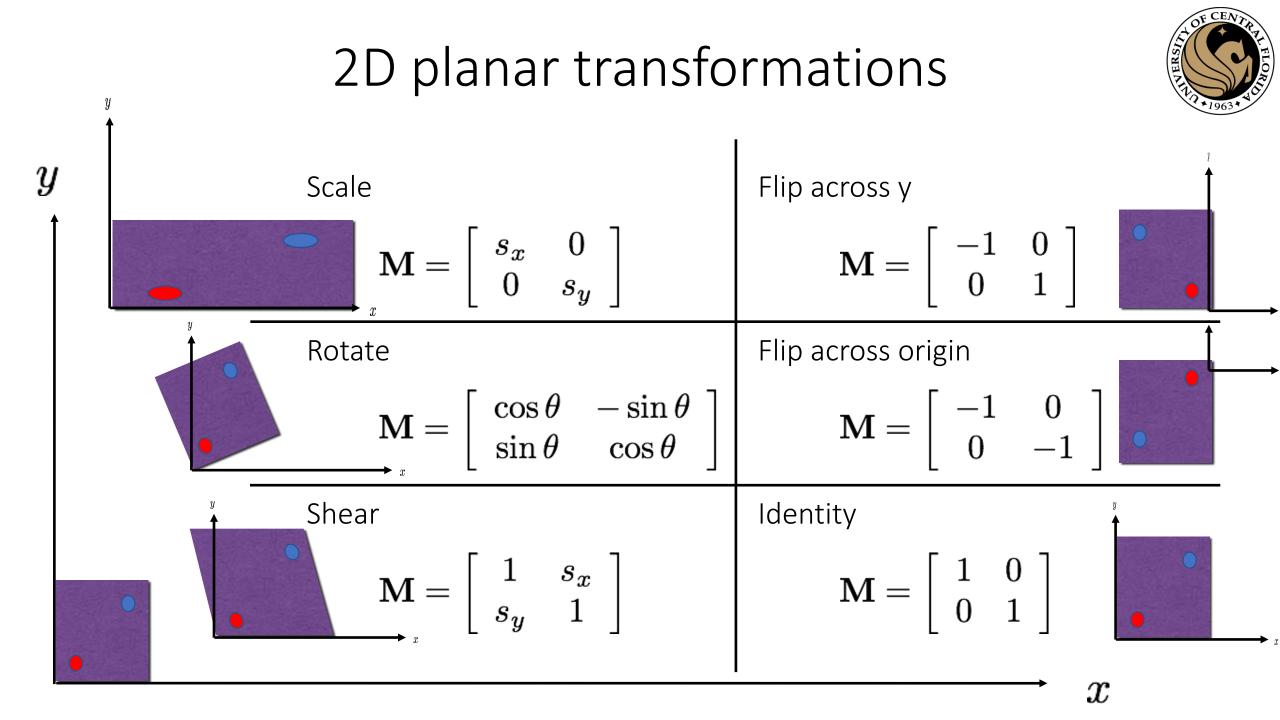
- $\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$
- What is the inverse? For rotations: $\mathbf{R}^{-1} = \mathbf{R}^{T}$



parameters p point $oldsymbol{x}$

2D planar and linear transformations

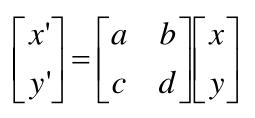
Scale $\mathbf{M} = \left[egin{array}{cc} s_x & 0 \ 0 & s_y \end{array} ight]$	Flip across y $\mathbf{M} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}$
Rotate	Flip across origin
$\mathbf{M} = \left[egin{array}{cc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array} ight]$	$\mathbf{M} = \left[egin{array}{cc} -1 & 0 \ 0 & -1 \end{array} ight]$
Shear	Identity
$\mathbf{M} = \left[egin{array}{ccc} 1 & s_x \ s_y & 1 \end{array} ight]$	$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$



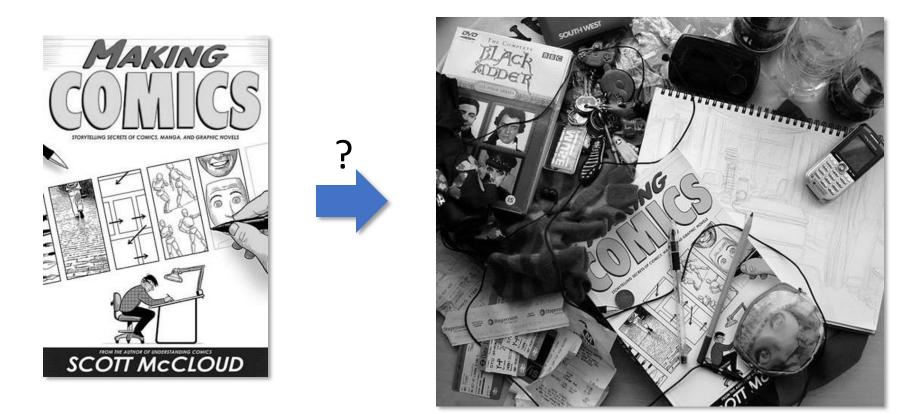
All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

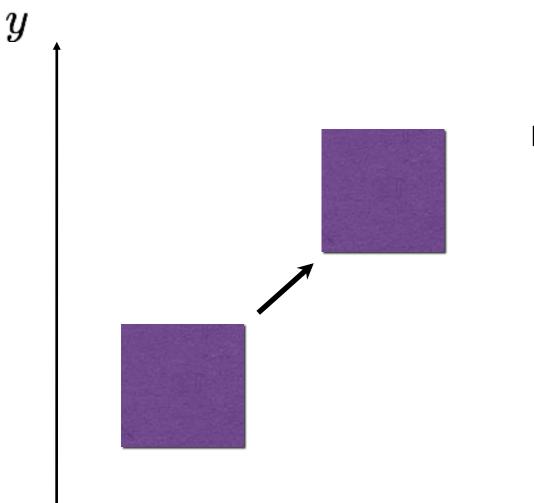
 $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} e & f \\ g & h \end{vmatrix} \begin{vmatrix} i & j \\ k & l \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$



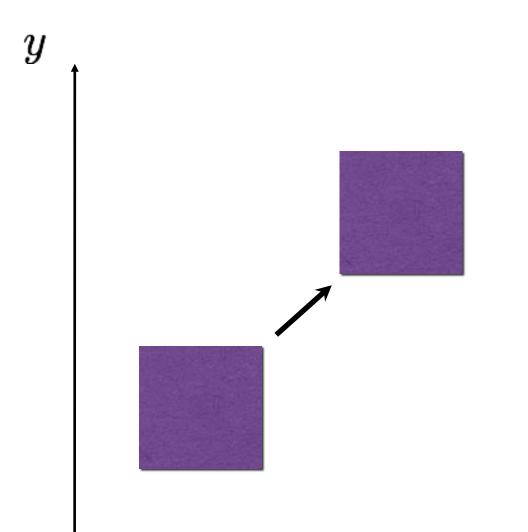
What is the geometric relationship between these two images?



Answer: Similarity transformation (translation, rotation, uniform scale)



How would you implement translation?

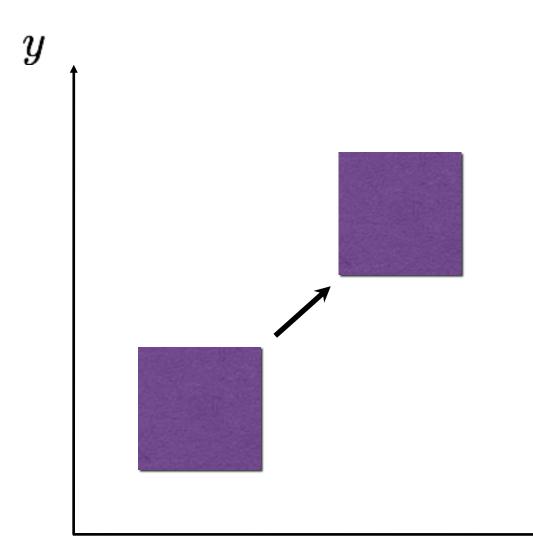


$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation?

$$\mathbf{M} = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array} \right]$$

x



$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation?

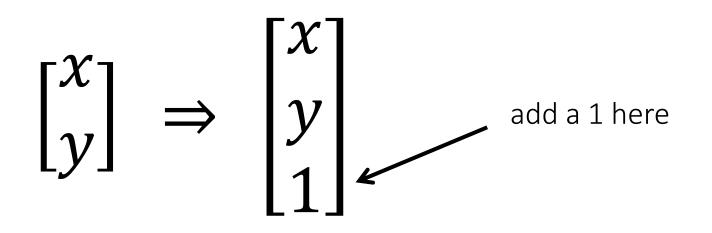
Not possible.

Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Homogeneous coordinates

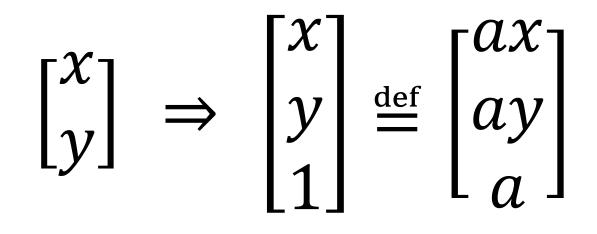
heterogeneous homogeneous coordinates coordinates



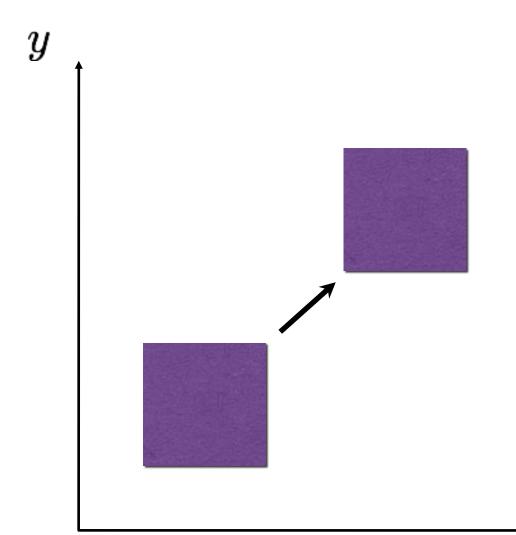
• Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

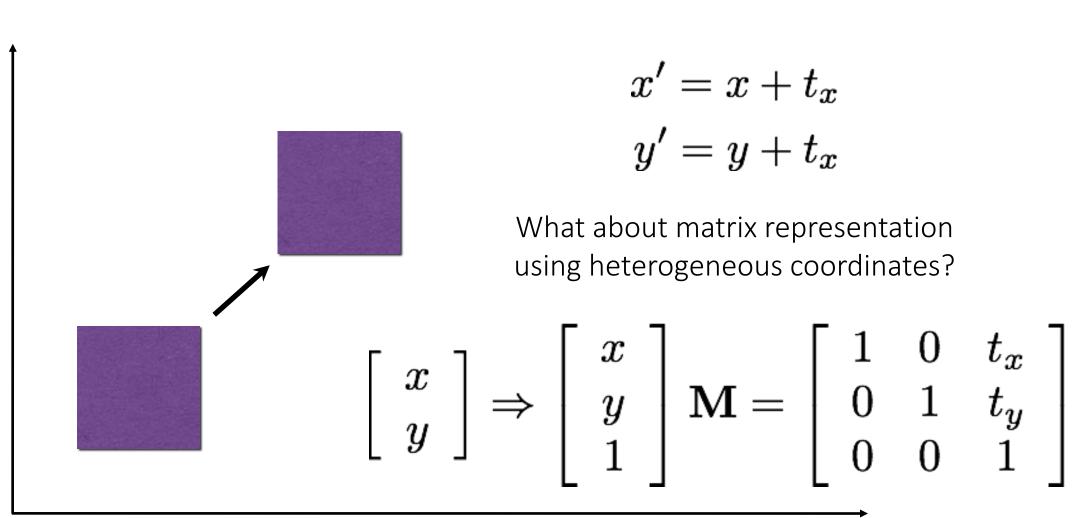


- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

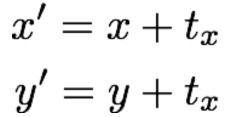


$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?



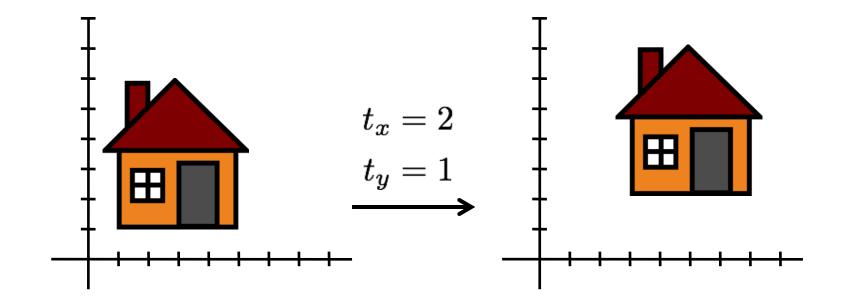
y



What about matrix representation using heterogeneous coordinates?

x

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$



Homogeneous coordinates

Conversion:

• heterogeneous \rightarrow homogeneous

 $\left[\begin{array}{c} x\\ y\end{array}\right] \Rightarrow \left[\begin{array}{c} x\\ y\\ 1\end{array}\right]$

• homogeneous \rightarrow heterogeneous

$$\left[\begin{array}{c} x\\ y\\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w\\ y/w \end{array}\right]$$

• scale invariance

Special points:

• point at infinity (x,y)

$$\left[egin{array}{ccc} x & y & 0 \end{array}
ight]$$

- undefined
 - $\left[\begin{array}{ccc} 0 & 0 & 0 \end{array}\right]$

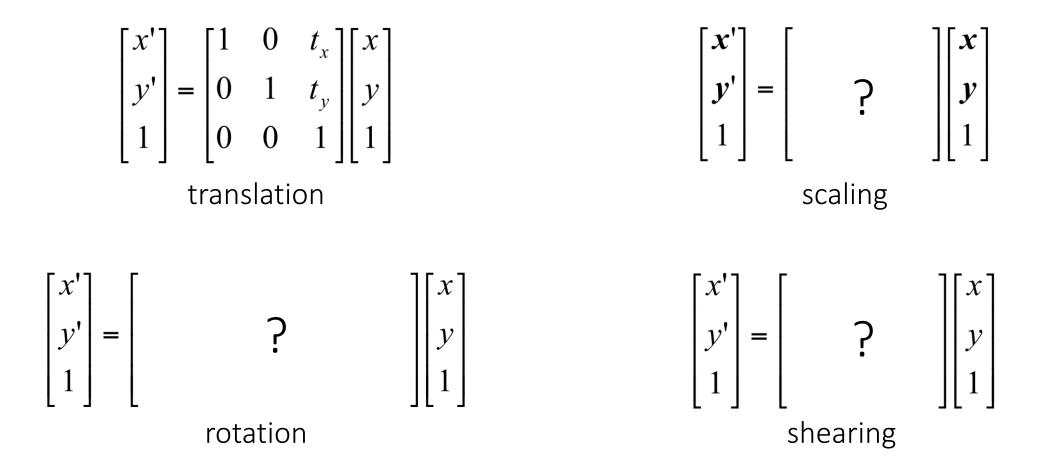
Homogeneous coordinates •(x, y, w) W Homogeneous/image plane Trick: add one more coordinate: $(x,y) \Rightarrow \left| \begin{array}{c} x \\ y \\ 1 \end{array} \right|$ ∮(x/w, y/w, 1 *w* = 1 → X homogeneous image coordinates

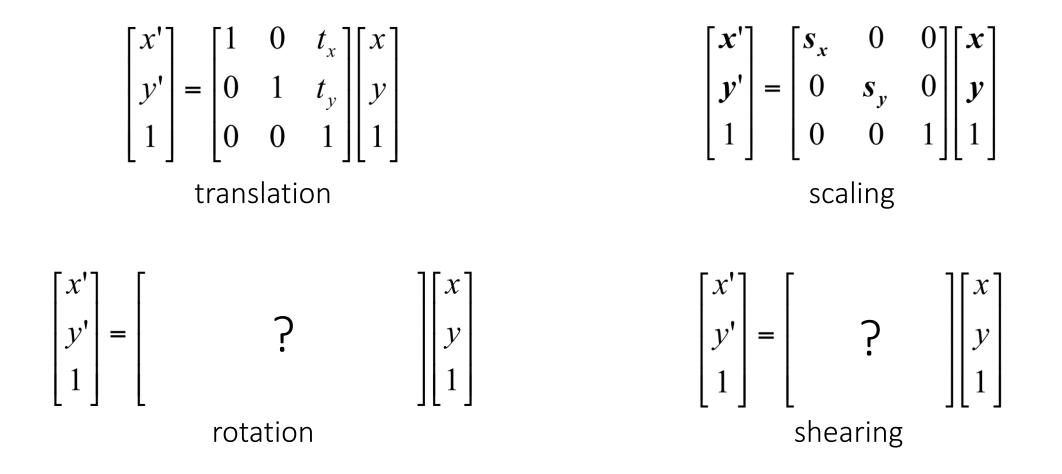
Converting *from* homogeneous coordinates

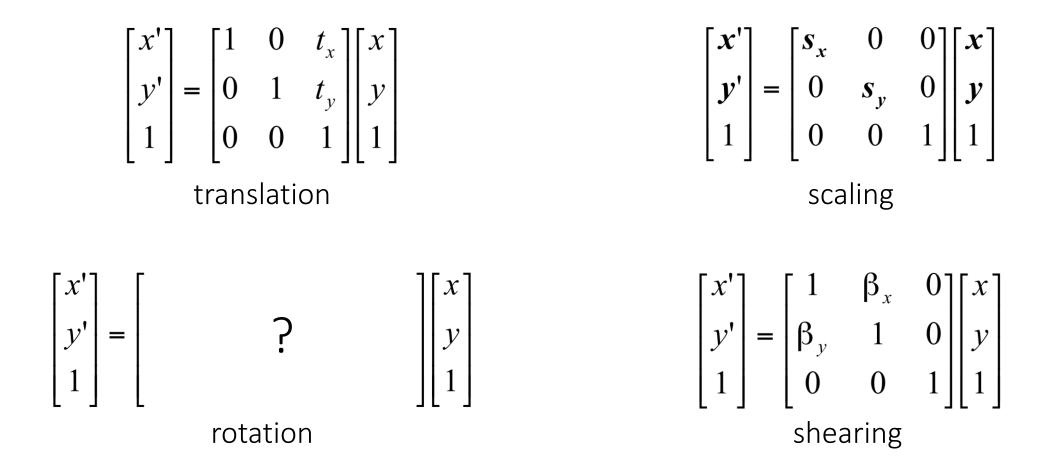
$$\left[\begin{array}{c} x\\ y\\ w\end{array}\right] \Rightarrow (x/w, y/w)$$

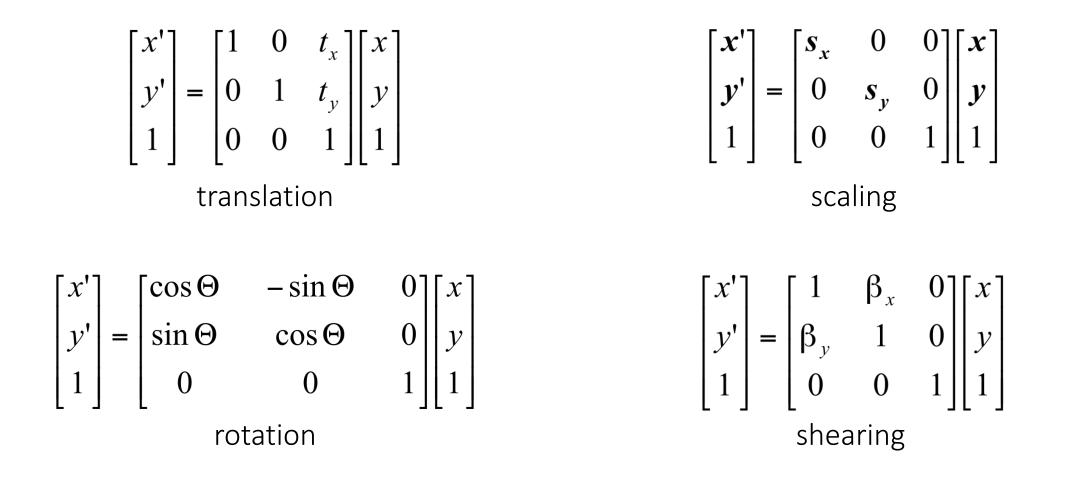
Outline

- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.









Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ w \end{bmatrix}$$

$$p' = ? ? ? P$$

Matrix composition

Transformations can be combined by matrix multiplication:

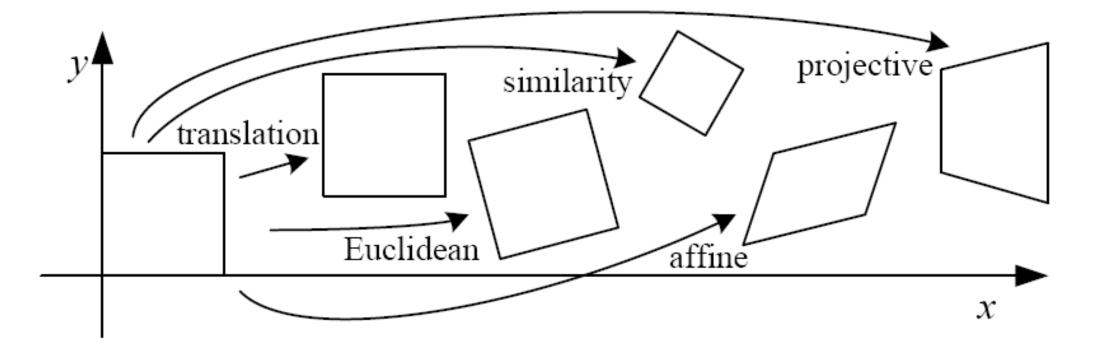
$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx\\0 & 1 & ty\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\\sin\Theta & \cos\Theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\w \end{bmatrix}$$

$$\mathbf{p}' = \text{translation}(t_x, t_y) \qquad \text{rotation}(\theta) \qquad \text{scale}(s, s) \qquad \mathbf{p}$$

Does the multiplication order matter?

Outline

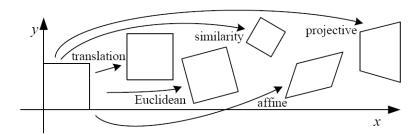
- Linear algebra
- Image transformations.
- 2D transformations.
- Projective geometry
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.



Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\left. s \boldsymbol{R} \right \boldsymbol{t} \right]$?
affine	$\begin{bmatrix} A \end{bmatrix}$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

Translation: $\begin{bmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$

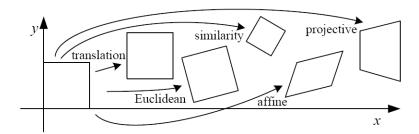
How many degrees of freedom?



Euclidean (rigid): rotation + translation

$$\left[\begin{array}{rrrr} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{array}\right]$$

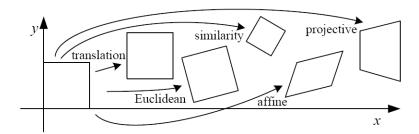
Are there any values that are related?



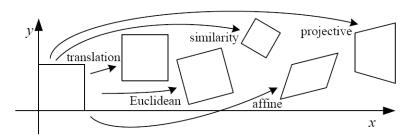
Euclidean (rigid): rotation + translation

 $\begin{bmatrix} \cos \theta & -\sin \theta & r_3 \\ \sin \theta & \cos \theta & r_6 \\ 0 & 0 & 1 \end{bmatrix}$

How many degrees of freedom?

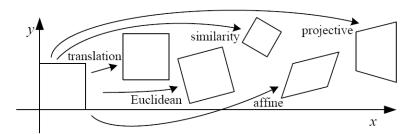


which other matrix values will change if this increases? Euclidean (rigid): rotation + translation ψ $\cos \theta - \sin \theta r_3 \sin \theta \cos \theta r_6 0 0 1$



what will happen to the image if this increases? (rigid): slation $\begin{aligned}
& \log \theta - \sin \theta r_3 \\
& \sin \theta \cos \theta r_6 \\
& 0 & 0 & 1
\end{aligned}$

Euclidean (rigid): rotation + translation



 $\begin{bmatrix} \cos \theta & -\sin \theta & r_3 \\ \sin \theta & \cos \theta & r_6 \\ 0 & 0 & 1 \end{bmatrix}$

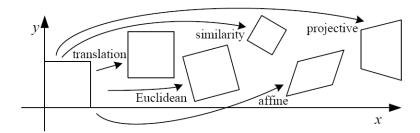
what will happen to the image if this increases?

Euclidean (rigid): rotation + translation

Similarity: uniform scaling + rotation + translation

$$\left[\begin{array}{cccc} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{array}\right]$$

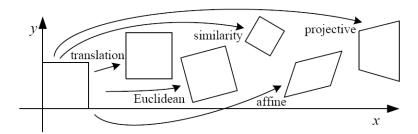
Are there any values that are related?

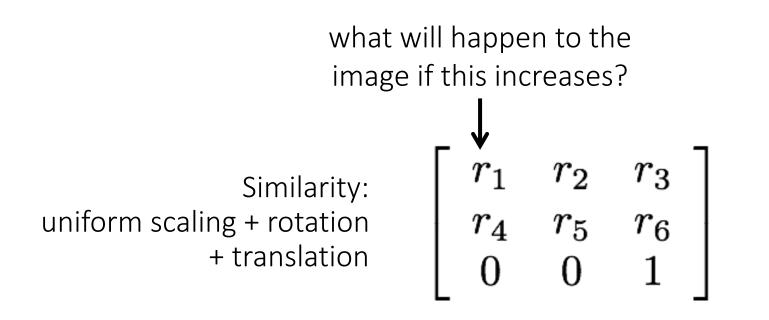


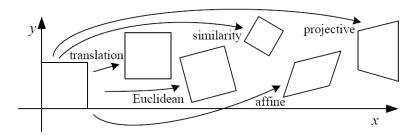
multiply these four by scale **s** $egin{array}{c} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \end{array}$ Similarity: + translation 0

uniform scaling + rotation

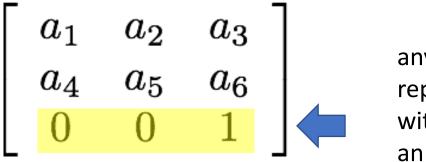
How many degrees of freedom?





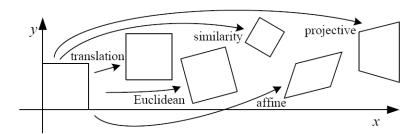


Affine transform: uniform scaling + shearing + rotation + translation



any transformation represented by a 3x3 matrix with last row [001] we call an *affine* transformation

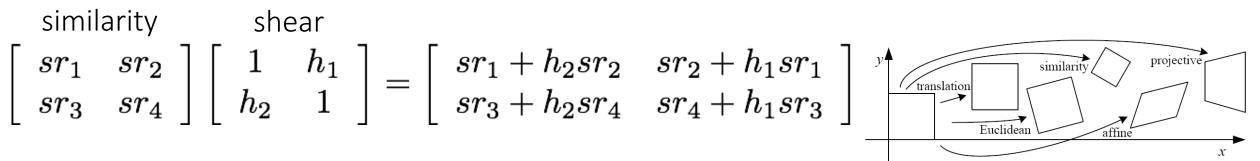
Are there any values that are related?



Affine transform: uniform scaling + shearing + rotation + translation

$$\left[\begin{array}{rrrrr}a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ 0 & 0 & 1\end{array}\right]$$

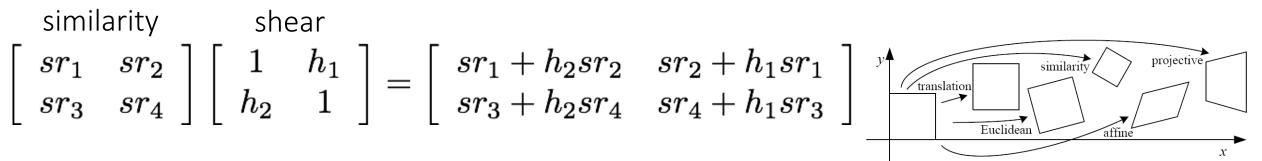
Are there any values that are related?



Affine transform: uniform scaling + shearing + rotation + translation

$$\left[\begin{array}{rrrrr}a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ 0 & 0 & 1\end{array}\right]$$

How many degrees of freedom?



Affine transformations

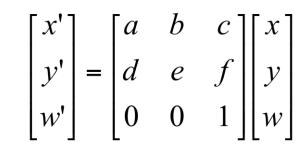
Affine transformations are combinations of

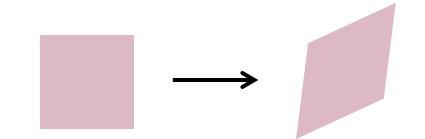
- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Does the last coordinate w ever change?





Affine transformations

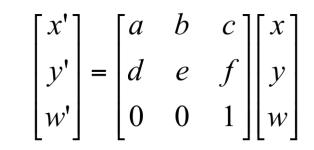
Affine transformations are combinations of

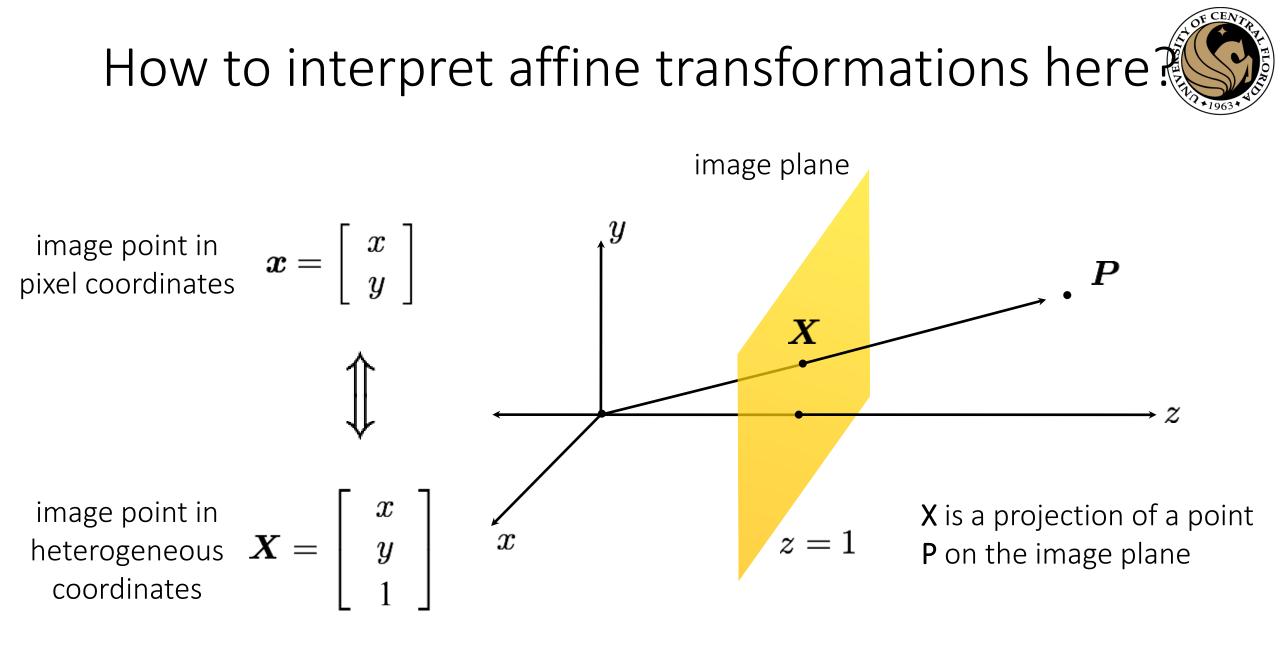
- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

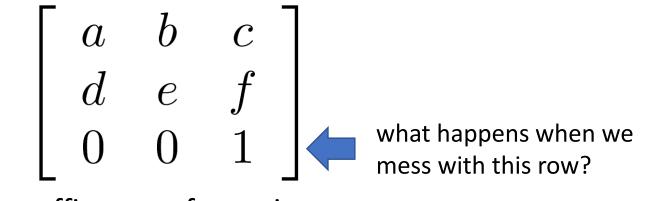
- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Nope! But what does that mean?





Where do we go from here?



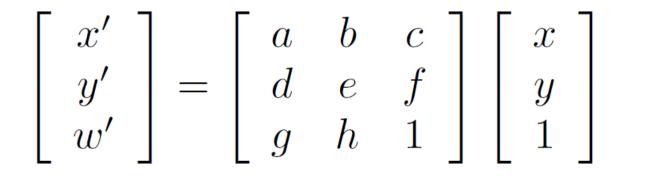
affine transformation

Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[\begin{array}{rrrr} a & b & c \\ d & e & f \\ g & h & 1 \end{array} \right]$$

Called a *homography* (or *planar perspective map*)

Homographies



 $\sim \begin{bmatrix} \frac{ax+by+c}{gx+hy+1} \\ \frac{dx+ey+f}{gx+hy+1} \\ 1 \end{bmatrix}$

Alternate formulation for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

where the length of the vector $[h_{00} h_{01} \dots h_{22}]$ is 1

Projective transformations are combinations of

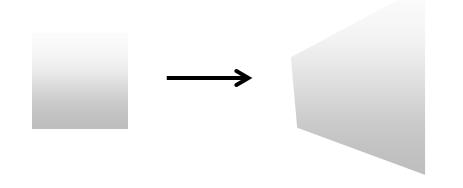
- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

How many degrees of freedom?



Projective transformations are combinations of

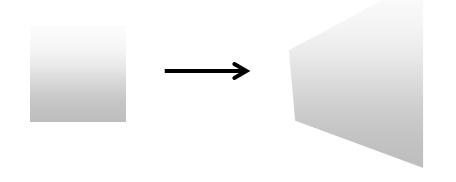
- affine transformations; and
- projective wraps

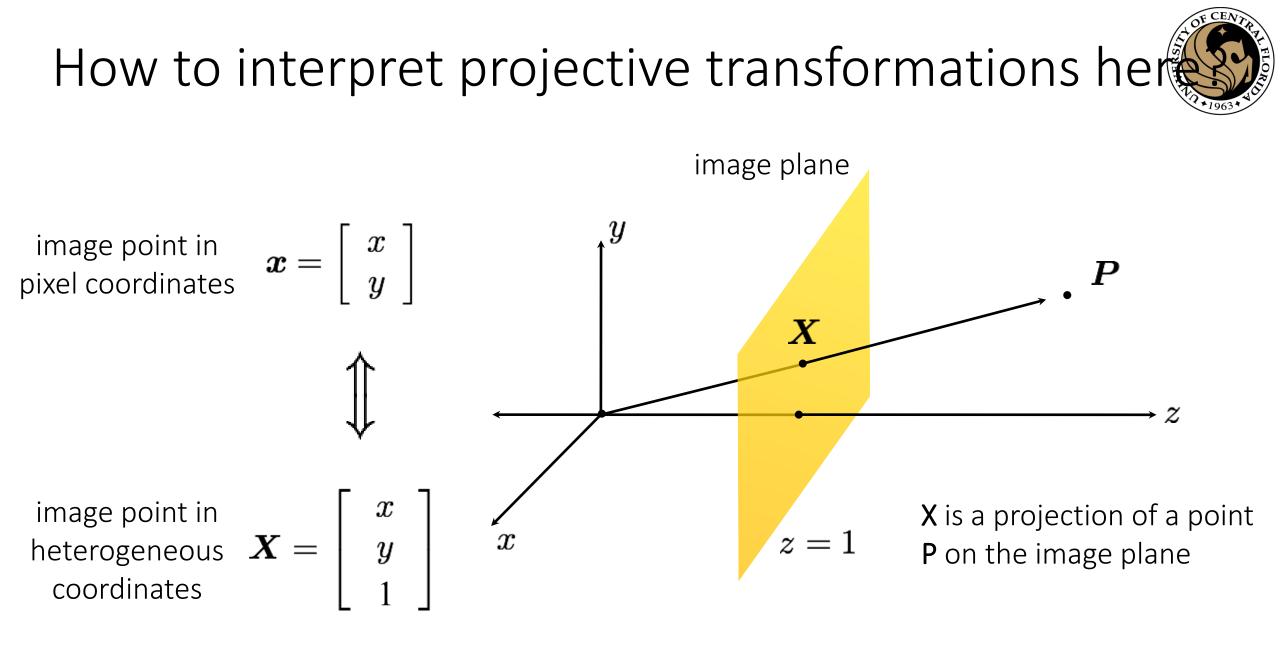
Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

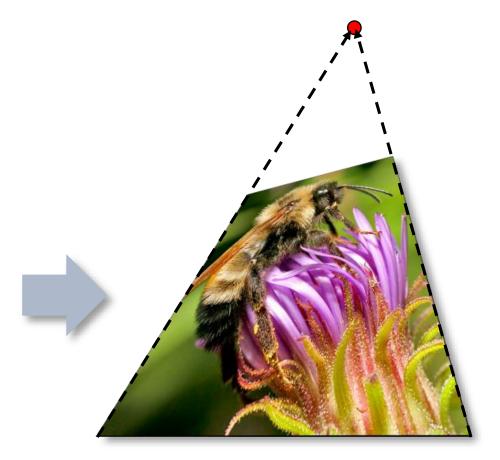
$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)



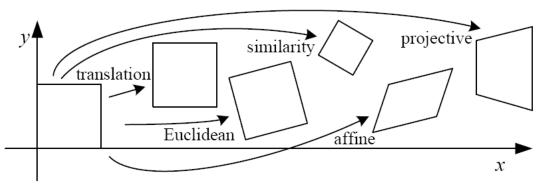


Points at infinity



Is this an affine transformation?

2D image transformations



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

When can we use homographies?

We can use homographies when...

1. ... the scene is planar; or

2. ... the scene is very far or has small (relative) depth variation
 → scene is approximately planar

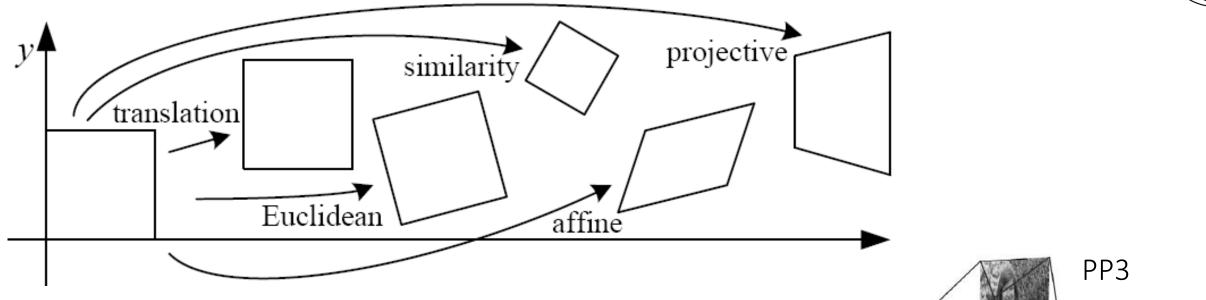
We can use homographies when...

3. ... the scene is captured under camera rotation only (no translation or pose change)

More on why this is the case in a later lecture.

Computing with homographies

PP2



PP1

Which kind transformation is needed to warp projective plane 1 into projective plane 2?

• A projective transformation (a.k.a. a homography).

Applying a homography

1. Convert to homogeneous coordinates:

What is the size of the homography matrix?

2. Multiply by the homography matrix:

3. Convert back to heterogeneous coordinates:

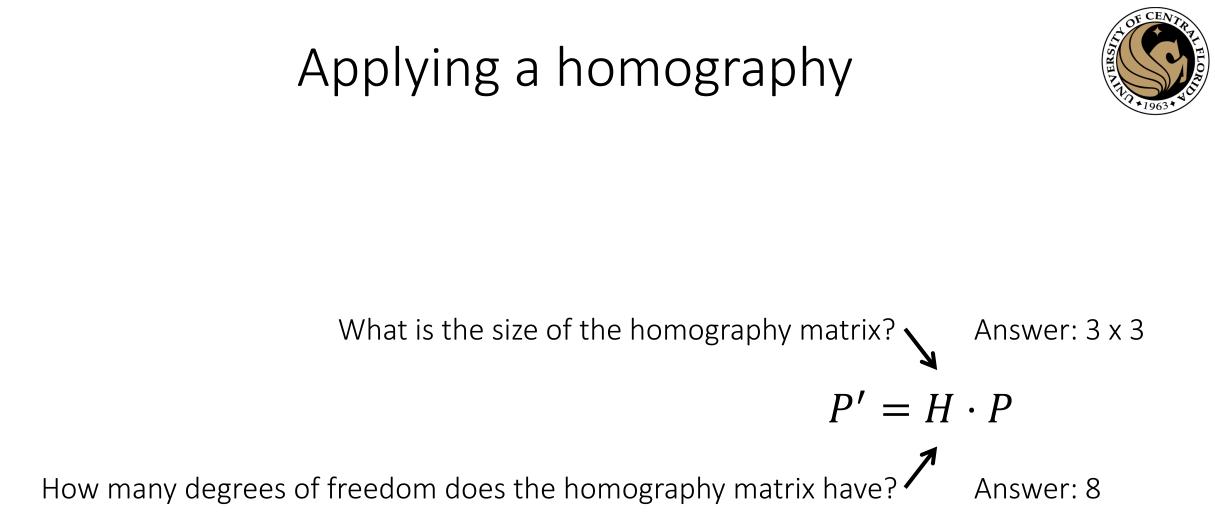
$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \implies p' = \begin{vmatrix} x'/w' \\ y'/w' \end{vmatrix}$$

 $P' = H \cdot P$

 $p = \begin{bmatrix} x \\ y \end{bmatrix} \implies P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Applying a homography $p = \begin{bmatrix} x \\ y \end{bmatrix} \implies P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ Convert to homogeneous coordinates: What is the size of the homography matrix? Answer: 3 x 3 $P' = H \cdot P$ Multiply by the homography matrix: 2. How many degrees of freedom does the homography matrix have? $P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \implies p' = \begin{bmatrix} x'/w' \\ y'/w' \\ y'/w' \end{bmatrix}$ Convert back to heterogeneous coordinates: 3.

Applying a homography $p = \begin{bmatrix} x \\ y \end{bmatrix} \implies P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ Convert to homogeneous coordinates: What is the size of the homography matrix? Answer: 3 x 3 $P' = H \cdot P$ Multiply by the homography matrix: 2. How many degrees of freedom does the homography matrix have? Answer: 8 $P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \implies p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$ Convert back to heterogeneous coordinates: 3.



How do we compute the homography matrix?

Homography

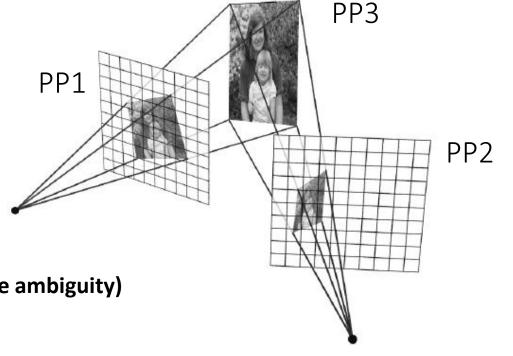
Under homography, we can write the transformation of points in 3D from camera 1 to camera 2 as:

In the image planes, using homogeneous coordinates, we have

$$\lambda_1 \mathbf{x}_1 = \mathbf{X}_1, \quad \lambda_2 \mathbf{x}_2 = \mathbf{X}_2, \quad \text{therefore} \quad \lambda_2 \mathbf{x}_2 = H \lambda_1 \mathbf{x}_1$$

Heterogeneous coordinates

This means that x2 is equal to Hx1 up to a scale (due to universal scale ambiguity)



Outline

- Linear algebra
- Image transformations
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

References

Basic reading:

• Szeliski textbook, Section 3.6.

Additional reading:

- Richter-Gebert, "Perspectives on projective geometry," Springer 2011.

 a beautiful, thorough, and very accessible mathematics textbook on projective geometry (available online for free from CMU's library).

Questions?